
FPGA Implementation of Vedic Floating Point
Multiplier

Ravi Kishore Kodali, Lakshmi Boppana and Sai Sourabh Yenamachintala
Department of Electronics and Communication Engineering

National Institute of Technology, Warangal
WARANGAL 506004, INDIA

E-mail: ravikkodali@gmail.com

Abstract—Most of the scientific operation involve floating point
computations. It is necessary to implement faster multipliers
occupying less area and consuming less power. Multipliers
play a critical role in any digital design. Even though various
multiplication algorithms have been in use, the performance
of Vedic multipliers has not drawn a wider attention. Vedic
mathematics involves application of 16 sutras or algorithms. One
among these, the Urdhva tiryakbhyam sutra for multiplication
has been considered in this work. An IEEE-754 based Vedic
multiplier has been developed to carry out both single precision
and double precision format floating point operations and its
performance has been compared with Booth and Karatsuba based
floating point multipliers. Xilinx FPGA has been made use of
while implementing these algorithms and a resource utilization
and timing performance based comparison has also been made.

Keywords:- Vedic multiplication, FPGA, Floating Point

I. INTRODUCTION

Fixed point and floating point number representations are
being widely used by various applications as in the design
of Digital Signal Processors (DSPs). High speed computation
with high degree of accuracy are quite essential in a broad
range of applications form basic consumer electronics to
sophisticated industrial instrumentation. When compared to a
fixed point representation, floating point can represent very
small and very large numbers, thereby increasing the range
of representation. Dynamic range and precision considerations
determine whether fixed point or floating point representations
are to be used for a specific application. An example, where
dynamic range requirements demand the usage of floating
point representation is matrix inversion. Various floating point
arithmetic operations are extensively supported by all the mi-
croprocessors and computer systems. Among various floating
point arithmetic operations, multiplication is more frequently
used in many applications. The efficient FPGA implementa-
tion of complex floating point functions requires the use of
efficient multiplication algorithms. An efficient multiplication
algorithm, which facilitates optimized utilization of resources
and minimum time delay must be used for effective implemen-
tation of floating point processors. A floating point multiplier
is the most commonly used component in many digital ap-
plications such as digital filters, data processors and DSPs.
About 37 % of the floating point instructions in benchmark
applications constitute floating point multiplications [1].

Apart from high performance, energy efficient hardware
for performing floating point multiplication is necessary for
embedded systems. Crucial part of floating point multiplication
involves multiplication of mantissa. Increase in the number of
applications involving repeated use of multiplication and the
need to complete multiplication faster with limited number of
resources resulted in many multiplication algorithms. Among
various algorithms, Urdhva Triyakbhyam originating from
Vedic mathematics is found to be efficient in terms of area as
well as time. Vedic mathematics put forth by Swami Bharati
Krishna Tirtha as an embodiment of 16 sutras and 13 sub
sutras provide algorithms for various arithmetic operations
[2], [3]. The IEEE 754 standard specifies format for floating
point representation of numbers. In addition, this format also
specifies floating point arithmetic, inter conversion between
floating point and integer formats, conversions among various
floating point formats, and handling of exceptions. Another
efficient algorithm is Karatsuba algorithm, which is based on
divide and conquer approach [4], [5]. The rest of the paper
is organized as follows: section II provides literature review,
section III presents IEEE-754 floating point multiplier, section
IV gives an overview of vedic sutras, section V presents results
and simulation analysis and the final section concludes.

II. LITERATURE REVIEW

The floating point numbers in binary number system are
represented in two formats namely, single and double preci-
sion. These formats are characterized by exponent, mantissa
and sign fields. The single precision comprises of 32- bits with
23- bit mantissa, an 8- bit exponent and one sign bit. The
double precision comprises of 64- bits with 52- bit mantissa,
11- bit exponent and one sign bit. The sign bit represents
the sign of the number. A ′0′ in the most significant bit
(MSB) position denotes positive numbers, while ′1′ represents
negative numbers [6]. In IEEE-754 format, the floating point
numbers are represented by:
Single Precision:
Sign
︸ ︷︷ ︸

1-bit

Exponent
︸ ︷︷ ︸

8-bits

Mantissa
︸ ︷︷ ︸

23-bits

Double Precision:
Sign
︸ ︷︷ ︸

1-bit

Exponent
︸ ︷︷ ︸

11-bits

Mantissa
︸ ︷︷ ︸

52-bits

978-1-4799-1823-2/15/$31.00 ©2015 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:42:05 UTC from IEEE Xplore. Restrictions apply.

Floating point numbers are generally of the form
((1)S)(F)(2E). F represents the value in the fractional field,
while E represents the value in the exponent field. In general,
the mantissa part is normalized by adding 1 as MSB. When the
exponent is too large to be represented in the exponent field
then it indicates an overflow condition. When the negative
exponent becomes too large to fit in the exponent field,
then it indicates an underflow condition. IEEE-754 standard
introduces a notation called NaN (Not a Number) as a result
for invalid operations such as division of zero with zero,
subtracting infinity from infinity. A detailed description on
the use of Karatsuba algorithm recursively for the use in
such applications is described in [4], [3]. Floating point
multiplication utilizes a 32- bit and 53- bit multiplier for
multiplication of its significand in single precision and double
precision respectively. Different multiplication algorithms are
used for multiplying the significands. The advantage of using
Vedic multiplication algorithm over conventional methods is
described in [6]. Floating point multiplication can also be done
by using pipelining method wherein addition of exponents,
multiplication of significands and calculation of sign bit can
be done in parallel. Implementation of floating point multiplier
using Karatsuba algorithm incorporating pipelining techniques
with a latency of 8 cycles is implemented in [7]. Among
arithmetic operations, multi-precision arithmetic is one of the
most time consuming operations with O(n2) time complexity.
Application of Karatsuba algorithm reduces the time complex-
ity of multiplication from O(n2) to O(nlog2 3) [8].
Application of vedic multiplication algorithm to DSP op-

erations reduces 40%-60% of time from the conventional
procedures. A detailed description on implementation of var-
ious DSP operations using Vedic multiplication technique
is described in [9]. The problem of finding the product of
two numbers by successively forming the complement of the
smaller of two operands is described in [10]. The algorithm
utilized is proposed in Vedic mathematics. Various techniques
described in Vedic mathematics can be used to design an
ALU, which is compatible for co-processors. This Vedic co-
processor will be more efficient than its conventional counter-
part [11]. A performance comparison of array multiplier and
vedic multiplier has been presented in [12].

III. FLOATING POINT MULTIPLICATION

Floating point multiplication of numbers represented using
either single precision format or double precision format
involve calculation of sign bit, exponent and mantissa of the
product and then normalizing and rounding off the result. Sign
bit is calculated by X-OR operation of the sign bits of two
operands. The exponents of both the operands are added to
obtain the product exponent. The resultant sum is subtracted
from 127 in case of single precision and 1023 in case of double
precision to obtain its biased exponent. The addition operation
involves the use of 8- bit and 11- bit ripple carry adder for
single and double precisions respectively. In order to improve
the performance high speed adders can be used. The mantissa
is multiplied using any of the multiplication algorithms [7].

sign
unbiased
exponent

Input X

mantissa

1−bit 11−bits 52−bits

sign unbiased
exponent

Input Y

1−bit 11−bits 52−bits

11 bit adder 11 bit adder

Biased exponent Biased exponent

11 bit adder
 53X53
vedic multiplier

1023

Normalisation

11−bits 52−bits

mantissaexponentsign

product

mantissa

1023
1023

1−bit

subtractor

Fig. 1: IEEE-754 Double Precision Floating Point multiplier

When Karatsuba algorithm is implemented recursively, each
operand is split into two parts with each part containing equal
number of bits when the number of bits in the given number
is even. When the number of bits are odd, the number is split
into two parts with one part containing (n+1)

2 - bits and the
other part containing (n−1)

2 - bits.

Algorithm 1 Floating Point Multiplication Algorithm
INPUT: Two floating point numbers a and b
OUTPUT: Floating point number c
Single Precision:
c(31)← a(31)xorb(31)
c(30 : 23)← a(30 : 23) + b(30 : 23)− 1111111
Product(47 : 0)← 1.a(22 : 0) ∗ 1.b(22 : 0)
Normalise and round off product to obtain c(22 : 0)
Double precision:
c(63)← a(63)xorb(63)
c(62 : 52)← a(62 : 52) + b(62 : 52)− 111111111
Product(105 : 0)← 1.a(51 : 0) ∗ 1.b(51 : 0)
Normalize and round off product to obtain c(51 : 0)

IV. AN OVERVIEW OF VEDIC ALGORITHM

The current work discusses Urdhva Tiryakbhyam sutra of
Vedic mathematics and is applied to the multiplication of
mantissa of floating point number. Urdhva Tiryakbhyam stands
for vertical and crosswise multiplication. The individual bits
of both the operands are subjected to vertical and cross wise
multiplication. Vedic multiplier is proved to be more efficient
in terms of area and time delay. An efficient application of
this algorithm to various DSP operations is described in [9].
Vedic mathematics sutras can also be applied to perform

the multiplication of numbers close to powers of 10 in a
simple procedure avoiding the necessity to follow lengthy
conventional procedure of multiplication [10]. Figure 2 shows

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:42:05 UTC from IEEE Xplore. Restrictions apply.

Step-1:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

s0 = a0b0

Step-2:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

c1s1 = a1b0 + a0b1

Step-3:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

c2s2 = a0b2 + a2b0 + a1b1 + c1

Step-4:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

c3s3 = a0b3 + a3b0 + a2b1 + a1b2 + c2

Step-5:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

c4s4 = a4b0 + a3b1 + a2b2 + a1b3 + a0b4 + c3

Step-6:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

c5s5 = a4b1 + a3b2 + a2b3 + a1b4 + c4

Step-7:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

c6s6 = a4b2 + a3b3 + a2b4 + c5

Step-8:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0

c7s7 = a4b3 + a3b4 + c6

Step-9:

a4 a3 a2 a1 a0

b4 b3 b2 b1 b0 c8s8 = a4b4 + c7

Fig. 2: Vedic multiplication illustration [3]

an illustration of Vedic multiplication involving two 5- bit
numbers. In the case of single precision floating point multipli-
cation, a 6- bit multiplier is designed using the vedic algorithm
and utilizing this 6- bit multiplier as a basic component, the
required 24- bit multiplier is obtained. In case of double
precision floating point multiplication, a 7- bit multiplier is
used as a basic component to construct the desired 53- bit
multiplier to multiply the significands of both the operands
as given in Algorithm -3. A comparison of time delays
for various types of multipliers for different key lengths is
presented in [11]. This comparison reveals the efficiency of
Vedic multiplication algorithm.

V. RESULTS AND SIMULATION

The floating point multiplication in both single precision
and double precision using Urdhva Tiryakbhyam algorithm

Algorithm 2 VEDIC ALGORITHM
INPUT: n- bit Multiplicand and Multiplier
OUTPUT: 2n- bit product
k ← 0
S(k): 2n- bit vector initialized to 0
for i = 0 to (n− 1) do

for j = 0 to i do
S(k) = S(k) + a(i)× b(i− j)

end for
k = k + 1

end for
for i = (n− 1) to 1 do

for j = (n− 1) to i do
S(k) = S(k) + a(i)× b(n− (i− j))

end for
k = k + 1

end for
for i = 0 to (k − 1) do
P = P + S(i)

end for

Algorithm 3 Floating point multiplication using Vedic algo-
rithm
function vedic(x[n], y[n])
M = 6 Single Precision and M = 7 Double Precision
if (n =M) then
Perform Vedic multiplication {as given Figure -2}

else
A1 ← vedic(xL, yL)
{xL - lower N

2 - bits and xH - upper N

2 - bits}
A2 ← vedic(xH , yH)
A3 ← vedic(xL, yH)
A4 ← vedic(xH , yL)
S1 + C1 ← A3 +A4

{Si, Ci indicate N - bit sum and the carry generated}
P1 ← A1H&A2L {& denotes concatenation operation}
S2 + C2 ← P1 + S1
S3 + C3 ← C1 + C2

P2 ← (N2 − 2)0s &C1 &C2

S4 ← P2 +A2H

end if
return S4&S2&A1L

of vedic mathematics is synthesized using 7v2000tflg1925-2
device of Virtex-7 family. Its performance is compared with
the floating point multipliers utilizing Booth and Karatsuba
multiplication algorithms. Table -I provides the device uti-
lization summary and time delay for both single precision
and double precision floating point multiplications using three
different algorithms and from this table it can be inferred that
compared to Karatsuba multiplier, Vedic multiplier utilizes
less number of resources and has shorter time delay. Even
though Booth multiplier occupies less number of resources,
due to its larger time delay making it inefficient for many
applications. Booth multiplication algorithm can be efficiently

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:42:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of Device Utilization and Timing Summaries of Booth, Karatsuba and Vedic IEEE-754 multipliers

Logic Utilization
Single Precision Double Precision

Booth Karatsuba Vedic Booth Karatsuba Vedic
Multiplication Multiplication Multiplication Multiplication Multiplication Multiplication

Number of Slice LUTs 163 2928(1%) 1121(0%) 324 15494 (10%) 9150(6%)
Number of LUT FF pairs Used 164 2928 1121 325 15494 9150
Number of IOs 99 96 96 195 192 192
Number of Bonded IOBs 99 96(16%) 96(16%) 195 192 (32%) 192 (32%)
Time Delay 47.33 ns 28.020 ns 27.760 ns 82.939 ns 34.081 ns 30.381 ns

(a) Booth multiplier

(b) Karatsuba Multiplier

(c) Vedic Multiplier

Fig. 3: Simulation Results for IEEE-754 Double Precision format multiplication

implemented for highly pipelined architectures, however it is
a poor choice for single cycle multiplication [13].

VI. CONCLUSIONS

Both the IEEE-754 single precision and double precision
floating point format multipliers using Booth, Karatsuba and
Vedic algorithms have been synthesized using Xilinx Virtex-6
FPGA device. Based on the device utilization and performance
comparison, Vedic multiplier outperforms Karatsuba multi-
plier both for single precision and double precision formats.
Even though Booth multiplier occupies least resources, it is
also the slowest.

REFERENCES

[1] G. Even and P.-M. Seidel, “A comparison of three rounding algorithms
for ieee floating-point multiplication,” Computers, IEEE Transactions
on, vol. 49, no. 7, pp. 638–650, Jul 2000.

[2] Y. Bansal, C. Madhu, and P. Kaur, “High speed vedic multiplier designs-
a review,” in Engineering and Computational Sciences (RAECS), 2014
Recent Advances in, March 2014, pp. 1–6.

[3] R. K. Kodali, S. S. Yenamachintala, and L. Boppana, “Fpga im-
plementation of 160- bit vedic multiplier,” in Devices, Circuits and
Communications (ICDCCom), 2014 International Conference on, Sept
2014, pp. 1–5.

[4] X. Fang and L. Li, “On karatsuba multiplication algorithm,” in Data,
Privacy, and E-Commerce, 2007. ISDPE 2007. The First International
Symposium on, Nov 2007, pp. 274–276.

[5] R. K. Kodali, S. K. Gundabathula, and L. Boppana, “Fpga imple-
mentation of ieee-754 floating point karatsuba multiplier,” in Control,
Instrumentation, Communication and Computational Technologies (IC-
CICCT), 2014 International Conference on, July 2014, pp. 300–304.

[6] A. Kanhe, S. Das, and A. Singh, “Design and implementation of
floating point multiplier based on vedic multiplication technique,” in
Communication, Information Computing Technology (ICCICT), 2012
International Conference on, Oct 2012, pp. 1–4.

[7] A. Mehta, C. Bidhul, S. Joseph, and P. Jayakrishnan, “Implementation
of single precision floating point multiplier using karatsuba algorithm,”
in Green Computing, Communication and Conservation of Energy
(ICGCE), 2013 International Conference on, Dec 2013, pp. 254–256.

[8] S. Erdem and C. Koc, “A less recursive variant of karatsuba-ofman
algorithm for multiplying operands of size a power of two,” in Computer
Arithmetic, 2003. Proceedings. 16th IEEE Symposium on, June 2003, pp.
28–35.

[9] A. Itawadiya, R. Mahle, V. Patel, and D. Kumar, “Design a dsp
operations using vedic mathematics,” in Communications and Signal
Processing (ICCSP), 2013 International Conference on, April 2013, pp.
897–902.

[10] V. Dave and C. Coulston, “Multiplication by complements,” in Elec-
trical Communications and Computers (CONIELECOMP), 2012 22nd
International Conference on, Feb 2012, pp. 153–156.

[11] M. Ramalatha, K. Dayalan, P. Dharani, and S. Priya, “High speed energy
efficient alu design using vedic multiplication techniques,” in Advances
in Computational Tools for Engineering Applications, 2009. ACTEA ’09.
International Conference on, July 2009, pp. 600–603.

[12] P. Saha, A. Banerjee, P. Bhattacharyya, and A. Dandapat, “High speed
asic design of complex multiplier using vedic mathematics,” in Students’
Technology Symposium (TechSym), 2011 IEEE, Jan 2011, pp. 237–241.

[13] M. Paramasivam and R. Sabeenian, “An efficient bit reduction binary
multiplication algorithm using vedic methods,” in Advance Computing
Conference (IACC), 2010 IEEE 2nd International, Feb 2010, pp. 25–28.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:42:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

