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MOMENT CURVATURE CHARACTERISTICS OF
HYBRID FERRO FIBER CONCRETE(HFFC) BEAM

K. Ramesh* and D.R. Seshu**

The characteristic equation of the stress-strain curve for Hybrid Ferro Fiber Concrete
(HFFC) is used to study the M -C characteristics of HFFC sections. The theoretical procedure has
been validated by conducting an experimental investigation on 23 reinforced concrete beams
provided with HFFC at critical sections. The correlation between experimental and analytical
values of ultimate moments and corresponding curvatures, arrived at based on the above procedure
is found to be good.

NOTATION

Db = Lateral dimensions of beam

d =  Effective depth

fe =  Stress and corresponding strain

C. = Compressive force in HFFC

1 = Ultimate strength of HFFC

Sex = Concrete cube strength

Ay = Cross sectional area of ferrocement

vy = Volume fraction

Ji = Stress in ferrocement shell

n = Efficiency factor of mesh

Sr = Specific surface factor [5.6,14]

M.. = Experimental ultimate moment

M. = Theoretical ultimate moment
G = Confinement index [15]

M. = Moment of Cc about neutral axis

& = Strain at ultimate of HFFC

M. = Moment of tensile force of tension steel about neutral axis
M/ = Moment of tensile force in ferrocement shell in tension zone about neutral axis
M; = Moment of tensile force of fiber reinforced concrete in tension zone about neutral axis
0. = . Experimental curvature at ultimate

o« = Theoretical curvature at ultimate

RI = Reinforcing index of fibers [8]
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INTRODUCTION

In view of the insufficient rotation capacity of reinforced concrete sections, full redistribution

of moments cannot be ensured in indeterminate structures. At present, it is known that the ductility of

concrete can be improved by confining the concrete in steel binders and such concrete being called
as confined concrete or ductile concrete. The spacing limitations on stirrups, limit the confinement
offered by the stirrups [2]. To overcome this, the confinement due to HFFC has been suggested as one
of the alternatives [5]. Further, the investigation on HFFC revealed that the additional confinement
due to combination of ferrocement and fiber reinforcement improved the ultimate strength, strain at
ultimate. The prediction equations for the same were proposed in authors earlier paper [5]. This paper
presents a theoretical procedure based on characteristic stress-strain curve for HFFC, for the assessment
of moments and curvatures of HFFC sections. The method has been validated with the experimental
results on 24 reinforced concrete simply supported beams confined with HFFC at critical sections.

STRESS - STRAIN CURVE FOR HFFC

The stress-strain curve for HFFC as proposed by the author [6] is of the form:

Ae
5 (1
s ’:1.0+B8+C82:l ¢

The shape of the stress-strain curve is shown in Fig.1. The constants 4, B and C that satisfy
the boundary condition are:
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Where, 4, =6.852, B , = 4.852, C,=1.0 for ascending portion of stress-strain curve
A,=2833 B,=0833 C ,=1.0 for descending portion of stress-strain curve
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Fig. 1. Characteristic stress ratio vs. strain ratio
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- P=f(1+0.55C,) (1.0228 + 0.1024 RI ) (1.0 +0.0166 S;) 4, + f, 4, -2

&= &/ (1.0+5.2C) (0.9899 +0.2204 RI) (1.0 + 0.1359 5)) -(3)

The strain at 0.85 times ultimate stress is:

€0.85fu
€

u

=2.1127+0.0338S, -(4)

DEVELOPMENT OF MOMENT-CURVATURE DIAGRAMS FOR HFFC SECTIONS

It becomes necessary to compute the total compressive force developed in a HFFC section
and moment of compressive force about the neutral axis for any extreme fiber concrete strain, in order
to generate the moment-curvature diagram of any cross-section. It can be seen that for any concrete
strain ( &), in the extreme fiber (F ig.2).

C. = fubnd -(5)
Where, f = [ ;J I_}‘dg
nd *e.
M, = b[——] j ef de -(6)
gc 0

€

@

The corresponding curvature can be obtained by: ¢, =

€, &
The evaluation of integrals I fde and .[Ef de leads to the expressions:
. 0 0
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Where, K, = In(1 + Be, + Cs2)

. K, will have three expressions depending on (4C - B?), as follows:
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For 4C-B?<0.0and 0 = /(8" — 4C );
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Fig. 2. Compressive forces and moment of compressive forces in HFFC

For. obtaining the complete moment curvature relationship for any cross-section, discrete

values of extreme fiber concrete strains ( &) were selected such that even distribution of points on the
plot, both before and after the maximum moment, were obtained. The procedure used in computation
is as follows: ¢

I

2.

w

For the selected value of &, the extreme fiber concrete strain, the neutral axis depth, 'nd is
assumed initially at a value of 0.5 d.

For the assumed value of 'nd’, the compressive force C, and the value of Moment M, of this
resultant compressive force about neutral axis are calculated.

The strain in tension steel &, is calculated based on strain compatibility.

The tensile force 7 in the tension steel is arrived at by taking the corresponding stress from
the stress-strain diagram of steel and multiplying the stress with cross sectional area of steel.
The corresponding moment M, about neutral axis is:

M. = T, (d-nd) (12
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5. The force in ferrocement shell in the tension zone T, is calculated using the methodology as

detailed below [9].

i Knowing the volume fractionVof the mesh reinforcement the effective cross-Sectional
area of the mesh reinforcement in ferrocement shell in the tension zone is calculated
using Ag= nds Vs

ii. For known value of &, the strain in the bottom fiber, the stress fin the Ferrocement is
obtained using corresponding stress-strain diagram of mesh steel. The stress when
multiplied with effective cross sectional area of the ferrocement gives the force in the
ferrocement 7 in the tension zone and moment of this force about the neutral axis is
obtained.

6. The force in fiber reinforced concrete in the tension zone Tj is calculated using the

Methodology detailed inreference [11,12,13 ].

7. The total tensile force is calculated as T'= T, + T+ Tj
8 The values of C. and T are now compared. If C.and T are the same, then the assumed
position of neutral axis is correct. Then, the moment M and the curvature for that particular

&
fiber strain in concrete are calculated as M = M. + M; + My+ M and curvature ¢, = ==

nd
9. IfC,and Tare not equal, a new value of the neutral axis depth is assumed based on judgment,
whether C. is greater of smaller than 7'and the above procedure is repeated until equilibrium
condition C. = T is satisfied.

The above analytical procedure enables the assessment of flexural strength of HFFC sections.
The assumptions made in deriving the flexural response are (i) mortar contribution towards the strength
of ferrocement in tension is neglected and (ii) variation of strain across the section is linear up to
failure.

In addition to the above assumptions, the three basic relationships viz., (i) equilibrium forces,
(ii) compatibility of strains and (iii) stress-strain relationships of the material have to be satisfied.

PRESENT WORK

Results derived from the above-proposed analytical procedure are compared with the
experimental data documented by the authors [7]. Details of comparison are shown in Table.2. The
experimental programme included casting and testing of 24 reinforced concrete beams of size 120 x 200
x 2100mm with HFFC at critical zone, i.e., the zone in which the plastic hinge forms under flexure. The
length of critical zone was arrived based on plastic hinge length criteria for confined concrete. Fig.3
shows the zone of HFFC in the beam. The 24 beams consisted of two groups of 12 beams each. In each
group two types of reinforcing index viz., RI=1.23 and 2.46 or (V= 0.5% and 1.0%) were used and
designated as'A" and 'B'. The longitudinal reinforcement with each type reinforcing index is varied to
give two sets of beams viz., under reinforced (U) and over reinforced (O) beams. In each set, the
specific surface factor is the only variable. The number of layers of mesh in each set is varied to get the
varied specific surface factor of ferrocement shell. Thus, each specimen is designated by type of
failure, type of reinforcing index of the fiber and the number of layers of mesh, i.¢., the specimen whose
designation UA4 stands for 'U' under reinforced beam type failure, reinforcing index of fiber RI=1.23
and '4' indicates the serial number of the value of the specific surface factor (4 layers of mesh). Table.1
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gives the details of the tested simply supported reinforced concrete beams provided with HFFC at
critical sections.
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Fig. 3. Detail of mesh zone and fiber concrete in the beam

All the beams were tested under symmetrical two points loading on a simply supported span
of 1900mm. Fig.4 shows the test arrangement of simply supported beams. Specially fabricated curvature
meters were used to measure the curvatures in the central zone of 600mm of the beam, in three gage
lengths of 200 mm each. Fig,5 shows the closer view of the curvature meter arrangement to the beam.
Strain rate control was used to obtain the complete profile of moment - curvature behavior, especially
in the post ultimate region. Moment - curvature diagrams generated for all the beams based on the
characteristic stress - strain diagram of HFFC are shown by firm lines in Figs.6 (a) - 6(b). The experimental
values of moments and curvatures are plotted as discrete points on the above moment - curvature
diagrams. The experimental ultimate moments and theoretical moments computed based on
characteristic stress - strain curve of HFFC are represented on a correlation diagram shown in Fig.7.

CORRELATION

It can be seen from Fig.6 (a) - 6(b), that the procedures developed for obtaining the complete
profile of moment - curvature diagram of HFFC sections, based on the characteristic stress - strain
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curve for HFFC predict the experimental behavior satisfactorily. There is a good agreement between
the analytical and experimental ultimate moments, as can be seen from the correlation diagram shown
inFig. 7. The average ratio of the experimental to analytical ultimate moments is 1.024with a standard
deviation of 0.033 and coefficient of variation of 3.27%. The correlation between experimental and
analytical ultimate curvatures is not so good as that of ultimate moments. The average ratio of the
experimental to analytical curvature is 0.905, with a standard deviation of 0.175 and a coefficient of
variation of 19.36%. The lack of very good correlation in curvatures may be attributed to the fact that
the analytical curvature at a section, computed to satisfy the equilibrium and compatibility conditions
and material properties. The experimental curvature is the curvature measured over a gage length of
200 mm and hence represents the average curvature over gage length including localized high
curvatures at cracks. Hence, the average curvature depends upon the number of cracks occurring in
the gage length, their width, distribution and location. The occurrence and location of cracks once
again depends upon a number of factors, prominent among them being, uniformity of strength of
concrete in the critical zone and local variation of bond between steel and concrete. The provision of
HFFC transforms the brittle behavior of over reinforced RC sections into ductile ones (Figs.6 (a) - 6(b))
by developing moment - curvature diagrams with more horizontal plateau in post ultimate regions.
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Fig. 4. Test Set-up of Simply Supported Beam
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IDEALISATION OF MOMENT -CURVATURE DIAGRAM

A critical appraisal of the moment - curvature diagrams of HFFC beams, shows that the

moment - curvature diagrams can be idealized as a bilinear form consisting of two straight lines, one
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Fig. 6(a). Comparison of experimental and theoretical moment curvature diagrams
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Fig. 7. Correlation diagram for ultimate moments

CONCLUSIONS

1. Ananalytical procedure is developed for obtaining the complete moment-curvature diagram
for HFFC sections.

2. The ultimate moments obtained from the proposed analytical procedure are found to be in

good agreement with the experimental values.

The moment-curvature diagram of HFFC section can be idealized as a bi-linear form.

4. The provision of HFFC made the RC sections to behave in a ductile manner even if the
sections are over reinforced.

w
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