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In this paper, we investigate the pulsating flow of an incompressible and slightly conducting micropo-
lar fluid between two homogeneous permeable beds in the presence of an inclined uniform magnetic
field. The flow between the permeable beds is assumed to be governed by Eringen’s micropolar fluid flow
equations and that in the permeable beds by Darcy’s law with the Beavers-Joseph slip conditions at the
fluid-permeable bed interfaces. It is assumed that a uniform magnetic field is applied at an angle 6 with
the y-axis. The equations are solved analytically and the expressions for velocity and microrotation are ob-
tained. The effects of the magnetic parameter and the other material parameters are studied numerically
and the results are presented through graphs.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Pulsating flow is a periodic flow that oscillates around non-zero
mean value. The severity of pulsating flow depends on pulsation
amplitudes, frequency and waveform. A complete treatment of the
fluid dynamics of steady and pulsatory flow with emphasis on basic
mechanics, physics and applications can be seen in[1]. Carpinlioglu
and Gundogdu [2] presented a review on the pulsatile pipe flow
studies directing towards future research topics. Pulsating flow is
generally encountered in natural systems such as human respira-
tory, circulatory and vascular systems and in engineering systems
such as internal combustion engines, thermoacoustic coolers, Stir-
ling engines, bio-reactors and MEMS microfluidic engineering ap-
plications.

The laminar flows in channels with permeable walls have
gained considerable attention because of their applications in
modelling pulsating diaphragms, filtration, and grain regression
during solid propellant combustion. Wang [3] studied the pulsatile
flow in a porous channel. Vajravelu et al. [4] studied the pulsatile
flow between permeable beds. Malathy and Srinivas [5] studied
the pulsating flow of a viscous, incompressible, Newtonian fluid
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between permeable beds under the influence of transverse mag-
netic field. Ramakrishnan and Shailendhra [6] studied hydromag-
netic steady flow through uniform channel bounded by porous
media. Avinash et al. [7] studied the pulsatile flow of a viscous
stratified fluid of variable viscosity between permeable beds. lyen-
gar and Punnamchandar [8,9] studied pulsating flows of couple
stress fluid and micropolar fluid between two parallel permeable
beds in the absence of magnetic effects.

To the extent the present authors have surveyed the pulsatile
flow of an incompressible micropolar fluid between two perme-
able beds with an inclined uniform magnetic field has not been
studied so far. The micropolar fluid model introduced by [10] can
be used to explain the flow of liquid crystals with rigid molecules,
magnetic fluids, biological fluids, lubricants, polymeric additives,
geomorphological sediments, colloidal suspensions, haematolog-
ical suspensions etc. In such fluids the micro-elements possess
both translational and rotational motions. The interaction of the
velocity field and microrotation field can be described through
new material constants in addition to those of a classical Newto-
nian fluid. Eringen’s micropolar fluid model includes the classical
Navier-Stokes equations as a special case and can cover both the
theory and applications, many more phenomena than the classi-
cal model can. Extensive reviews of the theory and applications of
micropolar fluids can be found in the books by [11,12].

In this paper, we study the flow of an incompressible mi-
cropolar fluid between permeable beds with an inclined uniform
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Fig. 1. Flow diagram.

magnetic field. The flow is assumed to be driven by an unsteady
pulsating pressure gradient. The flow through the permeable beds
is assumed to be governed by Darcy’s law and the flow between
the permeable beds by Eringen’s micropolar fluid flow equations.
The Beavers—Joseph (B]) slip boundary conditions are used at the
interfaces of the permeable beds [13]. The equations are solved an-
alytically and the expressions for velocity and microrotation are
obtained. The effects of micropolar parameters, Hartmann number,
angle of inclination of the uniform magnetic field, porosity param-
eter, frequency parameter and steady and oscillatory components
of the pressure gradient on the velocity and microrotation are stud-
ied numerically and the results are presented through graphs.

2. Mathematical formulation

The field equations describing a micropolar fluid flow are [10]

ap _
L yv.pp=0 1
or T V(0D (1
dg . i} _
'OE = pof = Vp+«Vxv—(u+k)(VxVXxQq
+ O 420+ )V(V.9) +] x B )
dv _
p%%:;ﬂ—hﬂ+KVXﬁ—ﬂVXVXE)
+ (a1 + B+ y)V(V.0) (3)

where q and v are velocity and microrotation vectors respectively.
J is the current density and B is the total magnetic field which is the
sum of the applied and induced magnetic fields. f, I are the body
force per unit mass and body couple per unit mass respectively and
pis the pressure at any point. p and j are the density of the fluid and
gyration parameter respectively and are assumed to be constant.
The material quantities (X, u, k) are viscosity coefficients and
(g, B, v) are gyroviscosity coefficients satisfying the constraints

Kk >0;
y >0

2u+x >0; BA+2u +«k > 0;
Bl <y; 3o +B+y=0.

We consider the pulsating flow of an incompressible, slightly
conducting micropolar fluid between two permeable beds. The
permeable beds are rigid and homogeneous. Fig. 1 shows the phys-
ical model of the problem under consideration. The Cartesian coor-
dinate system is chosen in such a way that the x-axis is taken along
the interface of the lower permeable bed and the y-axis normal to
it. Lety = 0 and y = h represent the interfaces of the permeable
beds. The fluid is injected into the channel from the lower perme-
able bed with a velocity V and is sucked into the upper permeable
bed with the same velocity. The permeabilities of lower and upper
beds are k; and k; respectively. The flow in upper and lower per-
meable beds is assumed to be governed by Darcy’s law. The flow

(4)

between the permeable beds is assumed to be governed by microp-
olar fluid flow equations. The thickness of the permeable beds is
much larger than the width of the channel so that we can directly
use Beavers-Joseph condition at the interfaces of the channel. A
uniform magnetic field of strength B, is applied at an angle 6 with
the y-axis. The induced magnetic field can be neglected in compar-
ison with the applied magnetic field, as magnetic Reynolds number
is much less than unity [14,15]. The fluid is driven by a pulsating
pressure gradient given by

0 il 0 i
_p (Y (0P 5)
ox ox /. ox/,

where (g—i)s and (2—2)0 are steady and oscillatory components of
the pressure gradient respectively and w is the frequency.

Under the assumptions, we have ¢ = (u(y,t),V,0) and v =
(0,0, c(y, t)). With this, the governing fluid flow equations of
the problem in the absence of body forces and body couples are
given by

8u+V8u 8p+ ac+( N )82u
o oy __°p % PR
P\aoc T %y ax oy T TG
— 0.(By cos 0)%u (6)
[ dc +V8C e u N 3%c 7
— — | = —2kc—Kk— —.
PI\ ot ™%y ay "V oay

Herein the velocity component u(y, t) is to satisfy the conditions

%—L(u —Qp) aty=0
By_\/E B1 1 y= )

u o

iy Jk

and the microrotation component c(y, t) is to satisfy the condition

(ug, —Q2) aty=nh

c=0 aty=0 and y=h 9)

where o, is the electrical conductivity and B, is the applied mag-
netic field. ug, = uly—o and us, = u|y—, are the slip velocities at the
interfaces of the lower and upper permeable beds respectively. «
is the slip parameter. Q; = _kfl%i and Q; = —%% are Darcy’s
velocities in the lower and upper permeable beds respectively.
Eq. (8) represents the BJ slip conditions. Eq. (9) stipulates that the
microrotation vanishes at the interfaces of the permeable beds.

In view of the pulsating pressure gradient, let us assume that
the velocity and microrotation are in the form

uy, t) = us(y) + uo(y)e™* (10)
c, t) = () + co(y)e* (11)

where u; and ¢, represent steady parts and u, and ¢, represent the
oscillatory parts of the velocity and microrotation respectively.

The following non-dimensionalization scheme is introduced to
make the governing equations and the boundary conditions di-
mensionless.

u*:E u*:ﬁ u*:ﬁ
Vv S Va 0 V?
ch c;h coh Ug
=, = —, CoF = —, ut = —1,
v s v ’ % Y
up p wh
52_725 p*: Vza a)*—Va
y P (12)
h’ h’ h
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The equations and boundary conditions governing the non-
dimensionalized pulsating flow are given by

9%u ac du  du ap
— 4+m— —R[(—+—) = Mcos®)’u=R 3 (13)
X

0y? ay dy ot
o nau RP oc + oc 2nc =0 (14)
ay: Ay Noay ' ot -

after dropping *’s.
The non-dimensionalized boundary conditions on u and c are

ou R ap
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y ( m)o; 0x (15)
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where u = us + Upe'’, ¢ = 5 + o™, Up, = Uy, + Uy, €, Up,

elot _0p _ (0p ap iwt —
Usgy, + Upgy €™, =35 = (ax) + (ax)oe » Reynolds number R =

£Y Hartmann number M = Boh
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prwe /5. coupling parameter m

2
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_h
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Jutr)
Y

and porosity parameters: 01 0y =

h
N3N
Steady part

The governing equations of the steady part are given by

TR dcS dus
- — _R— — (M cos0)*u; = —RIT, 17)
dy dy dy
d*c, dus dc;

—n— — RPj— — 2n¢; = 0. (18)
dy dy

The boundary conditions to be satisfied by u; and ¢, are

dug RIT; ‘ 0
— =oao | U, — ———— aty =
dy T =) (19)
dug ( RI ) ) ;
— = —a0oy |(Up, — —— aty =
dy U (1 —mye? Y
cs=0 aty=0and1 (20)
where T, = (g—i)s.
Oscillatory part

The governing equations of the oscillatory part are given by

d*u, dc, du,
+ m— — R— — ((M cos 0)? + iwR)u, = —RI, (21)
dy? dy dy

d*c, du, dc,
—2 _n—2 —Rp—2
dy? dy S dy

The boundary conditions to be satisfied by u, and c, are

— (2n + iwRP;)c, = 0. (22)

dulg <u RIT, ) aty =0
—— =0 U, — =
dy (1 —myo? (23)
du, < RII, ) ) ]
— = —qoy [ Uy, — ———— | aty=
dy U (1 —myo? Y
¢,=0 aty=0and1 (24)

where [T, = (%)O

3. Solution of the problem

Solution of the steady part

From Egs. (17) and (18), we see that u,(y) satisfies the fourth
order ordinary differential equation

— Asu’ + Bsu; + Gsu;, + Dsus = 2nRIT; (25)

where the expressions for Ag, B;, Cs and D; are given in Appendix A.
The solution of Eq. (25) is of the form

us(y) = Cie*Y + Ge*? + Cze*¥ + C4e’ + 2nRIT;/D;. (26)
By using Eqgs. (17) and (18), we get cs(y) in terms of us(y) as
given by
1 n /
() = [—u! + Asu] — (Bs + 2n)u,
2nm
— RP;((M cos 0)*us — RIT,)] . (27)

Using this and the expression for us(y) given in Eq. (26), we get the
expression for c;(y) as

Cs(y) = D1V + D€’ + Dye*® + Dyets. (28)

The solution of the steady part described in Section 2 is given by
us(y) = Cie*Y + Ge*? + C3e*¥ + Cye™¥ + 2nRIT /Dy (29)
¢ (y) = D1e*V + D2e*? + D3’ + Dy (30)

where G (j = 1-4) and D; (j = 1-4) are determined by using the
boundary conditions given by Egs. (19) and (20). The actual expres-
sions for A; (j = 1-4), GG (j = 1-4) and D; (j = 1-4) are given in
Appendix A.

Solution of the oscillatory part

From Egs. (21) and (22), we see that u,(y) satisfies the fourth
order ordinary differential equation

ut — Au)’ + Bul + Cu, + Du, = bRII, (31)

where the expressions for A, B, C and D are given in Appendix B.
The solution of Eq. (31) is of the form

Up(y) = Cse™Y + Coe™® + G + Cge™® + RIT, /a. (32)
By using Eqs. (21) and (22), we get ¢,(y) in terms of u,(y) as
given by

W) = [ uy’ + Auj — (B + byuj, — RPj(au, — RIT,)] . (33)

Using this and the expression for u,(y) given in Eq. (32), we get the
expression for ¢, (y) as

Co(y) =

The solution of the oscillatory part described in Section 2 is
given by

D5ek5y + DGE)LG“V + D7€)L7y + Dgeksy. (34)

U, (y) = Cse™” + CgeY + G + Cge*® + R, /a (35)
Co(y) = Dse™Y + Dge*® + Dy’ + Dge’s” (36)
where C; (j = 5-8) and D; (j = 5-8) are determined by using
the boundary conditions given by Egs. (23) and (24). The actual
expressions for A; (j = 5-8), G; (j = 5-8) and D; (j = 5-8) are
given in Appendix B.
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Solution of the pulsating flow

The solution of the pulsating flow is given by

uy, t) = us(y) + uo(y)e™* (37)
cy, t) = cs(¥) + co () (38)

where u(y), cs(y) and u,(y), ¢,(y) are known from the steady part
and oscillatory part solutions given in Egs. (29), (30), (35) and (36)
respectively.

4. Results and discussion

Under the assumption that both the permeable beds have
different permeabilities, the analytical solutions for velocity and
microrotation profiles for pulsating flows are derived. In the nu-
merical work, we have taken that both the permeable beds have
the same permeability, i.e., k; = k, = k(o1 = 03 = 0).

The effects of various parameters entering into the problem on
pulsating velocity u(y, t) are depicted in Figs. 2-12. Fig. 2 shows
the variation of the pulsating velocity with respecttot. Aty = 0
and y = 1, the velocities correspond to the slip velocities at the
interfaces of the lower and upper permeable beds respectively.
Fig. 3 shows the variation of the pulsating velocity with respect to
wt. As wt is increasing, the velocity is decreasing.
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0 0.1 02 03 0.4 0.5
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Fig.4. EffectofRonu(y,t)forea =05,M =2,0 =7 /6,0 =5, 0t =7 /4, [I; =
I, =1,P,=1m=0.5,n=0.5.
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Fig. 5. Effect of M on u(y, t) fora = ,
7/4,P;=1,1;=1I,=1m=05n=0.5.

From Fig. 4, we notice that as Reynolds number R is increasing,
the velocity is increasing. The effect of Hartmann number
(magnetic parameter) M on the velocity is shown in Fig. 5. As M is
increasing, it is seen that the velocity is decreasing. This shows that
the imposed magnetic field has a retarding influence on the flow.
Fig. 6 shows the effect of the inclination angle 8 (0 < 0 < 7/2)
on the pulsating velocity profile. As 6 is increasing, the velocity is
increasing. Here & = 0 corresponds to the magnetic field applied
normal to the direction of the flow. As& — 7 /2, the magnetic field
is in the flow direction which corresponds to the pulsating flow in
the absence of magnetic field (i.e., (M cos6)> — 0).

In Fig. 7 we see the effect of the microinertia parameter P; on
the pulsating velocity profile. As P; is increasing, the velocity is in-
creasing. Fig. 8 depicts the variation of velocity with respect to the
coupling parameter m (0 < m < 1). As mis increasing, the veloc-
ity is decreasing. Fig. 9 shows the variation of the pulsating velocity
with respect to the gyration parameter n. As n is increasing, nearer
to the beds there is no significant change in the velocity whereas
it shows a slightly increasing trend in the region betweeny = 0.3
andy = 0.8.

Fig. 10 shows the variation of velocity with respect to the poros-
ity parameter o. It is observed that as ¢ is increasing, the velocity
is decreasing. Figs. 11 and 12 show the effects of steady and oscil-
latory components of the pressure gradient on the velocity profile
respectively. In both the cases, as the magnitude of the pressure
gradient increases, the velocity increases.
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Figs. 13-22 show the effects of various parameters entering into
the problem on microrotation c(y, t). The variation of microrota-
tion with respect to wt is shown in Fig. 13. As wt is increasing, the

0.8r

0.6r

02r

0 it
0.08 5.09 0.1 0.11 0.12 0.13
u(y,t

Fig.9. Effectofnonu(y,t)forea =0.5,R=05M =2,0 =n/6,0 =5,0t =
/4, s =1, =1,P=1,m=05.
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microrotation is decreasing near the upper permeable bed while it
has an increasing trend near the lower permeable bed.

From Fig. 14, we notice that as Reynolds number R is increasing,
the microrotation is increasing near the upper permeable bed
while it has a decreasing trend at the lower permeable bed. The
effect of Hartmann number M on microrotation is shown in Fig. 15.
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It is seen that as M is increasing, the microrotation is decreasing
near the upper permeable bed while it has an increasing trend near
the lower permeable bed.

Fig. 16 shows the effect of the inclination angle # (0 < 0 <
7 /2) on the microrotation. As 6 is increasing, the microrotation is

1

081

0.6

021

Fig. 15. Effectof M onc(y,t) fora =0.5,R=10.1,0 = /6,0 =5, 0t = /4,
I, =1II,=1,P=1,m=0.5n=0.5.

Fig. 16. Effectof 6 onu(y,t) fore =0.5,R=0.1,M =2,0 =5, =11, = 1,
Pj=1,m=0.5,n=0.5.
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w/4, 1 =1, =1,m=0.5,n=0.5.

increasing near the upper permeable bed while it has a decreasing
trend at the lower permeable bed.
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Fig. 17 depicts the variation of microrotation with regard to mi-
croinertia parameter P;. For 0.2 < y < 1.0, as P; is increasing,
microrotation is decreasing. For 0 < y < 0.2, as P; is increasing,
microrotation is increasing. From Fig. 18, it is seen that as the cou-
pling parameter m (0 < m < 1) is increasing, the microrotation is
decreasing near the upper permeable bed while it has an increasing
trend at the lower permeable bed.

Figs. 19-21 show the variation of microrotation with respect to
the gyration parameter n, the porosity parameter ¢ and the mag-
nitude of the pressure gradient I7; respectively. We notice that
as each of these parameters is increasing, the microrotation is in-
creasing in the region nearer to the upper bed and is decreasing
in the region nearer to the lower bed. Fig. 22 shows the variation
of microrotation with respect to the magnitude of the oscillatory
pressure gradient I7,. The microrotation is not showing any spe-
cific trend with an increase in I7T,.

In Figs. 13-22, the profiles of c(y, t) show a sort of asymmetry
about a plane parallel to the beds nearer to the upper permeable
bed.

5. Conclusions

In this paper, we have studied the pulsating flow of an incom-
pressible micropolar fluid between two permeable beds under the
influence of an inclined uniform magnetic field using Beavers—
Joseph (B]) slip boundary conditions at the interfaces of the
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Fig. 20. Effectof o onc(y,t) fore = 0.5,R = 05,M = 2,0 = 7/6,0t =
/4,5 =1, =1,P=1,m=0.5n=0.5.
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permeable beds. Expressions for the velocity and microrotation
components are obtained. Their variation is studied numeri-
cally and presented through graphs corresponding to the fre-
quency/time parameter wt, Reynolds number R, inclination angle
0, Hartmann number M, micropolar parameters P;, m, n, porosity
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parameter o and magnitudes of the pressure gradients IT;, I1,, by
varying one of these parameters and fixing all others. From the re-
sults we have the following conclusions.

e The pulsating velocity of the fluid is reduced by the increase
of Hartmann number, coupling parameter, porosity parameter
and slip parameter.

e Velocity increases by the increase of Reynolds number, incli-
nation angle, microinertia parameter and magnitudes of the
steady and oscillatory pressure gradients.

e The microrotation decreases with the increase of microinertia
parameter.

e Microrotation is seen to be asymmetric in the flow region about
a plane nearer to and parallel to the upper bed.
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Appendix A. Steady part: A)s, C/s and Ds

ha = (A/2 = Aak VAs = As) /2,
Aaa = (As /2 4 Ay £ VAs + AG) /2
where

Ay = (B2 + 3AC; + 12Dy),
Ay = (2B] + 9A:ByCs + 27CZ + 27A2D; — 72B,Dy)

3 Ay + /A5 — 4A] \/A§ 2B, + As + A1 /As

A= |— VY= A=
} 2 4 4 3
3A2 A3 — 4AB, — 8C
As = S—ZBs—Aﬁ, A6:¥
4A4

As=R(1+P), By= (R°P;+mn— (McosH)> — 2n),
C; = R((M cos Q)ZPJ- + 2n), Ds = 2n(M cos 0)?

and
Cohy + C3As + C4rg — S4
‘l=
A
GLiz + Glis + 54
C2:——
Lyz
T, T,C T,Ts — T3T,
C3:_6+14; c, = 2~ Ils,
T As

LA .
Di=—¢C fori=1,2,3,4.
2mn

Ay =TTz — T T,

Lhi = (As — MDA} — (Bs + 2n)A; — (M cos 6)RP;
fori=1,2,3,4

Ly = (MilAj — AjLA;)  fori,j=1,2,3,4( <)

Ej = (" —eM) fori,j=1,2,3,4( <}j)

Ely = EgLaly; fori,j=1,2,3,4( <Jj)

Ehj = (€MALlaj — eMiajlay) fori,j=1,2,3,4( <j)

Ty = A1 [AaE12L1a — AqE14l]

Ty = Aq [A2E12L13 — A3Eq3liz]

T3 = Aq [Eli3Aa — Eljpds — El3hq]

Ty = A1 [Elighy — Eliphg — Elygh]

Ts = AEl3S,

Te = A1 [(€"1S1 — SH)A1LA; — (€/2S7 — Sy)AzLhq]
S1 = —Rs; + aoup; Rsy = RI1;/[(1 — m)o1]
S2 = Rs; — aosuisp; Rsy = RI1;/[(1 — m)o3]

L _EFs+FRF_ FFs +FiF
BT B R, — FiF; B2 EF, — FyFs
0()»10'2
Fi=1+ (TsHy — T4Ha)

S

Ot)\,]O'z
F, = ) (TsHy — T4H3)

S

e —1— T (W — ) + 21H
3 = le 1 2 AS 5

(07051 2 2 )\,1
F4 = — [(E 1L}\,z — € ZL)\,]) — HG]
Ly, As

F5s = —RHS — L |:RS] (EAZL)\'I — e}L]L)\z) + MH7i|
M2 Ly As
Fg = RI; + 1 |:R$1(U»1 —LAy) + MHS]
M2 Lo As

Hy = €Ly — e*2Lia + 'L
Hz = €A3L12 — €A2L13 + GML23

Hs = A3 (LA — LAs) + Ay (Lha — LAs) + A (Lhs — LAq)
Hy = Ag (LA — LAs) + Ay (Lha — LAg) + Ap (L — LA7)

Hs = EX12(T4H3 — T3Hyg) + El1p(T1H3 — ToHy)
Hg = EA2(T3H; — T4Hy) + Elyp(T1H — ToHy)
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H; = ((Rs1EA12 — RszL12)(TsHy — T4Hy) + EliaRs1(ToHy — TiHa))
Hg = ((Rs1EA12 — RspL12)(T4H3 — T3Hy) + EljaRs1(ToHg — TiH3)).

Appendix B. Unsteady part: A)s, C/s and D;s

1/A
)\5,6 = <E _Ao4:|:\/A05 _AOG) )

2

1/A
)\7,8 = 5 <5 +Ao4 + AOS +A06)

where

Ao1 = (B* + 3AC + 12D),
Ay = (2B> + 9ABC + 27C? + 27A%D — 72BD)

3 Aoz + 4/ Az, — 4A,

Apz = 2 s
AOZ 2B + Ao3 + AOI/A03
Apg = — —
4 3
PO 4 A —4aB—8C
05 — 4 041 06 — 4Ao4

a= (Mcos0)? + iwR, b = 2n + wRP;,
A=R(1+P), B=(RP;+mn—a-—b),
C = R(aP; + b), D =ab

ToaTos — To3Tos Tos + To1Cs
Gg=—"—"7—"; G =
A To2
C7Ls7 + Cglsg + So1
G =—
Lsg

Cerg + C7A7 + CgAg — So1

C: =
5 )\,5
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L )
Di=—¢C fori=5,6,7,8.
mb
A =ToTos3 — To2To4
Lhi = (A— 2)A{ — (B+b)A; —RPja fori=5,6,7,8
Lj = (AiLAj — AjLag)  fori,j=5,6,7,8 (i <j)
Ej = (" — ") fori,j=5,6,7,8 (i <j)
Ely = EjLuLy; fori,j=5,6,7.8 (i <)
Exj = (€MALAj — e¥ajlay) fori,j=5,6,7,8 (i <J)
To1 = As [AgEseLss — AgEsgLss]
Toz = As [AgEseLss — A7Es7Lss]
Tos = As [Els;A6 — ElsgA7 — Elg7 5]
Tos = As [Elsghe — Elsghg — Elggs]
Tos = AsEl56So1
Tos = As [(€"5So1 — Sa2)AsLAe — (€"6Se1 — Se2)AgLis |
So1 = —RSo1 + @0 Up1; Rso1 = RIT,/[(1 — m)o]
So2 = RSo2 — atoyUigpy; Rsq2 = RIT,/[(1 — m)os]

T G2Gs + G1Gs T G3Gs5 + G4Gp
BT 6,64 — GiGs 27 6,64 — G1Gs
O[)\.So'z
Gi=1+ A (To3K1 — To4K3)
()[)\50'2
G = A (To3Ky — ToaKs3)
Gy = —1— 27 [ (s — Lag) + 2k
3= Lo 5 o)+~ Ks
oo A A )\.5
Gy = — | (e LAg — €e"6LAs5) — — K
4= [( 6 5) 7 6:|
RIT, 1 A
Gs = ——° — — | Rsy1(e"Lhs — e*5Lhg) + 2K,
a Lsg A
RO, 1 As
G = + — | RSp1 (L)\.s — L)\.G) + —Kg
a L56 A

K] = e)\gLsG — €A6L53 + ek5 L68

Ky = €"Lsg — €"5Ls7 + e*5Lg;
Ks = A7 (Lhs — Lhg) + As (Lhg — LA7) + Ag (Lhg — Lis)
Ko = Ag (Lhs — Lhg) + As (Lhg — LAg) + Ag (Lhg — Lis)
Ks = EAsg(ToaK3 — Tp3Ky) + Elsg(To1K3 — ToaKy)
Ks = EAsg(To3K1 — ToaKz) + Elsg(To1 Ko — ToaK1)
K7 = ((Rsp1EAss — RspaLse) (To3K1 — Toak2)

+ ElsgRso1(To2K1 — T51K2))

Kg = ((Rsp1EAse — RspaLs6)(ToaK3 — Ty3Ky)
+ ElsgRso1(To2Ky — Tp1K3))
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