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P. Muthu∗ & Tesfahun Berhane

Department of Mathematics, National Institute of Technology, Warangal, Warangal 506004,
India

∗Address all correspondence to P. Muthu E-mail: snklpm@rediffmail.com

Original Manuscript Submitted: 4/8/2011; Final Draft Received: 6/11/2012

An investigation of viscous incompressible fluid flow in a nonuniform rigid channel with permeable walls is presented
by taking into consideration the influence of slip velocity at the walls. The effect of fluid absorption through permeable
walls is accounted for by prescribing flux as a function of axial distance. The nonlinear governing equations of motion
are linearized by the perturbation method by assuming δ (the ratio of inlet width to the length of the channel) as a
small parameter to get an approximate analytical solution. The effects of reabsorption coefficient (a), slope parameter
(k), and slip parameter (β) on the velocity profiles, mean pressure drop, and wall shear stress are studied and presented
graphically. The results indicate that the slip parameter influences the flow field considerably.

KEY WORDS: nonuniform channel, perturbation method, permeable wall, slip effect

1. INTRODUCTION

The study of viscous fluid flow in a channel of varying
cross section with permeable walls is significant because
of its applications to both physiological and engineering
flow problems. For example, mathematical models of the
flow of fluid in a renal tubule have been studied by vari-
ous authors. Macey (1963) formulated the problem as the
flow of an incompressible viscous fluid through a circular
tube with linear rate of reabsorption at the wall, whereas
Kelman (1962) found that the bulk flow in the proximal
tubule decays exponentially with the axial distance. Then,
Macey (1965) used this condition to solve the equations of
motion and mentioned that the longitudinal velocity pro-
file is parabolic and the drop in mean pressure is propor-
tional to the mean axial flow.

Marshall and Trowbridge (1974) and Palatt et al.
(1974) used the physical conditions existing at the rigid
permeable tube instead of prescribing the flux at the wall
as a function of axial distance.

The above studies considered the linearized models of
renal flow with the renal tubule as a cylindrical tube of
uniform cross section. But, in general, renal tubules may

not have uniform cross section throughout their length.
Radhakrishnamacharya et al. (1981) made an attempt to
understand the hydrodynamical aspects of an incompress-
ible viscous fluid in a circular tube of varying cross sec-
tion with reabsorption at the wall. Chandra and Prasad
(1992) analyzed flow in rigid tubes of slowly varying
cross section with absorbing walls. The effect of fluid ab-
sorption through permeable wall is accounted for by pre-
scribing flux as an arbitrary function of axial distance.
Chaturani and Ranganatha (1991) considered fluid flow
through a diverging/converging tube with variable wall
permeability. Recently, Muthu and Tesfahun (2010) con-
sidered the effects of slope parameter and reabsorption
coefficient on the flow of fluid in a symmetric channel
with varying cross section with no-slip velocity at the
walls.

The concept of slowly varying flow forms the basis of
a large class of problems in fluid mechanics in which vis-
cous forces dominate the nonlinear inertial forces. For ex-
ample, Manton (1971) obtained an asymptotic series so-
lution for the low Reynolds number flow through an ax-
isymmetric tube whose radius varies slowly in the axial
direction.
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322 Muthu & Berhane

In all the above studies, the boundary condition at the
wall is taken as a no-slip condition. The no-slip boundary
condition is one of the cornerstones on which the mechan-
ics of the viscous liquids is built. However, there are situ-
ations where this assumption does not hold (Rao and Ra-
jagopal, 1999). The effect of slip at the wall is significant,
as illustrated by Moustafa (2004). The slip velocity at the
boundary is proportional to the shear rate at the bound-
ary. This slip velocity is connected with the presence of
a thin layer of streamwise moving fluid in the boundary
region just below the permeable surface. The fluid in this
layer is considered to be pulled along by the flow above
the porous surface (Singh and Laurence, 1979). Also, the
slip would be most useful for certain problems in chemi-
cal engineering and other applications (Chu, 2000; Joseph
and Ocando, 2002; Vasudeviah and Balamurugan, 1999;
Wang, 2002).

The objective of the present paper is to understand the
hydrodynamical aspect of an incompressible viscous fluid
flow in a rigid channel of varying cross section with reab-
sorption and a slip velocity at the walls of the channel.
The boundary of the channel walls is assumed to be sym-
metric about thex axis and vary withx. It is taken as

η(x) = ±
[
d +

k1

λ
x + a sin

(
2πx

λ

)]
, (1)

whered is the half width of the channel at the inlet (at
x = 0), k1 is a constant whose magnitude depends on the
length of the channel exit and inlet dimensions and which
is assumed to be¿1, a is the amplitude, andλ is the
length of the channel; see Fig. 1.

2. MATHEMATICAL FORMULATION

Consider an incompressible Newtonian fluid flow through
a channel with slowly varying cross section as given by

FIG. 1: Geometry of two-dimensional renal tubule.

Eq. (1). The motion of the fluid is assumed to be laminar,
steady, and symmetric. The channel is assumed to be long
enough to neglect both the entrance and end effects. The
effect of gravity is neglected. The governing equations of
such fluid motion are given by

∂u

∂x
+

∂u

∂y
= 0, (2)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ v

(
∂2u

∂x2
+

∂2u

∂y2

)
, (3)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ v

(
∂2v

∂x2
+

∂2v

∂y2

)
, (4)

whereu andv are the velocity components along thex
andy axes, respectively,p is the pressure,ρ is density,
andv (= µ/ρ) is kinematic viscosity of the fluid.

The boundary conditions are taken as follows: The tan-
gential velocity at the wall is not zero (Dulal et al., 1988;
Moustafa, 2004). That is,

u +
∂η

∂x
v = −

√
γ

β

(
∂u

∂y
+

∂η

∂x

∂v

∂y

)
at y = η(x), (5)

whereβ is slip parameter andγ is the specific permeabil-
ity of the porous medium.

The regularity condition requires

v = 0 and
∂u

∂y
= 0 at y = 0. (6)

The reabsorption has been accounted for by considering
the bulk flow as a decreasing function ofx. That is, the
flux across a cross section is given as

Q(x) =
∫ η(x)

0

u(x, y)dy = Q0F (αx), (7)

whereF (αx) = 1 whenα = 0 and decreases withx. Fur-
ther,α ≥ 0 is the reabsorption coefficient, a constant and
Q0 is the flux across the cross section atx = 0. The bound-
ary condition (5) is the well-known Beavers and Joseph
(1967) condition when applied to tangential velocity. Fur-
ther, reabsorption is assumed to be independent of the ab-
sorption area.

Eliminating pressurep from Eqs. (3) and (4) and intro-
ducing stream functionψ by

u =
∂ψ

∂y
andv = −∂ψ

∂x
, (8)

and using the following nondimensional quantities:

x′ =
x

λ
, y′ =

y

d
, η′ =

η

d
,
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ψ′ =
ψ

Q0
, α′ = αλ, p′ =

d2

µQ0
p,

Eqs. (2)–(4) are transformed to the nondimensional form
as (after dropping the primes):
(

δ2 ∂2

∂x2
+

∂2

∂y2

)
ψ = δRe

[
∂ψ

∂y

(
δ2 ∂2

∂x2
+

∂2

∂y2

)
∂ψ

∂x

− ∂ψ

∂x

(
δ2 ∂2

∂x2
+

∂2

∂y2

)
∂ψ

∂y

]
, (9)

whered = d/λ andRe = Q0/v.
Further, the boundary conditions (5)–(7) become

∂ψ

∂y
− δ2 ∂η

∂x

∂ψ

∂x
= −ξ

[
∂2ψ

∂y2
− δ2 ∂η

∂x

∂2ψ

∂x∂y

]

at y = η(x) = 1 + kx + ε sin(2πx), (10)

ψ = 0 and
∂2ψ

∂y2
= 0 at y = 0, (11)

and

ψ = F (αx) at y = η(x) = 1 + kx + ε sin(2πx), (12)

whereξ =
√

γ/βd, ε = a/d, andk = (k1λ)/d.
The parameterRe is the Reynolds number,δ is the wall

variation parameter (the ratio of inlet width to the length
of the channel),ε is the amplitude ratio (the ratio of am-
plitude to the inlet width),k is slope parameter, andξ is
the slip coefficient. In this problem, we consider expo-
nentially decaying bulk flow (Radhakrishnamacharya et
al., 1981). That is, in Eq. (7),F is taken as

F (αx) = e−αx (13)

In the following, we consider the case of low Reynolds
number flow whenRe is such thatReδ ∼= O(δ) (Chandra
and Prasad, 1992; Manton, 1971).

3. METHOD OF SOLUTION

Note that the flow is complex because of the nonlinear-
ity of the governing equation and the boundary condi-
tions (9)–(12). Thus, to solve Eq. (9) for velocity com-
ponents in the present analysis, assuming the wall varia-
tion parameterδ ¿ 1, we shall seek a solution for stream
functionψ(x, y) in the form of a power series in terms of
δ as

ψ(x, y) = ψ0(x, y) + δψ1(x, y) + · · · . (14)

Substituting Eq. (14) in Eqs. (9)–(12) and collecting coef-
ficients of various like powers ofδ, we get the following
sets of equations forψ0(x, y), ψ1(x, y), . . .
δ0 case:

∂4ψ0

∂y4
= 0. (15)

The boundary conditions are

∂ψ0

∂y
= −ξ

∂2ψ0

∂y2
at y = η(x), (16)

ψ0 and
∂2ψ0

∂y2
= 0 at y = 0 (17)

ψ0 = F (αx) = e−αx at y = η(x) (18)

δ1 case:

∂4ψ1

∂y4
= Re

[
∂ψ0

∂y

∂3ψ0

∂y2∂x
− ∂ψ0

∂x

∂3ψ0

∂y3

]
. (19)

The boundary conditions are

∂ψ1

∂y
= −ξ

∂2ψ1

∂y2
at y = η(x), (20)

ψ1 = 0 and
∂2ψ1

∂y2
= 0 at y = 0, (21)

ψ1 = 0 at y = η(x) (22)

Similar expressions can be written for higher orders ofδ.
However, since we are looking for an approximate ana-
lytical solution for the problem, we consider equations up
to order ofδ1

The solution of Eq. (15) together with boundary con-
ditions (16)–(18) is

ψ0(x, y) = A1(x)y3 + A2(x)y, (23)

whereA1 = (−e−αx)/(2η3 + 6ξη2) andA2 = [(3η2 +
6ξη)e−αx]/[2η3 + 6ξη2].

The solution of Eq. (19) together with boundary con-
ditions (20)–(22) is

ψ1(x, y) = A8(x)y7 + A9(x)y5 + A10(x)y3

+A11(x)y, (24)
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where

A3(x) =
1
10

A1
dA1

dx
η6 +

1
4

(
A2

dA1

dx
−A1

dA2

dx

)
η4,

A4(x) =
3
5
ξA1

dA1

dx
η5 + ξ

(
A2

dA1

dx
−A1

dA2

dx

)
η3,

A6(x) = Re(A3 + A4),

A7(x) = −Re

[
1
10

A1
dA1

dx
η7 +

1
20

(
A2

dA1

dx

−A1
dA2

dx

)
η5

]
,

A8(x) =
1
70

ReA1
dA1

dx
,

A9(x) =
1
20

Re

(
A2

dA1

dx
−A1

dA2

dx

)
,

A10 =
ηA6 −A7

2η3 + 6ξη2
,

A11 =
−η3A6 + (3η2 + 6ξη)A7

2η3 + 6ξη2
.

Hence, substitutingψ0 andψ1 in Eq. (14), we get that

ψ(x, y) = A1(x)y3 + A2(x)y + δ[A8(x)y7 + A9(x)y5

+ A10(x)y3 + A11(x)y]. (25)

Now, the nondimensional pressurep(x, y) can be ob-
tained using Eqs. (25), (8), and (3).

It is given as

p(x, y) = δ
∂u

∂x
+

1
δ

∫
∂2u

∂y2
dx−Re

( ∫
u

∂u

∂x
dx

+
∫

v
∂u

∂y
dx

)
+ g(y), (26)

whereg(y) is constant of integration. The mean pressure
is given as

p̄(x) =
1

η(x)

∫ η(x)

0

p(x, y)dy + g(y). (27)

Further, the mean pressure drop betweenx = 0 andx = x0

is

∆p̄(x0) = p̄(0)− p̄(x0). (28)

The wall shear stressτw(x) is defined as

τw =

(σyy − σxx)
dη

dx
+ σxy

[
1−

(
dη

dx

)2
]

1−
(

dη

dx

)2

at y = η(x), (29)

whereσxx = 2µ(∂u)/(∂x), σyy = 2µ(∂v)/(∂y), andσxy

= µ[(∂u)/(∂y) + (∂v)/(∂x)].
Using the nondimensional quantityτ′w = (d2/µQ0)τw,

the wall shearτw becomes (after dropping the prime),

τw =

{
2δ2

(
∂v

∂y
− ∂u

∂x

)
∂η

∂x
+

(
∂u

∂y
+ δ2 ∂v

∂x

)

×
[
1− δ2

(
dη

dx

)2
]}

/

{
1 + δ2

(
dη

dx

)2
}

. (30)

Noted that in Eq. (26), the integrals are difficult to eval-
uate analytically to get a closed-form expression for
p(x, y). Therefore, they are calculated by numerical in-
tegration.

4. RESULTS AND DISCUSSION

The aim of this analysis is to study the behavior of an
incompressible fluid flow through a channel of converg-
ing/diverging and slowly varying cross section with ab-
sorbing walls by considering a slip velocity at the walls.

It may be recalled thatk characterizes the slope of the
converging/diverging wavy walls. Here,k = 0.1 repre-
sents a diverging channel,k = 0 represents a normal (si-
nusoidal channel), andk = −0.1 represents a converging
channel. Theε anda represent amplitude and permeabil-
ity parameters of slowly varying walls, respectively. Note
that asξ → 0, the solutions coincide with the results of
Muthu and Tesfahun (2010).

We discuss the effects of these parameters on the trans-
verse velocity[v(x, y)], mean pressure drop(∆p̄), and
wall shear stress(τw) quantities. In all our numerical cal-
culations, the following parameters are fixed asε = 0.1
andδ = 0.1. We takeRe = 1.0 to consider the flow with
small values of Reynolds number.

4.1 Transverse Velocity

The velocity field can be obtained from Eqs. (14) and (8).
In this section, we discuss the effects of reabsorption coef-
ficient (α), the slope parameter (k) in the presence of non-
zero slip coefficient (ξ) on the transverse velocity. Also,

Special Topics & Reviews in Porous Media — An International Journal
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we look into the behavior of the velocity at different cross
sections of the channel.

The effect of reabsorption coefficient (α) , with ξ =
0.15, is presented in the Fig. 2(a). It can be Oobserved
from the figure that asα increases, the transverse ve-
locity of the flow increases. Figure 2(b) illustrates the
effect of slip coefficient (ξ) on the transverse velocity.
Note that the increment of slip coefficient (ξ = 0.0 to
ξ = 0.4) is to increase the transverse velocity at the bound-
ary. However, the solution reduces to no-slip case when
ξ → 0, coinciding with the results of Muthu and Tesfahun
(2010).

The effect of slope parameter (k), with ξ = 0.15, on the
transverse velocity is shown in Fig. 2(c). Ask decreases,
that is, as the channel changes from diverging to normal
and then to converging channels, the velocity decreases.
Figure 2(d) shows the behavior of the velocity at the dif-
ferent cross sections of the channel, whenk = 0.1. As

the fluid moves from the entrance to the exit, the trans-
verse velocity decreases. Naturally, since the outflow of
the fluid decreases withx, the transverse velocity has a
lesser value at the exit than at the entrance. Moreover, it
attains the maximum at the point∼= 0.8 at the entrance
and it shifts towards the boundary at the exit.

4.2 Mean pressure Pressure drop Drop ( ∆p̄)

The values of the mean pressure drop over the length of
the channel are calculated for different values ofk, ξ, and
a. Figure 3(a) displays the effect of slope parameterk on
mean pressure drop. Note that∆p̄ is less for the diver-
gent channel than for the normal or convergent channels.
The slip coefficientξ has an influence on the mean pres-
sure drop as illustrated in Fig. 3(b). It can be Aobserved
that as the slip coefficient increases, the mean pressure
drop decreases, because an increase inξ increases the ve-

v

y

ξ = 0.0

ξ = 0.4

ξ = 0.15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

(a) (b)

(c) (d)

FIG. 2: (a) Distribution of transverse velocity (v) with y (k = 0.1,ξ = 0.15,x = 0.1); (b) Distribution of transverse
velocity (v) with y (k = 0, α = 1.0,x = 0.1); (c) Distribution of transverse velocity (v) with y (k = 1.0,ξ = 0.15,x =
0.1); (d) Distribution of transverse velocity (v) with y (k = 0.1,ξ = 0.15,α = 1.0).
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326 Muthu & Berhane

(a)

(b)

FIG. 3: (a) Distribution of mean pressure drop (∆p̄) with
x (ξ = 0.15,α = 1.0); (b) Distribution of mean pressure
drop (∆p̄) with x (k = 0.1,α = 1.0).

locity, which in turn decreases the mean pressure drop
(∆p̄).

The effect of reabsorption coefficient (a) is presented
in the Figs. 4(a)–4(c). It can be Tobserved that the mean
pressure drop (∆p̄) decreases with an increase ofa for all
forms of the channel (converging, normal, and diverging
channels).

4.3 Magnitude of Wall Shear Stress |τw|
Figure 5(a) shows the effect of slope parameterk on the
magnitude of wall shear stress. We can observe that|τw|
is less for the divergent channel than for the normal or
convergent channels. Figure 5(b) displays the influence
of slip coefficientξ on |τw|. It shows that an increase in
the slip coefficient decreases the wall shear stress consid-
erably.

(a)

(b)

(c)

FIG. 4: (a) Distribution of mean pressure drop (∆p̄) with
x (ξ = 0.15,k = –0.1);(b) Distribution of mean pressure
drop (∆p̄) with x (ξ = 0.15,k = 0.0); (c) Distribution of
mean pressure drop (∆p̄) with x (ξ = 0.15,k = 0.1).

NoteIt may be noted from Figs. 6(a)–6(c) that the mag-
nitude of wall shear stress|τw| decreases with an increase
of reabsorption coefficient (a) for all forms of the channel
(converging, normal, and diverging channels).

Special Topics & Reviews in Porous Media — An International Journal
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(a)

(b)

FIG. 5: (a) Distribution of wall shear stress (|τw|) with x
(ξ = 0.15,α = 1.0); (b) Distribution of wall shear stress
(|τw|) with x (k = 0.1,α = 1.0).

5. CONCLUSIONS

In the present study, an analysis of the mathematical
model of incompressible fluid flow in a rigid channel of
slowly varying converging/diverging walls has been pre-
sented. The main contribution of this study is to show the
effect of slip velocity at the boundary on the flow vari-
ables, as it is not discussed in the literature with non-zero
Reynolds number. The reabsorption coefficienta and the
slope parameterk have the same effect on transverse ve-
locity. As they increase, the velocity also increases. The
effect of slip coefficientξ is to increase the transverse
velocity at the boundary. When the reabsorption coeffi-
cientα increases, the mean pressure drop decreases. This
can be justified because,that as most of the fluid flows out
in larger amount, the pressure drops. Also,∆p̄ and |τw|
are less for the divergent channel than for the normal or
convergent channels. Further, an increase in the slip co-
efficient ξ decreases both∆p̄ and |τw| considerably. As
ξ → 0, the results are in agreement with the literature.

(a)

(b)

(c)

FIG. 6: (a) Distribution of wall shear stress (|τw|) with x
(ξ = 0.15,k = –0.1);(b) Distribution of wall shear stress
(|τw|) with x (ξ = 0.15,k = 0.0); (c) Distribution of wall
shear stress (|τw|) with x (ξ = 0.15,k = 0.1).
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