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a b s t r a c t

In this paper, we investigate the pulsating flow of an incompressible and slightly conducting micropo-
lar fluid between two homogeneous permeable beds in the presence of an inclined uniform magnetic
field. The flow between the permeable beds is assumed to be governed by Eringen’s micropolar fluid flow
equations and that in the permeable beds by Darcy’s law with the Beavers–Joseph slip conditions at the
fluid–permeable bed interfaces. It is assumed that a uniform magnetic field is applied at an angle θ with
the y-axis. The equations are solved analytically and the expressions for velocity andmicrorotation are ob-
tained. The effects of the magnetic parameter and the other material parameters are studied numerically
and the results are presented through graphs.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Pulsating flow is a periodic flow that oscillates around non-zero
mean value. The severity of pulsating flow depends on pulsation
amplitudes, frequency andwaveform. A complete treatment of the
fluid dynamics of steady andpulsatory flowwith emphasis on basic
mechanics, physics and applications canbe seen in [1]. Carpinlioglu
and Gundogdu [2] presented a review on the pulsatile pipe flow
studies directing towards future research topics. Pulsating flow is
generally encountered in natural systems such as human respira-
tory, circulatory and vascular systems and in engineering systems
such as internal combustion engines, thermoacoustic coolers, Stir-
ling engines, bio-reactors and MEMS microfluidic engineering ap-
plications.

The laminar flows in channels with permeable walls have
gained considerable attention because of their applications in
modelling pulsating diaphragms, filtration, and grain regression
during solid propellant combustion.Wang [3] studied the pulsatile
flow in a porous channel. Vajravelu et al. [4] studied the pulsatile
flow between permeable beds. Malathy and Srinivas [5] studied
the pulsating flow of a viscous, incompressible, Newtonian fluid
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between permeable beds under the influence of transverse mag-
netic field. Ramakrishnan and Shailendhra [6] studied hydromag-
netic steady flow through uniform channel bounded by porous
media. Avinash et al. [7] studied the pulsatile flow of a viscous
stratified fluid of variable viscosity between permeable beds. Iyen-
gar and Punnamchandar [8,9] studied pulsating flows of couple
stress fluid and micropolar fluid between two parallel permeable
beds in the absence of magnetic effects.

To the extent the present authors have surveyed the pulsatile
flow of an incompressible micropolar fluid between two perme-
able beds with an inclined uniform magnetic field has not been
studied so far. The micropolar fluid model introduced by [10] can
be used to explain the flow of liquid crystals with rigid molecules,
magnetic fluids, biological fluids, lubricants, polymeric additives,
geomorphological sediments, colloidal suspensions, haematolog-
ical suspensions etc. In such fluids the micro-elements possess
both translational and rotational motions. The interaction of the
velocity field and microrotation field can be described through
new material constants in addition to those of a classical Newto-
nian fluid. Eringen’s micropolar fluid model includes the classical
Navier–Stokes equations as a special case and can cover both the
theory and applications, many more phenomena than the classi-
cal model can. Extensive reviews of the theory and applications of
micropolar fluids can be found in the books by [11,12].

In this paper, we study the flow of an incompressible mi-
cropolar fluid between permeable beds with an inclined uniform
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Fig. 1. Flow diagram.

magnetic field. The flow is assumed to be driven by an unsteady
pulsating pressure gradient. The flow through the permeable beds
is assumed to be governed by Darcy’s law and the flow between
the permeable beds by Eringen’s micropolar fluid flow equations.
The Beavers–Joseph (BJ) slip boundary conditions are used at the
interfaces of the permeable beds [13]. The equations are solved an-
alytically and the expressions for velocity and microrotation are
obtained. The effects ofmicropolar parameters, Hartmannnumber,
angle of inclination of the uniformmagnetic field, porosity param-
eter, frequency parameter and steady and oscillatory components
of the pressure gradient on the velocity andmicrorotation are stud-
ied numerically and the results are presented through graphs.

2. Mathematical formulation

The field equations describing a micropolar fluid flow are [10]

∂ρ

∂t
+ ∇.(ρq̄) = 0 (1)

ρ
dq̄
dt

= ρ f̄ − ∇p + κ∇ × v̄ − (µ + κ)(∇ × ∇ × q̄)

+ (λ + 2µ + κ)∇(∇.q̄) + J̄ × B̄ (2)

ρj
dv̄
dt

= ρ l̄ − 2κv̄ + κ∇ × q̄ − γ (∇ × ∇ × v̄)

+ (α1 + β + γ )∇(∇.v̄) (3)

where q̄ and v̄ are velocity and microrotation vectors respectively.
J is the current density and B is the totalmagnetic fieldwhich is the
sum of the applied and induced magnetic fields. f̄ , l̄ are the body
force per unitmass and body couple per unitmass respectively and
p is the pressure at any point.ρ and j are the density of the fluid and
gyration parameter respectively and are assumed to be constant.
The material quantities (λ, µ, κ) are viscosity coefficients and
(α1, β, γ ) are gyroviscosity coefficients satisfying the constraints

κ ≥ 0; 2µ + κ ≥ 0; 3λ + 2µ + κ ≥ 0;
γ ≥ 0; |β| ≤ γ ; 3α1 + β + γ ≥ 0.

(4)

We consider the pulsating flow of an incompressible, slightly
conducting micropolar fluid between two permeable beds. The
permeable beds are rigid and homogeneous. Fig. 1 shows the phys-
ical model of the problem under consideration. The Cartesian coor-
dinate system is chosen in such away that the x-axis is taken along
the interface of the lower permeable bed and the y-axis normal to
it. Let y = 0 and y = h represent the interfaces of the permeable
beds. The fluid is injected into the channel from the lower perme-
able bed with a velocity V and is sucked into the upper permeable
bed with the same velocity. The permeabilities of lower and upper
beds are k1 and k2 respectively. The flow in upper and lower per-
meable beds is assumed to be governed by Darcy’s law. The flow
between the permeable beds is assumed to be governed bymicrop-
olar fluid flow equations. The thickness of the permeable beds is
much larger than the width of the channel so that we can directly
use Beavers–Joseph condition at the interfaces of the channel. A
uniform magnetic field of strength Bo is applied at an angle θ with
the y-axis. The inducedmagnetic field can be neglected in compar-
isonwith the appliedmagnetic field, asmagnetic Reynolds number
is much less than unity [14,15]. The fluid is driven by a pulsating
pressure gradient given by

−
∂p
∂x

=


∂p
∂x


s
+


∂p
∂x


o
eiωt (5)

where


∂p
∂x


s and


∂p
∂x


o are steady and oscillatory components of

the pressure gradient respectively and ω is the frequency.
Under the assumptions, we have q̄ = (u(y, t), V , 0) and v̄ =

(0, 0, c(y, t)). With this, the governing fluid flow equations of
the problem in the absence of body forces and body couples are
given by

ρ


∂u
∂t

+ V
∂u
∂y


= −

∂p
∂x

+ κ
∂c
∂y

+ (µ + κ)
∂2u
∂y2

− σe(B0 cos θ)2u (6)

ρj


∂c
∂t

+ V
∂c
∂y


= −2κc − κ

∂u
∂y

+ γ
∂2c
∂y2

. (7)

Herein the velocity component u(y, t) is to satisfy the conditions

∂u
∂y

=
α

√
k1

(uB1 − Q1) at y = 0

∂u
∂y

= −
α

√
k2

(uB2 − Q2) at y = h

 (8)

and themicrorotation component c(y, t) is to satisfy the condition

c = 0 at y = 0 and y = h (9)

where σe is the electrical conductivity and Bo is the applied mag-
netic field. uB1 = u|y=0 and uB2 = u|y=h are the slip velocities at the
interfaces of the lower and upper permeable beds respectively. α
is the slip parameter. Q1 = −

k1
µ

∂p
∂x and Q2 = −

k2
µ

∂p
∂x are Darcy’s

velocities in the lower and upper permeable beds respectively.
Eq. (8) represents the BJ slip conditions. Eq. (9) stipulates that the
microrotation vanishes at the interfaces of the permeable beds.

In view of the pulsating pressure gradient, let us assume that
the velocity and microrotation are in the form

u(y, t) = us(y) + uo(y)eiωt (10)

c(y, t) = cs(y) + co(y)eiωt (11)

where us and cs represent steady parts and uo and co represent the
oscillatory parts of the velocity and microrotation respectively.

The following non-dimensionalization scheme is introduced to
make the governing equations and the boundary conditions di-
mensionless.

u∗
=

u
V

, us
∗

=
us

V
, uo

∗
=

uo

V
,

c∗
=

ch
V

, cs∗ =
csh
V

, co∗
=

coh
V

, u∗

B1 =
uB1

V
,

u∗

B2 =
uB2

V
, p∗

=
p

ρV 2
, ω∗

=
ωh
V

,

t∗ =
tV
h

, x∗
=

x
h
, y∗

=
y
h
.

(12)
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The equations and boundary conditions governing the non-
dimensionalized pulsating flow are given by

∂2u
∂y2

+ m
∂c
∂y

− R


∂u
∂y

+
∂u
∂t


− (M cos θ)2u = R


∂p
∂x


(13)

∂2c
∂y2

− n
∂u
∂y

− RPj


∂c
∂y

+
∂c
∂t


− 2nc = 0 (14)

after dropping ∗’s.
The non-dimensionalized boundary conditions on u and c are

∂u
∂y

= ασ1


uB1 −

R
(1 − m)σ 2

1

∂p
∂x


at y = 0

∂u
∂y

= −ασ2


uB2 −

R
(1 − m)σ 2

2

∂p
∂x


at y = 1

 (15)

c = 0 at y = 0 and 1 (16)

where u = us + uoeiωt , c = cs + coeiωt , uB1 = usB1 + uoB1e
iωt , uB2 =

usB2 + uoB2e
iωt , −

∂p
∂x =


∂p
∂x


s +


∂p
∂x


o e

iωt , Reynolds number R =

ρVh
µ+κ

, Hartmann number M = B0h


σe
µ
, coupling parameter m =

κ
µ+κ

, gyration parameter n =
κh2
γ

, microinertia parameter Pj =

j(µ+κ)

γ
and porosity parameters: σ1 =

h
√
k1

, σ2 =
h

√
k2
.

Steady part

The governing equations of the steady part are given by

d2us

dy2
+ m

dcs
dy

− R
dus

dy
− (M cos θ)2us = −RΠs (17)

d2cs
dy2

− n
dus

dy
− RPj

dcs
dy

− 2ncs = 0. (18)

The boundary conditions to be satisfied by us and cs are

dus

dy
= ασ1


usB1 −

RΠs

(1 − m)σ 2
1


at y = 0

dus

dy
= −ασ2


usB2 −

RΠs

(1 − m)σ 2
2


at y = 1

 (19)

cs = 0 at y = 0 and 1 (20)

where Πs =


∂p
∂x


s.

Oscillatory part

The governing equations of the oscillatory part are given by

d2uo

dy2
+ m

dco
dy

− R
duo

dy
− ((M cos θ)2 + iωR)uo = −RΠo (21)

d2co
dy2

− n
duo

dy
− RPj

dco
dy

− (2n + iωRPj)co = 0. (22)

The boundary conditions to be satisfied by uo and co are

duo

dy
= ασ1


uoB1 −

RΠo

(1 − m)σ 2
1


at y = 0

duo

dy
= −ασ2


uoB2 −

RΠo

(1 − m)σ 2
2


at y = 1

 (23)

co = 0 at y = 0 and 1 (24)

where Πo =


∂p
∂x


o.
3. Solution of the problem

Solution of the steady part

From Eqs. (17) and (18), we see that uo(y) satisfies the fourth
order ordinary differential equation

uıv
s − Asu′′′

s + Bsu′′

s + Csu′

s + Dsus = 2nRΠs (25)

where the expressions for As, Bs, Cs andDs are given in Appendix A.
The solution of Eq. (25) is of the form

us(y) = C1eλ1y + C2eλ2y + C3eλ3y + C4eλ4y + 2nRΠs/Ds. (26)

By using Eqs. (17) and (18), we get cs(y) in terms of us(y) as
given by

cs(y) =
1

2nm


−u′′′

s + Asu′′

s − (Bs + 2n)u′

s

− RPj((M cos θ)2us − RΠs)

. (27)

Using this and the expression for us(y) given in Eq. (26), we get the
expression for cs(y) as

cs(y) = D1eλ1y + D2eλ2y + D3eλ3y + D4eλ4y. (28)

The solution of the steady part described in Section 2 is given by

us(y) = C1eλ1y + C2eλ2y + C3eλ3y + C4eλ4y + 2nRΠs/Ds (29)

cs(y) = D1eλ1y + D2eλ2y + D3eλ3y + D4eλ4y (30)

where Cj (j = 1–4) and Dj (j = 1–4) are determined by using the
boundary conditions given by Eqs. (19) and (20). The actual expres-
sions for λj (j = 1–4), Cj (j = 1–4) and Dj (j = 1–4) are given in
Appendix A.

Solution of the oscillatory part

From Eqs. (21) and (22), we see that uo(y) satisfies the fourth
order ordinary differential equation

uıv
o − Au′′′

o + Bu′′

o + Cu′

o + Duo = bRΠo (31)

where the expressions for A, B, C and D are given in Appendix B.
The solution of Eq. (31) is of the form

uo(y) = C5eλ5y + C6eλ6y + C7eλ7y + C8eλ8y + RΠo/a. (32)

By using Eqs. (21) and (22), we get co(y) in terms of uo(y) as
given by

co(y) =
1
mb


−u′′′

o + Au′′

o − (B + b)u′

o − RPj(auo − RΠo)

. (33)

Using this and the expression for uo(y) given in Eq. (32), we get the
expression for co(y) as

co(y) = D5eλ5y + D6eλ6y + D7eλ7y + D8eλ8y. (34)

The solution of the oscillatory part described in Section 2 is
given by

uo(y) = C5eλ5y + C6eλ6y + C7eλ7y + C8eλ8y + RΠo/a (35)

co(y) = D5eλ5y + D6eλ6y + D7eλ7y + D8eλ8y (36)

where Cj (j = 5–8) and Dj (j = 5–8) are determined by using
the boundary conditions given by Eqs. (23) and (24). The actual
expressions for λj (j = 5–8), Cj (j = 5–8) and Dj (j = 5–8) are
given in Appendix B.
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Fig. 2. Variation of u(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5, Πs =

Πo = 1, Pj = 1,m = 0.5, n = 0.5.

Fig. 3. Effect of ωt on u(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5, Πs =

Πo = 1, Pj = 1,m = 0.5, n = 0.5.

Solution of the pulsating flow

The solution of the pulsating flow is given by

u(y, t) = us(y) + uo(y)eiωt (37)

c(y, t) = cs(y) + co(y)eiωt (38)

where us(y), cs(y) and uo(y), co(y) are known from the steady part
and oscillatory part solutions given in Eqs. (29), (30), (35) and (36)
respectively.

4. Results and discussion

Under the assumption that both the permeable beds have
different permeabilities, the analytical solutions for velocity and
microrotation profiles for pulsating flows are derived. In the nu-
merical work, we have taken that both the permeable beds have
the same permeability, i.e., k1 = k2 = k(σ1 = σ2 = σ).

The effects of various parameters entering into the problem on
pulsating velocity u(y, t) are depicted in Figs. 2–12. Fig. 2 shows
the variation of the pulsating velocity with respect to t . At y = 0
and y = 1, the velocities correspond to the slip velocities at the
interfaces of the lower and upper permeable beds respectively.
Fig. 3 shows the variation of the pulsating velocity with respect to
ωt . As ωt is increasing, the velocity is decreasing.
Fig. 4. Effect of R on u(y, t) forα = 0.5,M = 2, θ = π/6, σ = 5, ωt = π/4, Πs =

Πo = 1, Pj = 1,m = 0.5, n = 0.5.

Fig. 5. Effect of M on u(y, t) for α = 0.5, R = 0.5, θ = π/6, σ = 5, ωt =

π/4, Pj = 1, Πs = Πo = 1,m = 0.5, n = 0.5.

From Fig. 4, we notice that as Reynolds number R is increasing,
the velocity is increasing. The effect of Hartmann number
(magnetic parameter)M on the velocity is shown in Fig. 5. AsM is
increasing, it is seen that the velocity is decreasing. This shows that
the imposed magnetic field has a retarding influence on the flow.
Fig. 6 shows the effect of the inclination angle θ (0 ≤ θ < π/2)
on the pulsating velocity profile. As θ is increasing, the velocity is
increasing. Here θ = 0 corresponds to the magnetic field applied
normal to the direction of the flow. As θ → π/2, themagnetic field
is in the flow direction which corresponds to the pulsating flow in
the absence of magnetic field (i.e., (M cos θ)2 → 0).

In Fig. 7 we see the effect of the microinertia parameter Pj on
the pulsating velocity profile. As Pj is increasing, the velocity is in-
creasing. Fig. 8 depicts the variation of velocity with respect to the
coupling parameter m (0 ≤ m < 1). As m is increasing, the veloc-
ity is decreasing. Fig. 9 shows the variation of the pulsating velocity
with respect to the gyration parameter n. As n is increasing, nearer
to the beds there is no significant change in the velocity whereas
it shows a slightly increasing trend in the region between y = 0.3
and y = 0.8.

Fig. 10 shows the variation of velocitywith respect to the poros-
ity parameter σ . It is observed that as σ is increasing, the velocity
is decreasing. Figs. 11 and 12 show the effects of steady and oscil-
latory components of the pressure gradient on the velocity profile
respectively. In both the cases, as the magnitude of the pressure
gradient increases, the velocity increases.
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Fig. 6. Effect of θ on u(y, t) for α = 0.5, R = 0.5,M = 2, σ = 5, Πs = Πo = 1,
Pj = 1,m = 0.5, n = 0.5.

Fig. 7. Effect of Pj on u(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5, ωt =

π/4, Πs = Πo = 1,m = 0.5, n = 0.5.

Fig. 8. Effect of m on u(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5, ωt =

π/4, Πs = Πo = 1, Pj = 1, n = 0.5.

Figs. 13–22 show the effects of various parameters entering into
the problem on microrotation c(y, t). The variation of microrota-
tion with respect to ωt is shown in Fig. 13. As ωt is increasing, the
Fig. 9. Effect of n on u(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5, ωt =

π/4, Πs = Πo = 1, Pj = 1,m = 0.5.

Fig. 10. Effect of σ on u(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, ωt =

π/4, Πs = Πo = 1, Pj = 1,m = 0.5, n = 0.5.

Fig. 11. Effect of Πs on u(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5,
ωt = π/4, Pj = 1, Πo = 1,m = n = 0.5.

microrotation is decreasing near the upper permeable bed while it
has an increasing trend near the lower permeable bed.

From Fig. 14, we notice that as Reynolds number R is increasing,
the microrotation is increasing near the upper permeable bed
while it has a decreasing trend at the lower permeable bed. The
effect of Hartmann numberM onmicrorotation is shown in Fig. 15.
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Fig. 12. Effect of Πo on u(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5,
ωt = π/4, Πs = 1, Pj = 1,m = n = 0.5.

Fig. 13. Effect of ωt on c(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5,
Πs = Πo = 1, Pj = 1,m = 0.5, n = 0.5.

Fig. 14. Effect of R on c(y, t) for α = 0.5,M = 2, θ = π/6, σ = 5, ωt = π/4,
Πs = Pio = 1, Pj = 1,m = n = 0.5.

It is seen that as M is increasing, the microrotation is decreasing
near the upper permeable bedwhile it has an increasing trend near
the lower permeable bed.

Fig. 16 shows the effect of the inclination angle θ (0 ≤ θ <
π/2) on the microrotation. As θ is increasing, the microrotation is
Fig. 15. Effect of M on c(y, t) for α = 0.5, R = 0.1, θ = π/6, σ = 5, ωt = π/4,
Πs = Πo = 1, Pj = 1,m = 0.5, n = 0.5.

Fig. 16. Effect of θ on u(y, t) for α = 0.5, R = 0.1,M = 2, σ = 5, Πs = Πo = 1,
Pj = 1,m = 0.5, n = 0.5.

Fig. 17. Effect of Pj on c(y, t) for α = 0.5, R = 0.1,M = 2, θ = π/6, σ = 5, ωt =

π/4, Πs =, Πo = 1,m = 0.5, n = 0.5.

increasing near the upper permeable bed while it has a decreasing
trend at the lower permeable bed.
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Fig. 18. Effect ofm on c(y, t) for α = 0.5, R = 0.5,M = 1, θ = π/6, σ = 5, ωt =

π/4, Πs = Pio = 1, Pj = 1, n = 0.5.

Fig. 19. Effect of n on c(y, t) for α = 0.5, R = 0.1,M = 2, θ = π/6, σ = 5, ωt =

π/4, Πs = Πo = 1, Pj = 1,m = 0.5.

Fig. 17 depicts the variation of microrotation with regard tomi-
croinertia parameter Pj. For 0.2 < y < 1.0, as Pj is increasing,
microrotation is decreasing. For 0 < y < 0.2, as Pj is increasing,
microrotation is increasing. From Fig. 18, it is seen that as the cou-
pling parameterm (0 ≤ m < 1) is increasing, the microrotation is
decreasing near the upper permeable bedwhile it has an increasing
trend at the lower permeable bed.

Figs. 19–21 show the variation of microrotation with respect to
the gyration parameter n, the porosity parameter σ and the mag-
nitude of the pressure gradient Πs respectively. We notice that
as each of these parameters is increasing, the microrotation is in-
creasing in the region nearer to the upper bed and is decreasing
in the region nearer to the lower bed. Fig. 22 shows the variation
of microrotation with respect to the magnitude of the oscillatory
pressure gradient Πo. The microrotation is not showing any spe-
cific trend with an increase in Πo.

In Figs. 13–22, the profiles of c(y, t) show a sort of asymmetry
about a plane parallel to the beds nearer to the upper permeable
bed.

5. Conclusions

In this paper, we have studied the pulsating flow of an incom-
pressible micropolar fluid between two permeable beds under the
influence of an inclined uniform magnetic field using Beavers–
Joseph (BJ) slip boundary conditions at the interfaces of the
Fig. 20. Effect of σ on c(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, ωt =

π/4, Πs = Πo = 1, Pj = 1,m = 0.5, n = 0.5.

Fig. 21. Effect of Πs on c(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5,
ωt = π/4, Pj = 1, Πo = 1,m = 0.5, n = 0.5.

Fig. 22. Effect of Πo on c(y, t) for α = 0.5, R = 0.5,M = 2, θ = π/6, σ = 5,
ωt = π/4, Πs = 1, Pj = 1,m = 0.5, n = 0.5.

permeable beds. Expressions for the velocity and microrotation
components are obtained. Their variation is studied numeri-
cally and presented through graphs corresponding to the fre-
quency/time parameter ωt , Reynolds number R, inclination angle
θ , Hartmann number M , micropolar parameters Pj,m, n, porosity
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parameter σ and magnitudes of the pressure gradients Πs, Πo, by
varying one of these parameters and fixing all others. From the re-
sults we have the following conclusions.

• The pulsating velocity of the fluid is reduced by the increase
of Hartmann number, coupling parameter, porosity parameter
and slip parameter.

• Velocity increases by the increase of Reynolds number, incli-
nation angle, microinertia parameter and magnitudes of the
steady and oscillatory pressure gradients.

• The microrotation decreases with the increase of microinertia
parameter.

• Microrotation is seen to be asymmetric in the flow region about
a plane nearer to and parallel to the upper bed.
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Appendix A. Steady part: λ′
is, C

′
i s and D′

is

λ1,2 =


As/2 − A4 ±


A5 − A6


/2,

λ3,4 =


As/2 + A4 ±


A5 + A6


/2

where

A1 = (B2
s + 3AsCs + 12Ds),

A2 = (2B3
s + 9AsBsCs + 27C2

s + 27A2
sDs − 72BsDs)

A3 =

3

A2 +


A2
2 − 4A3

1

2
, A4 =


A2
s

4
−

2Bs + A3 + A1/A3

3

A5 =
3A2

s

4
− 2Bs − A2

4, A6 =
A3
s − 4AsBs − 8Cs

4A4

As = R(1 + Pj), Bs = (R2Pj + mn − (M cos θ)2 − 2n),

Cs = R((M cos θ)2Pj + 2n), Ds = 2n(M cos θ)2

and

C1 =
C2λ2 + C3λ3 + C4λ4 − S1

λ1

C2 = −
C3L13 + C4L14 + S1

L12

C3 = −
T6 + T1C4

T2
; C4 =

T2T5 − T3T6
∆s

;

Di =
Lλi

2mn
Ci for i = 1, 2, 3, 4.

∆s = T1T3 − T2T4
Lλi = (As − λi)λ

2
i − (Bs + 2n)λi − (M cos θ)2RPj

for i = 1, 2, 3, 4

Lij =

λiLλj − λjLλi


for i, j = 1, 2, 3, 4 (i < j)

Eij = (eλi − eλj) for i, j = 1, 2, 3, 4 (i < j)
Elij = EijLλiLλj for i, j = 1, 2, 3, 4 (i < j)

Eλij = (eλiλiLλj − eλjλjLλi) for i, j = 1, 2, 3, 4 (i < j)
T1 = λ1 [λ2E12L14 − λ4E14L12]
T2 = λ1 [λ2E12L13 − λ3E13L12]
T3 = λ1 [El13λ2 − El12λ3 − El23λ1]
T4 = λ1 [El14λ2 − El12λ4 − El24λ1]
T5 = λ1El12S1
T6 = λ1


(eλ1S1 − S2)λ1Lλ2 − (eλ2S1 − S2)λ2Lλ1


S1 = −Rs1 + ασ1usB1; Rs1 = RΠs/[(1 − m)σ1]

S2 = Rs2 − ασ2usB2; Rs2 = RΠs/[(1 − m)σ2]

usB1 =
F2F5 + F1F6
F2F4 − F1F3

; usB2 =
F3F5 + F4F6
F2F4 − F1F3

F1 = 1 +
αλ1σ2

∆s
(T3H1 − T4H2)

F2 =
αλ1σ2

∆s
(T3H4 − T4H3)

F3 = −1 −
ασ1

L12


(Lλ1 − Lλ2) +

λ1

∆s
H5


F4 =

ασ1

L12


(eλ1Lλ2 − eλ2Lλ1) −

λ1

∆s
H6


F5 = −

RΠs

M2
−

1
L12


Rs1(eλ2Lλ1 − eλ1Lλ2) +

λ1

∆s
H7


F6 =

RΠs

M2
+

1
L12


Rs1(Lλ1 − Lλ2) +

λ1

∆s
H8


H1 = eλ4L12 − eλ2L14 + eλ1L24
H2 = eλ3L12 − eλ2L13 + eλ1L23
H3 = λ3 (Lλ1 − Lλ2) + λ1 (Lλ2 − Lλ3) + λ2 (Lλ3 − Lλ1)

H4 = λ4 (Lλ1 − Lλ2) + λ1 (Lλ2 − Lλ4) + λ2 (Lλ4 − Lλ1)

H5 = Eλ12(T4H3 − T3H4) + El12(T1H3 − T2H4)

H6 = Eλ12(T3H1 − T4H2) + El12(T1H2 − T2H1)

H7 = ((Rs1Eλ12 − Rs2L12)(T3H1 − T4H2) + El12Rs1(T2H1 − T1H2))

H8 = ((Rs1Eλ12 − Rs2L12)(T4H3 − T3H4) + El12Rs1(T2H4 − T1H3)).

Appendix B. Unsteady part: λ′
is, C

′
i s and D′

is

λ5,6 =
1
2


A
2

− Ao4 ±


Ao5 − Ao6


,

λ7,8 =
1
2


A
2

+ Ao4 ±


Ao5 + Ao6


where

Ao1 = (B2
+ 3AC + 12D),

Ao2 = (2B3
+ 9ABC + 27C2

+ 27A2D − 72BD)

Ao3 =

3

Ao2 +


A2
o2 − 4A3

o1

2
,

Ao4 =


Ao2

4
−

2B + Ao3 + Ao1/Ao3

3

Ao5 =
3A2

4
− 2B − A2

o4, Ao6 =
A3

− 4AB − 8C
4Ao4

a = (M cos θ)2 + iωR, b = 2n + ωRPj,

A = R(1 + Pj), B = (R2Pj + mn − a − b),
C = R(aPj + b), D = ab

C8 =
To2To5 − To3To6

∆
; C7 = −

To6 + To1C8

To2
;

C6 = −
C7L57 + C8L58 + So1

L56

C5 =
C6λ6 + C7λ7 + C8λ8 − So1

λ5



182 P. Bitla, T.K.V. Iyengar / European Journal of Mechanics B/Fluids 48 (2014) 174–182
Di =
Lλi

mb
Ci for i = 5, 6, 7, 8.

∆ = To1To3 − To2To4
Lλi = (A − λi)λ

2
i − (B + b)λi − RPja for i = 5, 6, 7, 8

Lij =

λiLλj − λjLλi


for i, j = 5, 6, 7, 8 (i < j)

Eij = (eλi − eλj) for i, j = 5, 6, 7, 8 (i < j)
Elij = EijLλiLλj for i, j = 5, 6, 7, 8 (i < j)

Eλij = (eλiλiLλj − eλjλjLλi) for i, j = 5, 6, 7, 8 (i < j)
To1 = λ5 [λ6E56L58 − λ8E58L56]
To2 = λ5 [λ6E56L58 − λ7E57L56]
To3 = λ5 [El57λ6 − El56λ7 − El67λ5]
To4 = λ5 [El58λ6 − El56λ8 − El68λ5]
To5 = λ5El56So1
To6 = λ5


(eλ5So1 − So2)λ5Lλ6 − (eλ6So1 − So2)λ6Lλ5


So1 = −Rso1 + ασ1uoB1; Rso1 = RΠo/[(1 − m)σ1]

So2 = Rso2 − ασ2uoB2; Rso2 = RΠo/[(1 − m)σ2]

uoB1 =
G2G5 + G1G6

G2G4 − G1G3
; uoB2 =

G3G5 + G4G6

G2G4 − G1G3

G1 = 1 +
αλ5σ2

∆
(To3K1 − To4K2)

G2 =
αλ5σ2

∆
(To3K4 − To4K3)

G3 = −1 −
ασ1

L56


(Lλ5 − Lλ6) +

λ5

∆
K5


G4 =

ασ1

L56


(eλ5Lλ6 − eλ6Lλ5) −

λ5

∆
K6


G5 = −

RΠo

a
−

1
L56


Rso1(eλ6Lλ5 − eλ5Lλ6) +

λ5

∆
K7


G6 =

RΠo

a
+

1
L56


Rso1(Lλ5 − Lλ6) +

λ5

∆
K8


K1 = eλ8L56 − eλ6L58 + eλ5L68
K2 = eλ7L56 − eλ6L57 + eλ5L67
K3 = λ7 (Lλ5 − Lλ6) + λ5 (Lλ6 − Lλ7) + λ6 (Lλ8 − Lλ5)

K4 = λ8 (Lλ5 − Lλ6) + λ5 (Lλ6 − Lλ8) + λ6 (Lλ8 − Lλ5)

K5 = Eλ56(To4K3 − To3K4) + El56(To1K3 − To2K4)

K6 = Eλ56(To3K1 − To4K2) + El56(To1K2 − To2K1)

K7 = ((Rso1Eλ56 − Rso2L56)(To3K1 − To4K2)
+ El56Rso1(To2K1 − To1K2))

K8 = ((Rso1Eλ56 − Rso2L56)(To4K3 − To3K4)
+ El56Rso1(To2K4 − To1K3))
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