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Abstract The results of mixed convective heat and mass transfer flow along a wavy surface in a

Darcy porous medium are presented in the presence of cross diffusion effects. The viscosity and

thermal conductivity of the fluid are assumed to be varying with respect to temperature. The gov-

erning, flow, momentum, energy and concentration equations are transformed into a set of ordinary

differential equations using the similarity transformation and then solved numerically. The present

results are compared with previously published work and are found to be a very good agreement.

The numerical results of velocity, temperature and concentration as well as Nusselt number and

Sherwood number are reported graphically for various values of variable viscosity, variable thermal

conductivity, Soret number, Dufour number and amplitude of the wavy surface in two different

cases, buoyancy-aiding flow and buoyancy-opposing flow.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The prediction of heat and transfer from irregular surface is

encountered in several engineering, industrial and technologi-
cal applications such as manufacturing process, electronic cir-
cuit boards, microelectronic chip modules, chimneys, design of

building energy systems particularly for those buildings where
passive heating and cooling techniques are employed. Hsu
et al. [1] studied mixed convection of micropolar fluids along
a vertical wavy surface. Wang and Chen [2] presented the

results on transient force and free convection along a vertical
wavy surface in micropolar fluids. Jang and Yan [3] used finite
difference scheme to analyze mixed convection heat and mass

transfer along a vertical wavy surface. Molla and Hossain [4]
employed two efficient methods Keller box method and
straightforward finite difference method to present the numer-
ical results of radiation effect on mixed convection laminar

flow along a wavy surface. Recently, Mahdy [5] investigated
mixed convection heat and mass transfer on a vertical wavy
plate embedded in a saturated porous media.

In the combined heat and mass transfer processes, the
flow is driven by density differences caused by temperature
gradient, concentration gradient and material composition
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Nomenclature

a amplitude of the wavy surface

l characteristic length of the wavy surface
u velocity component in the x direction
v velocity component in the y direction
Tw wall temperature

T1 ambient fluid temperature
Tm mean fluid temperature
Cw wall concentration

C1 ambient fluid concentration
cs susceptibility of the concentration
cp specific heat and constant pressure

K permeability of the porous medium
kT thermal diffusion ratio
g acceleration due to gravity
D mass diffusivity

Ra Darcy–Rayleigh number
Pe Peclet number
N Buoyancy ratio

Le Lewis number
Sr Soret number
Df Dufour number

U1 uniform free stream velocity
Nu Nusselt number
Sh Sherwood number
�x; �y coordinate system

Greek symbols
�r surface geometry function
l dynamic viscosity of the fluid
t kinematic viscosity of the fluid
q fluid density

bt coefficient of thermal expansion
bc coefficient of mass expansion
a thermal conductivity

a0 thermal diffusivity
d thermal property of the fluid
w stream function

h non-dimensional temperature
/ non-dimensional concentration
hr variable viscosity parameter
b variable thermal conductivity parameter

D mixed convective parameter
n stream wise coordinate
g similarity variable

Subscripts
1 conditions far away from the surface
T caused by temperature
C caused by concentration
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simultaneously. The mass flux created by a temperature gradi-
ent is known as thermal-diffusion (Soret) effect. The energy

flux caused by concentration differences is known as diffu-
sion-thermo (Dufour) effect. The Soret effect, for instance,
has been utilized for isotope separation and in mixture between

gases with very light molecular weight and of medium molec-
ular weight. The Soret and Dufour effects are encountered in
many practical applications such as in the areas of geosciences,

and chemical engineering. Chamkha and Nakhi [6] studied
MHD mixed convection–radiation interaction along a perme-
able surface immersed in a porous medium in the presence of
Soret and Dufour’s effects. Beg et al. [7] investigated chemically

reacting mixed convective heat and mass transfer along inclined
and vertical plates with Soret and Dufour effects and presented
the numerical solutions. Shateyi et al. [8] used MATLAB rou-

tine bvp4c to find the numerical solutions of the effects of ther-
mal radiation, hall currents, Soret and Dufour onMHD flow by
mixed convection over a vertical surface in porous media. Mak-

inde [9] investigated the problem of MHD mixed convection
with Soret and Dufour effects past a vertical plate embedded
in a porous medium. Cheng [10] studied Soret and Dufour
effects on mixed convection heat and mass transfer from a ver-

tical wedge in a porous medium with constant wall temperature
and concentration. Sharma et al. [11] studied Soret and Dufour
effects on an unsteady MHDmixed convective flow past an infi-

nite vertical plate with Ohmic dissipation and heat source.
In all these above studies, the thermophysical properties of

the fluid are assumed to be constant. To predict the heat trans-

fer rate accurately, it is necessary to take the temperature
dependence viscosity and thermal conductivity, owing to the
applications, for instance drawing of plastic films, glass fiber
production, processing of hot rolling, gluing of labels on hot
bodies, study of spilling pollutant crude oil over the surface

of sea water, wire drawing and paper production. Hossain
et al. [12] studied the natural convection of fluid with variable
viscosity from a heated vertical wavy surface. Nasser and

Nader [13] analyzed the effects of variable properties on
MHD unsteady natural convection heat and mass transfer
over a vertical wavy surface.

From the literature survey, it seems that the problem of
mixed convective heat and mass transfer past an isothermal
impermeable vertical wavy surface embedded in a Darcy por-
ous medium with variable properties and Soret and Dufour

effects has not been investigated so far. Thus, this work aimed
to study the effects of variable properties, Soret and Dufour on
mixed convection along vertical wavy surface embedded in a

Darcy porous medium in two cases, buoyancy-aiding and
opposing flows.
2. Formulation of problem

Consider steady, laminar, two dimensional, viscous, incom-
pressible mixed convective heat and mass transfer flow past a

vertical wavy surface embedded in a fluid saturated porous
medium. Fig. 1 shows physical configuration of the problem.
The wavy configuration is defined by y� ¼ r�ðx�Þ ¼
a� sin px�

l

� �
, where a is amplitude of the wavy surface and l is

the characteristic length of the wavy surface. We assume that
the x-axis is along the vertical wavy plate and y-axis is normal
to the plate. The free stream velocity which is parallel to the

vertical wavy plate is U1, temperature is T1, and concentra-



Table 1 Comparison of Local Nusselt number and the local

Sherwood number for a= 0, b = 0, Sr= 0, Df= 0 and

hr fi1 at N= 0.5, Le= 1.

D NunPe
�1=2
n ShnPe

�1=2
n

Lai [16] Present results Lai [16] Present results

0.1 �0.5640 �0.5640 �1.6344 �1.6344
1.0 �1.1060 �1.1058 �1.9599 �1.9600
1.5 �1.3860 �1.3860 �2.3674 �2.3672
3.0 �1.5643 �1.5640 �2.6548 �2.6548
5.0 �2.2929 �2.2929 �3.6862 �3.6862
10 �2.2956 �2.2955 �5.0109 �5.0105

Figure 1 Physical configuration and co-ordinate system.
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tion is C1. The fluid and porous medium are in thermodynam-
ical equilibrium. The vertical wavy plate is maintained at
constant wall temperature and concentration Tw and Cw

respectively, which are assumed to be greater than the ambient
temperature T1 and concentration C1 at any reference point
in the region (inside the boundary layer). Moreover, we have
considered Soret and Dufour effects. Under the Boussinesq

approximation and boundary layer approximation, the conser-
vation equations for mass, momentum, energy and concentra-
tion should be taking the form:
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þ @v
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The corresponding boundary conditions are

u� ¼ 0; v� ¼ 0; T¼Tw; C¼Cw; at y� ¼ r�ðx�Þ ¼ a� sinðpx�
l
Þ

u� !U1; T!T1; C!C1 as y� !1

�
ð5Þ
where u* and v* are velocity components in x* and y* direc-

tions, respectively. In Eq. (2), the last term in right hand side
represents buoyancy effect on the flow field, has ± signs;
(+) and (�) indicates buoyancy-aiding and buoyancy-oppos-

ing flows respectively, U1 is the uniform free stream velocity,
l is the dynamic coefficient of viscosity of the fluid, K is the
permeability of the porous medium, bt is the coefficient of ther-
mal expansion, bc is the coefficient of concentration expansion,

a is the dimensional thermal conductivity, q is the density, D is
the mass diffusivity of the saturated porous medium, kT is the
thermal diffusion ratio, cs is the concentration susceptibility, cp
is the specific heat at constant pressure, Tm is the mean fluid
temperature and g is the gravitational acceleration.

The fluid properties are assumed to be isotropic and con-

stant except fluid viscosity and thermal conductivity. Therefore
we assume that the viscosity of the fluid is to be an inverse lin-
ear function of the temperature and it can be expressed as (Lai
and Kulacki [14])

1

l
¼ 1

l1
ð1þ dðT� T1ÞÞ i:e:

1

l
¼ bðT� TrÞ ð6Þ

where b ¼ d
l1
, l1 is the coefficient of viscosity far away from

the plate and Tr ¼ T1 � 1
d. Both b and Tr are constants and

their values depend on the reference state and the thermal

property of the fluid i.e. d. The viscosity of a liquid usually
decreases with increasing temperature while it increases for
gases. In general b > 0 corresponds to liquids and b< 0 to

gases.
Further, we assume that the fluid thermal conductivity a is

to be varying as a linear function of temperature in the form
[15]:

a ¼ aoð1þ EðT� T1ÞÞ ð7Þ

where ao is the thermal diffusivity at the wavy surface temper-
ature Tw and E is a constant depending on the nature of the
fluid. It is worth mentioning here that E is positive for fluids

such as air and E is negative for fluids such as lubrication oils.
Now we define the stream function w* such that

u� ¼ @w
�

@y�
; v� ¼ � @w

�

@x�

Introducing the following non-dimensional variables

x ¼ x�

l
; y ¼ y�

l
; a ¼ a�

l
; r ¼ r�

l
; w ¼ w�

a0

;

h ¼ T� T1
Tw � T1

; / ¼ C� C1
Cw � C1

ð8Þ
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into Eqs. (2)–(4) by using (6) and (7), we get
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Figure 2 (a) Velocity, (b) temperature and (c) concentration profiles
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The corresponding boundary conditions are given by

w ¼ 0; h ¼ 1; / ¼ 1 on y ¼ a sinðxÞ;
wy ! a0

l
U1; h! 0; /! 0 as y!1;

)
ð12Þ

where Ra ¼ gbtðTw�T1Þl
aom

is Darcy–Rayleigh number, Pe ¼ U1 l
ao

is

Peclet number, N ¼ bcðCw�C1Þ
btðTw�T1Þ is the buoyancy ratio, Le ¼ ao

D
is

the Lewis number, Df ¼ DkTDC
a0cscpDT

is Dufour number, and

Sr ¼ DkTDC
a0TmDT is the Soret number. and hr ¼ Tr�T1

Tw�T1 ¼
�1

dðTw�T1Þ is
(b) Temperature profile 
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Figure 3 (a) Velocity, (b) temperature and (c) concentration profiles for different values of b for hr = 2, N = 0.5, Le = 1, Sr= 0.6,

Df= 0.1.
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the variable viscosity parameter. The value of the parameter hr
is determined by the operating temperature difference and vis-
cosity of the fluid in consideration. For smaller values of hr,
either the fluid viscosity changes considerably with tempera-
ture or the operating temperature difference is high. In either
case, the variable viscosity effect is expected to become very

important. On the other hand, for larger values of hr, either
(Tw � T1) or d is small, and therefore the effects of variable
viscosity can be neglected. It may be remarked that hr is

positive for gases and negative for liquids. In Eq. (10),
b = E(Tw � T1) represents the thermal conductivity parame-
ter. The variation of b can be taken in the range
�0:1 6 b 6 0 for lubrication oils, 0 6 b 6 0:12 for water and

0 6 b 6 6 for air. In the penultimate term of Eq. (9), D ¼ Ra
Pe

represents the mixed convective parameter. It is clear from

the definition of mixed convection parameter that the flow
tends to natural convection when D fi1 while it tends to
forced convection when D = 0 and it gives an equal impor-
tance of free and forced convection when D = 1. When the

buoyancy flow is aiding the free stream flow, i.e. the values
of mixed convective parameter D is positive, the flow is called
the aiding flow, otherwise the flow is called opposing flow. i.e.,

the buoyancy flow is opposing the free stream flow (D is
negative).
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Using the following transformations

x ¼ n; ĝ ¼ y� a sinðxÞ
n1=2Pe�1=2

; w ¼ Pe1=2w ð13Þ

in Eqs. (9)–(12) and letting Pe fi1, we obtain the following

boundary layer equations:
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Figure 5 (a) Velocity, (b) temperature and (c) concentration profiles for different values Sr and Df for hr = 2, b = 0.5, N = 0.5, Le = 1.
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To transform Eqs. (14)–(16) into a set of ordinary
differential equations, we introduce the following similarity
transformations

g ¼ ĝ
1þ a2 cos2ðnÞ ; w ¼ n1=2fðgÞ; h ¼ hðgÞ and

/ ¼ /ðgÞ ð17Þ

we obtain

f00 þ 1

h� hr

h0f0 ¼ �D 1� h
hr

� �
ðh0 þN/0Þ ð18Þ
bðh0Þ2 þ ð1þ bhÞh00 þ 1

2
fh0 þDf/00 ¼ 0 ð19Þ
1

Le
/00 þ 1

2
f/0 þ Srh00 ¼ 0 ð20Þ

where prime denotes differentiation with respect to g.
The associated boundary conditions are

f ¼ 0; h ¼ 1; and / ¼ 1 at g ¼ 0

f0 ! 1; h! 0 and /! 0 as g!1
ð21Þ

The rate of heat transfer (local Nusselt number) and rate of

mass transfer (local Sherwood number) are defined in terms of
Pen and the wave amplitude function a as
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Nun ¼
�h0ð0ÞPe1=2n

ð1þ a2 cos2ðnÞÞ1=2
and Shn ¼

�/0ð0ÞPe1=2n

ð1þ a2 cos2ðnÞÞ1=2
ð22Þ
3. Results and discussion

The non-dimensional boundary layer governing equations for
flow, energy and concentrations (18)–(20) with corresponding
boundary conditions (21) have been solved by using Runge–

kutta method with shooting technique.
In the absence of Soret number and Dufour numbers, as

hr fi1, b = 0, and a= 0, the values of local Nusselt number
and the local Sherwood number have been compared with the

values of Lai [16], and it was found that they are in good agree-
ment, as shown in Table 1.

The variation of variable viscosity parameter (hr) on veloc-

ity, temperature and concentration distributions is given in
Fig. 2. From Fig. 2(a) it is clear that flow velocity increases
with increase in hr in both cases of aiding and opposing flow.

This is due to the fact that for a given fluid, when d is fixed,
smaller hr implies higher temperature difference between the
wall and the ambient fluid. It demonstrates that hr, which is

an indicator of the variation of fluid viscosity with tempera-
ture, has a strong effect on the velocity profile within the
boundary layer. From Fig. 2(b) and (c) it is noticed that the
temperature and concentration profiles for both cases of aiding

and opposing flow decreased with increase in the values of hr.
This is due to increase in the obstruction of fluid motion with
increase in variable viscosity parameter hr.

The variation of variable thermal conductivity parameter
(b) on velocity, temperature and concentration distributions
is shown in Fig. 3. From Fig. 3(a) it is observed that an

increase in b leads to increase in velocity in case of aiding flow,
but for opposing flow, increase in velocity profile near the
(a) Nusselt number 
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Figure 6 Axial distributions of Nusselt number and Sherwood numbe
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surface and then decrease far away from the surface for larger
values of b. From Fig. 3(b) it is clear that increase in b tends to
increase in the temperature for both aiding and opposing

flows. This is due to the enhancement of thermal boundary
layer thickness as a result of the enhancement of the thermal
conductivity parameter. Increase in b gives rise to decrease in

concentration profile in both cases of aiding and opposing
flows as shown in Fig. 3(c). It is evident that molecular motion
of the fluid decreases at slower rate for larger values of

thermal conductivity parameter. Therefore increase in thermal
conductivity results depreciation in solutal boundary layer
thickness.

Fig. 4 depict the influence of mixed convection parameter

(D) on velocity, temperature and concentration distributions.
It is clear from Fig. 4(a) that velocity distribution is influenced
considerably and increased when the mixed convection param-

eter increases in both cases of aiding and opposing flow. This is
due to the fact that greater value of mixed convection param-
eter indicates a greater buoyancy effects in mixed convection

flow leads to an acceleration of the fluid flow. Fig. 4(b) and
(c) show that the temperature and concentration decrease with
increasing values of D in both cases of aiding and opposing

flow. As D (i.e. buoyancy effects) increase, the convection cool-
ing effect increases and hence the temperature reduces.

The variation of Soret number and Dufour number on
velocity, temperature and concentration distributions is shown

in Fig. 5. The values of Soret number (Sr) and Dufour number
(Df) are to be chosen in such a way that their product is con-
stant according to their definition, provided that the mean tem-

perature Tm is constant. From Fig. 5(a), it is observed that for
aiding flow, velocity of the fluid increases with increase in Soret
number (or decrease in Dufour number) Soret number is the

ratio of temperature difference to the concentration. Hence,
the bigger Soret number stands for a larger temperature
(b) Sherwood number 
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difference and precipitous gradient. Thus the fluid velocity rises
due to greater thermal diffusion factor.

For the opposing flow case it shows the opposite results.
From Fig. 5(b), it is clear that for aiding flow, the temperature
profile increases by increasing Dufour number (or decreasing
Soret number). The Dufour number denotes the contribution

of the concentration gradients to the thermal energy flux in
the flow. It can be seen that an increase in the Dufour number
causes a rise in temperature. The trend is opposite for opposing
flow. Fig. 5(c) suggests that concentration profile decreases in

both cases of aiding and opposing flow by increasing Dufour
number (or decreasing Soret number). Moreover, we observed
that thermal and solutal boundary layer thickness is large for
the case of opposing flow with increase inDf (or decrease in Sr).

Fig. 6 represent the variable viscosity parameter hr on
Nusselt number and Sherwood number with stream wise
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coordinate n. It is observed from Fig. 6(a) that in both cases of
aiding and opposing flows Nusselt number decreases. Fig. 6(b)
suggests that Sherwood number decreases in both cases of liq-

uids and gases in case of aiding flow but for the case of oppos-
ing flow Sherwood increases for gases with increase in hr while
it decreases for liquids.

The variations of variable thermal conductivity (b) and
mixed convection parameter (D) on Nusselt number and
Sherwood number with stream wise coordinate n have been
displayed in Figs. 7 and 8 respectively. Fig. 7(a), it is
observed that Nusselt number decreases in case of aiding

flow for larger values of b and the opposite results are
obtained in the case of opposing flow. Sherwood number
increases in both cases of aiding and opposing flows with

increase in b as given in Fig. 7(b). From Fig. 8(a) and (b),
it is noticed that Nusselt number and Sherwood number
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results are decreased in both cases of aiding and opposing
flows by increasing D.

The variation of Dufour and Soret numbers on Nusselt

number and Sherwood number with stream wise coordinate n
is seen in Fig. 9. It is noted that increasing Dufour number
(or decreasing Soret number) leads to enhance the Nusselt num-

ber and Sherwood number in both cases of aiding and opposing
flows. Fig. 10 represents the wavy amplitude ratio (a) onNusselt
number and Sherwood number with stream wise coordinate n.
It is clear that Nusselt number and Sherwood number increase
in both cases of aiding and opposing flow by increasing a. For
a = 0 the vertical wavy surface becomes flat surface.

It is an important to note that temperature and concentra-

tion profiles are larger for the opposing flow case while velocity
profile is larger for aiding flow case with increasing various
physical parameters. We also conclude that the amplitude of

the rate of heat and mass transfer is influenced considerably
and increased for opposing flow case, in compare with aiding
flow for larger values of various physical parameters.

4. Conclusion

The effects of variable viscosity and variable thermal conduc-

tivity on mixed convective heat and mass transfer past a verti-
cal wavy surface embedded in a fluid saturated porous medium
with Dufour and Soret effects have been investigated theoret-

ically. The main conclusions of the present investigations are
as follows:

� It is observed that increase in temperature dependent vis-

cosity leads to thicken the velocity boundary layer while
reduce the thermal and solutal boundary layer thickness
as well as Nusselt number and Sherwood number.

� The flow velocity, temperature profiles and Sherwood num-
ber results are increased considerably by increasing variable
thermal conductivity but the opposite trend is noticed for

concentration profile and Nusselt number.
� Increase in mixed convection parameter results an enhance-
ment in velocity boundary layer thickness while there is a

significantly decrease in thermal, solutal boundary layer
thickness and rates of heat and mass transfer.
� The flow velocity and concentration profiles are decreased
with increases in Dufour number (or decrease in Soret num-

ber) while the temperature profile and rate of heat and mass
transfer are enhanced consistently.
� Nusselt number and Sherwood number results are increased

for larger values of the amplitude of the wavy surface.
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