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An investigation of viscous incompressible fluid flow in a nonuniform rigid channel with permeable walls is presented
by taking into consideration the influence of slip velocity at the walls. The effect of fluid absorption through permeable
walls is accounted for by prescribing flux as a function of axial distance. The nonlinear governing equations of motion
are linearized by the perturbation method by assuming & (the ratio of inlet width to the length of the channel) as a
small parameter to get an approximate analytical solution. The effects of reabsorption coefficient (a), slope parameter
(k), and slip parameter (3) on the velocity profiles, mean pressure drop, and wall shear stress are studied and presented
graphically. The results indicate that the slip parameter influences the flow field considerably.

KEY WORDS: nonuniform channel, perturbation method, permeable wall, slip effect

1. INTRODUCTION not have uniform cross section throughout their length.

Radhakrishnamacharya et al. (1981) made an attempt to
The study of viscous fluid flow in a channel of varyinginderstand the hydrodynamical aspects of an incompress-
cross section with permeable walls is significant becaubte viscous fluid in a circular tube of varying cross sec-
of its applications to both physiological and engineerirtgpn with reabsorption at the wall. Chandra and Prasad
flow problems. For example, mathematical models of ti#992) analyzed flow in rigid tubes of slowly varying
flow of fluid in a renal tubule have been studied by vareross section with absorbing walls. The effect of fluid ab-
ous authors. Macey (1963) formulated the problem as tharption through permeable wall is accounted for by pre-
flow of an incompressible viscous fluid through a circulacribing flux as an arbitrary function of axial distance.
tube with linear rate of reabsorption at the wall, where@haturani and Ranganatha (1991) considered fluid flow
Kelman (1962) found that the bulk flow in the proximathrough a diverging/converging tube with variable wall
tubule decays exponentially with the axial distance. Thegermeability. Recently, Muthu and Tesfahun (2010) con-
Macey (1965) used this condition to solve the equationssiflered the effects of slope parameter and reabsorption
motion and mentioned that the longitudinal velocity praoefficient on the flow of fluid in a symmetric channel
file is parabolic and the drop in mean pressure is prop@rith varying cross section with no-slip velocity at the
tional to the mean axial flow. walls.

Marshall and Trowbridge (1974) and Palatt et al. The concept of slowly varying flow forms the basis of
(1974) used the physical conditions existing at the rigalarge class of problems in fluid mechanics in which vis-
permeable tube instead of prescribing the flux at the watlus forces dominate the nonlinear inertial forces. For ex-
as a function of axial distance. ample, Manton (1971) obtained an asymptotic series so-

The above studies considered the linearized modeldufon for the low Reynolds number flow through an ax-
renal flow with the renal tubule as a cylindrical tube déymmetric tube whose radius varies slowly in the axial
uniform cross section. But, in general, renal tubules mdirection.
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322 Muthu & Berhane

In all the above studies, the boundary condition at ti). (1). The motion of the fluid is assumed to be laminar,
wall is taken as a no-slip condition. The no-slip boundasteady, and symmetric. The channel is assumed to be long
condition is one of the cornerstones on which the mechamough to neglect both the entrance and end effects. The
ics of the viscous liquids is built. However, there are siteffect of gravity is neglected. The governing equations of
ations where this assumption does not hold (Rao and Raeh fluid motion are given by
jagopal, 1999). The effect of slip at the wall is significant, o ou
as illustrated by Moustafa (2004). The slip velocity at the — 4+ — =0, 2
boundary is proportional to the shear rate at the bound- gz~ dy
ary. This slip velocity is connected with the presence of ou du 1 9p 2u
a thin layer of streamwise moving fluid in the boundary ~ Uz +vg = ——5-+v (82 + 32> )

S e g Y pox €z Y
region just below the permeable surface. The fluid in this ) X
layer is considered to be pulled along by the flow above u@ + U@ _ _1op v (M + 61}) (4)
the porous surface (Singh and Laurence, 1979). Also, the 9z 9y p dy dx? 0y )’
inp would be most useful for certain problems in chemjvherew andv are the Velocity components along the
cal engineering and other applications (Chu, 2000; Josefti y axes, respectively, is the pressurep is density,
and Ocando, 2002; Vasudeviah and Balamurugan, 199Rdv (= 1/p) is kinematic viscosity of the fluid.

Wang, 2002). The boundary conditions are taken as follows: The tan-

The objective of the present paper is to understand gntial velocity at the wall is not zero (Dulal et al., 1988;
hydrodynamical aspect of an incompressible viscous fligbustafa, 2004). That is,

flow in a rigid channel of varying cross section with reab-
sorption and a slip velocity at the walls of the channel.,, @U — VY (a“ + 81181;) aty =n(z), (5)
The boundary of the channel walls is assumed to be sym- ~ 9 B \0y

metric about the: axis and vary withe. It is taken as wherep is slip parameter and is the specific permeabil-

k1 . (2 ity of the porous medium.
n(z) ==+ {d TR L Tasm <7\)] ; (1) The regularity condition requires

whered is the half width of the channel at the inlet (at v =0 and@ _
x = 0), k1 is a constant whose magnitude depends on the Jy
length of the channel exit and inlet dimensions and whi
is assumed to bel, a is the amplitude, and is the
length of the channel; see Fig. 1.

0aty=0. (6)

%e reabsorption has been accounted for by considering
the bulk flow as a decreasing function of That is, the
flux across a cross section is given as

2. MATHEMATICAL FORMULATION n(®)
Q) = [ wlepdy = QoF (), (@)
0

Consider an incompressible Newtonian fluid flow through
a channel with slowly varying cross section as given hyhere F'(«x) = 1 whena = 0 and decreases with Fur-
ther,x > 0 is the reabsorption coefficient, a constant and
Qo is the flux across the cross section:at 0. The bound-

1 ary condition (5) is the well-known Beavers and Joseph
\ (1967) condition when applied to tangential velocity. Fur-
ther, reabsorption is assumed to be independent of the ab-
sorption area.
d Eliminating pressure from Egs. (3) and (4) and intro-
| o . ducing stream functiotp by
o o0
u—ay andv——ax, (8)
M and using the following nondimensional quantities:
. . R A |
FIG. 1: Geometry of two-dimensional renal tubule. r=EvYy ==y
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Flow through Nonuniform Channel 323

. Yoy o = d? » Substituting Eq. (14) in Egs. (9)—(12) and collecting coef-
Qo’ ’ uQo"’ ficients of various like powers df, we get the following
Egs. (2)—(4) are transformed to the nondimensional foﬁﬁts of equations fapo(z,y), b1(z,y), ...
as (after dropping the primes): 6" case:
20 L PNy sp [P (20 N0 a41'1°=0. (15)
0x2  Oy? % oy 0x2  0y? ) Ox 9y
L (L, P\ ©) The boundary conditions are
Ox 0x2 Oy ) Oy |’ 2
Mo _ _éa Yo aty =n(z) (16)
whered = d/A andR. = Qo /v. y 0y? ’
Further, the boundary conditions (5)—(7) become
2 2 2
@,52@@:7({ @,52@811) ll)oandau;O:Oaty:() a7)
Oy Oz Ox oy? Ox 0xdy dy
aty =n(z) = 1+ kx + esin(2nz), (10)
Vo = F(ox) = e *¥ aty =n(x) (18)
2
P=0 and(g—i) =0aty =0, (11) &' case:
Y
oMy R Npo Py Ao PP (19)
and Oy | Oy oy20x  Ox Oy3 |’
b = F(ax) aty =n(z) = 1+ kz + esin(27r), (12) The poundary conditions are
where§ = \/y/Bd, e = a/d, andk = (ki\)/d. N 02
The parameteR, is the Reynolds numbe,is the wall aiyl =-¢ 8y21 aty =n(x), (20)
variation parameter (the ratio of inlet width to the length
of the channel)¢ is the amplitude ratio (the ratio of am-
plitude to the inlet width) is slope parameter, aridis _ 0%y _ _
the slip coefficient. In this problem, we consider expo- 1 =0 and oy 0aty =0, (1)
nentially decaying bulk flow (Radhakrishnamacharya et
al., 1981). That is, in Eq. (7} is taken as
Y1 =0aty =n(r) (22)

Flox) = e 1) _ . . .
Similar expressions can be written for higher orders.of
In the following, we consider the case of low Reynolddowever, since we are looking for an approximate ana-
number flow wherR, is such that?.§ = O(§) (Chandra lytical solution for the problem, we consider equations up

and Prasad, 1992; Manton, 1971). to order ofd!

The solution of Eq. (15) together with boundary con-
3. METHOD OF SOLUTION ditions (16)-(18) is
Note that the flow is complex because of the nonlinear- Yo (z,y) = A1(2)y® + Az (z)y, (23)

ity of the governing equation and the boundary condi-

tions (9)=(12). Thus, to solve Eq. (9) for velocity com¥hereA; = (—e=%%)/(2n® + 6&n?) and A, = [(3n* +
ponents in the present analysis, assuming the wall vaﬁéﬂ)eﬂx}/pﬂj +6&n?]. )

tion paramete < 1, we shall seek a solution for stream The solution of Eq. (19) together with boundary con-
function(z, ) in the form of a power series in terms oflitions (20)-(22) is

bas D1z, y) = As(@)y” + Ao(2)y® + Aso(2)y?
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324
where
1 dA 1 dA dA
Az(x) = ﬁAlT;n6 1 (A2dx1 - Ald;) n?,
3 dA dA dA
Ay(x) = gaAlT;ns + & <A2dml - Aldxz) 1’137
AG(T) = RG(A:; + A4),
1 dA 1 dA
Az(z) = —Re LO 1T;T17 + 20 (Azdxl
dA
- Al d;)n5:| ’
1 dA;
A8(1') - %ReAlﬁa
1 dA dA
o) = e (4G~ ).
_ MAs — Ar
7 o3 1 6En?”
4. — A6+ (3n° + 6En) 47
e 213 + 602

Hence, substitutingyg and; in Eq. (14), we get that

V(z,y) = A1 (2)y” + Az (x)y + 8[As(z)y” + Ag(x)y”
+ 1410(1')y3 + A1 (2)y]. (25)

Now, the nondimensional pressupéz,y) can be ob-
tained using Egs. (25), (8), and (3).

Itis given as
ou 1 [d%u ou
0

(26)

whereg(y) is constant of integration. The mean pressu

is given as

n(z)
p(x) = 1)/0 px,y)dy +g(y).  (27)

n(z
Further, the mean pressure drop betweer0 andz = xq
is

Ap(xo) = p(0) — p(wo)- (28)

Muthu & Berhane

The wall shear stress, (x) is defined as
ol (Y
dz dx
2
(&)
dx
aty =n(x), (29)

whereo,, = 2u(0u)/(0x), oyy = 21(0v)/(0y), andoy,,
= u[(0u)/(8y) + (0v)/(9)].

Using the nondimensional quantity, = (d?/uQo)Tw,
the wall shear,, becomes (after dropping the prime),

Jv  Ou\ On ou v
_ 227 _ 7= s 2”77
Tw = {26 (8y 8ac> (8y+6 6x)

e @ fooe @) e

or
Noted that in Eq. (26), the integrals are difficult to eval-
uate analytically to get a closed-form expression for
p(x,y). Therefore, they are calculated by numerical in-
tegration.

(Oyy — Ozz) + Oay

4. RESULTS AND DISCUSSION

The aim of this analysis is to study the behavior of an
incompressible fluid flow through a channel of converg-
ing/diverging and slowly varying cross section with ab-
sorbing walls by considering a slip velocity at the walls.

It may be recalled thakt characterizes the slope of the
converging/diverging wavy walls. Herd; = 0.1 repre-
sents a diverging channel,= 0 represents a normal (si-
nusoidal channel), ankl= —0.1 represents a converging
channel. The anda represent amplitude and permeabil-
ity parameters of slowly varying walls, respectively. Note
that as¢ — 0, the solutions coincide with the results of
Muthu and Tesfahun (2010).

We discuss the effects of these parameters on the trans-
verse velocity[v(z, y)], mean pressure dro@Ap), and
wall shear stresgr,,) quantities. In all our numerical cal-
E%Iations, the following parameters are fixedeas 0.1
andb = 0.1. We takeR, = 1.0 to consider the flow with
small values of Reynolds number.

4.1 Transverse Velocity

The velocity field can be obtained from Eqgs. (14) and (8).
In this section, we discuss the effects of reabsorption coef-
ficient (o), the slope parametek)in the presence of non-
zero slip coefficient) on the transverse velocity. Also,

Special Topics & Reviews in Porous Media — An International Journal



Flow through Nonuniform Channel 325

we look into the behavior of the velocity at different crosthe fluid moves from the entrance to the exit, the trans-
sections of the channel. verse velocity decreases. Naturally, since the outflow of
The effect of reabsorption coefficienk) , with & = the fluid decreases with, the transverse velocity has a
0.15, is presented in the Fig. 2(a). It can be Oobserdedser value at the exit than at the entrance. Moreover, it
from the figure that asx increases, the transverse veaattains the maximum at the poiat 0.8 at the entrance
locity of the flow increases. Figure 2(b) illustrates thand it shifts towards the boundary at the exit.
effect of slip coefficient §) on the transverse velocity.
Note thgt th_e increment of slip coefficierﬂ; € 0.0to 4.2 Mean pressure Pressure drop Drop ( Aj)
£,=0.4)is to increase the transverse velocity at the bound-
ary. However, the solution reduces to no-slip case wh&he values of the mean pressure drop over the length of
& — 0, coinciding with the results of Muthu and Tesfahuthe channel are calculated for different valueg of, and
(2010). a. Figure 3(a) displays the effect of slope paraméten
The effect of slope parameték)( with £ = 0.15, on the mean pressure drop. Note thap is less for the diver-
transverse velocity is shown in Fig. 2(c). Adecreases, gent channel than for the normal or convergent channels.
that is, as the channel changes from diverging to nornidle slip coefficient, has an influence on the mean pres-
and then to converging channels, the velocity decreasase drop as illustrated in Fig. 3(b). It can be Aobserved
Figure 2(d) shows the behavior of the velocity at the difhat as the slip coefficient increases, the mean pressure
ferent cross sections of the channel, wher 0.1. As drop decreases, because an increagdnioreases the ve-

1.2 T T T T T 1.2
1r \‘T L ]
_1s5/ =20/
sl o=1.0 =15 OK,,; os | £=0.4 .
Y oosf 4 Y osl £=0.15 ]
04 F . 04 |
S £=0.0
s b d 02 e
= 0 L L L L L
%0 olz (:4 ols ols ; 112 1l4 ]l.G 1.8 0 02 04 06 08 ! 12
v \'
(@) (b)
1.2 T T T T T 1.2 T T T T
ok ’\\‘:..\. B Lk l:" i
0.8 k=-0. h E 08 |- x=03 =02 -
y k=00 PN y o )K
0.6 b 0.6 B
I 1 I x=0.1 |
0.4 ";";'_r_f,—,.» k=01 04
02k . 02 -
0 1 1 L 1 L 0 S L 1 L 1 1
0 02 04 06 0.8 1 12 0 02 0.4 0.6 038 1 12
v v
(©) (d)

FIG. 2: (a) Distribution of transverse velocity] with y (k = 0.1, = 0.15,2 = 0.1); (b) Distribution of transverse
velocity (v) with y (k =0, « = 1.0, = 0.1); (c) Distribution of transverse velocity) with y (k = 1.0,& = 0.15,x =
0.1); (d) Distribution of transverse velocity) with y (k = 0.1,& = 0.15,x = 1.0).
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14 T T T 14 T T T
Ll 4 ol k=-0.1 |
k=—0.
10 = k=0 *_\ b 10 - oa=1 =
Kp sk : ‘\’ ," a A_p s L o= 1 JEPPRE
6 - 6 - _
T | il o=2.0 |
0 0 0.2 0I.4 0I6 1 0 0 02 OI.4 X OI.G 0.8 1
X
(@ (a)
16 T T T 12 T T T T
k=0.0
14 - _ - L . i
12F % e B ! =1 .
) sk s -
—10 B 7 — o=1. IS
M| £=0.15 L )
L 4 o=2.0
) AN £=04 .| ]
o 0'2 0’_4 ols . % olz ol.4 N 0‘6 (;.s 1
X
(b) (b)
FIG. 3: (a) Distribution of mean pressure dropgp) with k=01 ' ' ' '
x (§ = 0.15, = 1.0); (b) Distribution of mean pressure 1 ' o=1.0 i
drop (Ap) with z (k = 0.1, = 1.0).
5r o=15 e iy
& | T .
locity, which in turn decreases the mean pressure d
(Ap). ‘T Ly ]
The effect of reabsorption coefficient)(is presented | *=< |
in the Figs. 4(a)—4(c). It can be Tobserved that the me
pressure dropAp) decreases with an increaseadr all 0 = ” v L 1
forms of the channel (converging, normal, and divergi..y - X '
channels). (c)

4.3 Magnitude of Wall Shear Stress

Figure 5(a) shows the effect of slope paraméten the
magnitude of wall shear stress. We can observe|that

FIG. 4: (a) Distribution of mean pressure drofA) with

x (§ =0.15,k =-0.1);(b) Distribution of mean pressure
drop (Ap) with z (¢ = 0.15,k = 0.0); (c) Distribution of
mean pressure drop\p) with = (¢ = 0.15,k = 0.1).

is less for the divergent channel than for the normal or

convergent channels. Figure 5(b) displays the influenceNotelt may be noted from Figs. 6(a)-6(c) that the mag-
of slip coefficient on |t,,|. It shows that an increase imitude of wall shear stre$s,,| decreases with an increase
the slip coefficient decreases the wall shear stress consitkeabsorption coefficientj for all forms of the channel

erably.

(converging, normal, and diverging channels).

Special Topics & Reviews in Porous Media — An International Journal
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(b)
FIG. 5: (a) Distribution of wall shear stres$t, |) with = =

(& = 0.15,x = 1.0); (b) Distribution of wall shear stress
(ITw]) with 2 (k = 0.1,c = 1.0).

¥}

15

5. CONCLUSIONS [T

In the present study, an analysis of the mathemati
model of incompressible fluid flow in a rigid channel ¢
slowly varying converging/diverging walls has been pr
sented. The main contribution of this study is to show t
effect of slip velocity at the boundary on the flow var 0 02 04 06 038 1
ables, as it is not discussed in the literature with non-zeiu

Reynolds number. The reabsorption coefficiemind the ©
slope paramete have the same effect on transverse VEG. 6: (a) Distribution of wall shear stres$t, |) with =
locity. As they increase, the velocity also increases. T{@e= 0.15,k = —0.1);(b) Distribution of wall shear stress
effect of slip coefficientf, is to increase the transversg|t,|) with = (& = 0.15,k = 0.0); (c) Distribution of wall
velocity at the boundary. When the reabsorption coeffhear stresg<,,|) with = (§ = 0.15,k = 0.1).

cientx increases, the mean pressure drop decreases. This

can be justified because,that as most of the fluid flows out

in larger amount, the pressure drops. Alag; and |t,,| REFERENCES

are less for the divergent channel than for the normal or

convergent channels. Further, an increase in the slip gavers, G. S. and Joseph, D. D., Boundary conditions at a nat-
efficient & decreases bothp and|t,,| considerably. As  urally permeable wallj. Fluid Mech, vol. 30, pp. 197-207,

& — 0, the results are in agreement with the literature.  1967.
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