2015 Fifth International Conference on Advanced Computing & Communication Technologies

Pseudo Random Bit Generation Using Arithematic
Progression

Divyanjali
Assistant Professor
CEA Department, GLA University
Mathura, India
dvynjli@gmail.com

Abstract—In our day-today life, we performs a lot of tasks
that involves direct or indirect use of random numbers e.g.
games, lotteries, simulations and most important cryptography
and data communication security. Although, the field of pseudo
random number generation is important, it is very difficult to
find a good generator for several of applications. In present
manuscript, we explore the possibility of a new Pseudorandom
Random Number Generator and gives its testing results on NIST
test battery.

Keywords— New Algorithm, NIST statistical test report,
Random Bit Generator

L INTRODUCTION

A pseudo-random bit sequence is an output of any
deterministic algorithm, such that every set of bits has an equal
chance of being chosen from the universe of numbers [1].
These pseudo random bits are generated using pseudo random
number generators (PRBGs). PRBG takes seed of length # is as
input and produces the output of length /(n), with /(n) >> n is
called pseudo random sequence.

Pseudo-random numbers are widely used for simulation,
numerical analysis, testing of programs and hardware using
random data, decision making in lotteries and games and
cryptography [2]. A good PRNG must possess several of

Ankur

Researcher Associate
AIM&ACT, Banasthali Vidyapith
Rajasthan, India

ankur.rathi9@gmail.com

Trishansh Bhardwaj

M.Tech Reseracher
CSE Department, NIT Warangal,
Telangana, India

itrishansh@gmail.com

II.

The algorithm proposed in this text exhibits good statistical
properties while tested on NIST (National Institute of
Standards and Technology) statistical test suit specified in
NIST Special Publication 800-22 [3], and hence fit itself to
provide source of randomness in almost every non-
cryptographic application such as simulation, testing, gaming,
randomized algorithm, etc. The algorithm, testing
methodologies and NIST statistical test suite reports are
included in subsequent sections.

THE PROPOSED ALGORITHM

A. Concept

The key idea of algorithm is to add some sequential
numbers from range [1, M-1] i.e. Z), and take modulo M of the
sum. The selection of numbers to be added in the first iteration
of sequence depends upon the seeds provided — first seed, say
Xy, defining the start of sequence and second seed, say Y,
defining the count of numbers to be added. So in the first
iteration, number generated would be the sum of ¥, numbers
starting from Xj in finite field Z,, and the least significant bit of
this number would be the first output bit of the sequence. We
will store this number in X, and use it instead of X for next
iteration and so on. At i iteration the generated bit b; can be
given by the equations

qualities such as unpredictability, large period length, uniform X, = Z?_fz-ﬁYo—l i mod M (1)
distribution, efficiency, portability, repeatability, and a good Aln d =X
structure. The present manuscript explores the possibility of a b, = X;mod 2 @)

new congruential function, which can generate pseudo-random
numbers to be used in simulation, numerical analysis, decision
making, and computer programming.

B. Proposed Algorithm

X.
0 \ AN
= > X Y
X.= > imodM > bi=X; mod 2 1010111...
Y. =X
n .

Fig. 1. Schematic diagram of Proposed Algorithm

Example
Let M=10007, Seeds X, =5324 and Y, = 10.Then,

The output sequence B of length using above example 8-bit
is 00101010. The sequence can be reproduced, given that both

X.=2 l{“;(y“"imod M EZ:;ﬁ,im0c110007 =3250 bi=0 the seeds are same as the sequence to be reproduces.
o _ _ The problem can also be reduced to sum of numbers from
XY =V 0d10007= 2524 by=0

XFZ,-:‘X * imod M Zi:}ZS(llmO

an Arithmetic Progression with common difference d = 1,

361

2327-0659/15 $31.00 © 2015 IEEE CPsoé

DOI 10.1109/ACCT.2015.90 Conference Puslishing Services
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:13:17 UTC from IEEE Xplore. Restrictions apply.

initial term = X, number of terms to be added = Y. Sum of
numbers in AP is given by

5=§(2a+(n—1)d) 3)
In this case the equation (1) can be written as
X =Yy(2X;_1+ Yy —1)/2 mod M)]

Above equation is a more effective way to compute sum of
the numbers rather than looping around. For this reason we
have used equation (4) to generate random numbers throughout
this research.

C. Pseudo code of the Algorithm

Following is the pseudo-code of the algorithm:
RANDOM (SEED,, SEED,, M)

1 Xg <« SEED]

2 Y() «— SEEDZ

3 I(n) < length of output sequence

4 fori—1tolmn)

5 doX; = Y,(2X;_1 + Y, — 1)/2 mod M

6 do b;<— X;mod 2

7 return B «— (b]b2b3... b/(n))

The output of above algorithm is a /(n) bit number B.

III. RESULTS AND DISCUSSION

A. Statistical Testing

A PRBG to be used for simulation and other non-
cryptographic purpose need to more randomness, while PRBG
used for cryptographic purpose needs to be cryptographically
secure and unpredictable. To be confident about randomness of
number generated from a PRBG, it is important to test its
output sequences. There are several of tests batteries available
such as NIST statistical test suite [3], DIEHARD test [4],
Donald Knuth’s statistical test suite [5], and the Crypt-XS
statistical test suite [6]. They all perform a number of tests to
find different type of non-randomness. None of these is perfect
in itself. Juan Soto [7] has shown that not all the tests are
needed to be performed and the NIST statistical test suite is the
best one of these. Hence we have used NIST test suite,
regarded as most rigorous tests of randomness to analyze our
proposed PRBG.

The NIST suite

The NIST Test Suite, consisting of 15 tests, is a statistical
package that tests the randomness of (arbitrarily long) binary
sequences. These sequences can be produced either by
hardware or by software based random number generators.
The tests are [3]:

1. The Frequency (Monobit) Test,

2. Frequency Test within a Block,
3. The Runs Test,
4. Tests for the Longest-Run-of-Ones in a Block,
5. The Binary Matrix Rank Test,
6. The Discrete Fourier Transform (Spectral) Test,
7. The Non-overlapping Template Matching Test,
8. The Overlapping Template Matching Test,
9. Maurer's "Universal Statistical" Test,
10. The Linear Complexity Test,
11. The Serial Test,
12. The Approximate Entropy Test,
13. The Cumulative Sums (Cusums) Test,
14. The Random Excursions Test, and
15. The Random Excursions Variant Test.

Further information about these tests is not the subject of
present manuscript. The test suite calculates P-value, the
probability that a perfect random number generator would have
produced a sequence less random than the sequence that was
tested [3]. A significance level (o) can be chosen for the tests.
If P-value > a, then the null hypothesis is accepted, otherwise
null hypothesis is rejected for the sequence under
consideration. After calculating P-value for each sequence,
proportion of sequences being passed is calculate. If the
proportion falls inside the confidence interval, calculated as

pt3 ,@, where p= 1-a and m is the sample size, the

generated is accepted on this basis. The a = 0.01 indicates that
one would expect 1 sequence in 100 sequences to be rejected.
The P-value of P-values (P-valuesr), describes Goodness-of-fit
Distributional test on the P-values obtained for an arbitrary
statistical test.

Statistical Testing Results of Proposed PRBG

For testing of suggested algorithm, we have generated 1000
sequences, each of 10° bits. Each of the sequence is generated
from different randomly chosen seed X, and Y,. The seeds are
provided from a true random resource- random.org [8].The
generation of numbers has been done using C language library-
gee (GNU Compiler Collection) [9], and GMP (GNU Multiple
Precision) arithmetic library [10] to handle large numbers.
NIST test battery is applied over each of these sequence and P-
values for all 15 tests are computed. The significance level a is
set to 0.01. So, minimum 980 sequences must pass the test
when sample size m = 1000 i.e. for all of the tests except
random excursion and random excursion variant which have
sample size of m = 609 and hence needs 595 sequences to pass
the test for sequences to be considered random. The parameters
used for testing and results of NIST suite are summarized in
Table 1 and Table 2 respectively.

Table 1. Parameters used for testin

No of sequences tested 1,000

Length of each binary sequences 1,000,000 bits
Significance level 0.01

Block size 16

Template size 9

Maximum number of templates 40

Table 2. Summary of NIST testing results

S. Name of test No. of sequences with P- | P-value of P-values Proportion of sequences
No. value>0.01 (Success) passing test
1 Frequency test 995 0.365253 0.99500000

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:13:17 UTC from IEEE Xplore. Restrictions apply.

2 Block Frequency test [988 [0292519 [0.98800000
3 Cumulative Sums test
1. Forward sums test 994 0.463512 0.99400000
2. Reverse sums test 994 0.442831 0.99400000
4 Runs test 986 0.394195 0.98600000
5 Longest Run test 989 0.536163 0.98900000
6 Rank test 987 0.836048 0.98700000
7 FFT test 991 0.011959 0.99100000
8 Non-Overlapping Template matching test (Template Length = 9
1. Template=000000011 991 0.995162 0.991000000
2. Template=110000000 996 0.971006 0.996000000
3.Template=111001010 991 0.975644 0.991000000
4.Template=111001100 986 0.907419 0.986000000
5. Template=111100000 991 0.994488 0.991000000
6.Template=111101110 993 0.984881 0.993000000
7.Template=111110100 997 0.875539 0.997000000
8.Template=111011100 991 0.846338 0.991000000
9 Overlapping Template 992 0.906069 0.992000000
10 | Universal test 987 0.618385 0.987000000
11 Approximate Entropy test 993 0.207730 0.993000000
12 Random Excursions test
1.x=-4 602 0.894201 0.988505747
2.x=-3 597 0.761392 0.980295567
3.x=-2 605 0.950407 0.993431856
4.x=-1 602 0.274568 0.988505747
5.x=1 599 0.212371 0.983579639
6.x=2 606 0.408571 0.995073892
7.x=3 599 0.977580 0.983579639
8.x=4 599 0.322901 0.983579639
13 Random Excursion Variant test
1.x=-9 600 0.103035 0.985221675
2.x= -8 602 0.382400 0.988505747
3.x= -7 601 0.631914 0.986863711
4.x= -6 600 0.618038 0.985221675
5.x=-5 600 0.821041 0.985221675
6.x= -4 600 0.414525 0.985221675
7.x= -3 603 0.656200 0.990147783
9.x= -2 604 0.379555 0.991789819
10.x= -1 604 0.855534 0.991789819
11.x=1 605 0.652733 0.993431856
12.x=2 597 0.505865 0.980295567
13.x=3 592 0.126536 0.972085386
14.x=4 597 0.272297 0.980295567
15.x=5 598 0.312791 0.981937603
16.x= 6 598 0.429618 0.981937603
17.x=7 599 0.021627 0.983579639
18.x=8 602 0.011722 0.988505747
19.x=9 604 0.855534 0.991789819
14 Serial test 991 0.853049 0.991000000
15 Linear Complexity test 992 0.298282 0.992000000
120 =
100 00
= 80 E 80
5 O
B o £ w
E
= 40 i 4“0
=
20 20
% 01 02 03 04 05 06 07 0.8 09 " L} 02 03 04 05 06 o7 08 09
P-Values P-values
Fig. 2. Frequency Test Fig. 3. Block Frequency Test

363

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:13:17 UTC from IEEE Xplore. Restrictions apply.

8

o

8

Frequenct Count

Frequency Count

g

100}
80}
60|
I]
20}
] 01 02 03 04 05 06 07 08 08 ol § i
0 01 02 03 04 05 0B 07 08 09

P-values
P-values

Fig. 4. Cumulative Sums Test Fig. 5. Run Test

120 —

0 04 0.2 0.3 04 05 08 07 08 08

P-values

Fig. 6: Longest Run Test

8

00

g
=
8

3

Frequency Count

Frequency Count
: &
5 g

3

04 05 06 (kg 08 08
P-values

Fig. 7: Rank Test

01 02 03 04 05 06 07 08 09

P-values

Fig. 9: Non Overlapping Template Test

2

Frequency Count

Frequency Count

0.1 06
P-values L

Fig. 8: DFT Test

120 —

1
100+
1

’ 20
00
80 1
20
¢ B R, e o SEE8 ® % 01 o2 05 04 05 6 07 08 09

P-values
Fig. 10: Overlapping Test

g

a
2

2

3

&

Frequency count
&

Frequency Count

[

P-values
Fig. 11: Universal Test

364

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:13:17 UTC from IEEE Xplore. Restrictions apply.

120

| || | ||
ol— I II II
0 01 02 03 04 05 06 07 08 08

P-values

Fig. 12: Approximate Entropy

Frequency Count

-]

60

Frequency Count

o1 02 03 04 05 06 07 08 09

P-values
Fig. 14: Random Excursion Variant

Frequency Count

04
P-values

Fig. 13: Random Excursion

05 06

00

Frequency Count

N
8

02 03

04 05 06

P-value

Fig. 15: Serial Test

0or 08

Frequency Count

0 01 02 03 04 05 06 07 08 09

P-value

Fig. 16: Linear Complexity Test

Uniform-distribution of P-values for 1000 number of
binary sequences has also been represented by histograms of P-
Values for each test. The complete interval of P-values [0, 1] is
divided into 10 equal sub-intervals and the P-values that lie in
each subinterval has been counted and displayed in Figure 2 to
16. These graphs have been plotted using MATLAB [11].

It is clear from the Table 2 and the Figure 2 to 16 that the
P-valuer for each of these tests lies in confidence interval i.e.
the tested binary sequence passes all these tests. These all
figures and tables are designed using finalAnalysisReport.txt
file generated by NIST. We have performed the test on some
other samples also and these samples pass the tests as well.

365

B. Furthur Analysis

Scatter Plot: To show uniformity or uniform distribution
of the numbers, we have also plotted the scatter diagram and
correlation of generated numbers in MATLAB. The motivation
behind this is to show the distribution graphically rather than
statistically in probabilistic terms. The figure 17 contains the
scatter plot of first 1000 numbers generated by the proposed
algorithm with value of M=9576890767 and seeds X, Y, given
at random and figure 18 shows correlation between values
generated at time # and #+1 with same parameters.

Both the figures 17 and 18 exhibits that proposed algorithm
has no correlation and its values are properly distributed to be
called random.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:13:17 UTC from IEEE Xplore. Restrictions apply.

il NBW.PRBG Plofling 1000:Squancas 28,904,178,124 ns. On average it generates a number in 28.904

45 . . . : . . .
AT g monars @ e Laes wr, 8wyl ns. The parameters used for testing are M = 4294967087.
ks RN L b
sl S PR, IR R S e T IV. CONCLUSION
TR B s EEeL T i i S
e w78V O PEEFT W e B eguaend kY .
gl v Toe k) ;""”‘:‘. Teed T STES e The field of pseudorandom number generation has been
R IFT, vt enl pan e et L Ty explored a lot, but there is still so much of possibility to have
@ 25F # i RO A P :?; e e 1A 4
2 SIS N R e, e S e S by el new and better generators. We have developed and tested a one
B L * Cem el . T 2 e e eqege
2 R e T MmO R e T s of these possibilities and created a novel pseudo random
. POt S * et .0' 25 s
ity SR S ORI A R s R S R number generation algorithm. The results on NIST statistical
++ % B R - e W e & Lo A t
I S P At LY I test suite show that the performance of proposed PRBG is up to
PP e = MO ASSES] sttt s, .
Y ey - B s SRR e O et A the mark and better than a lot of PRBGs in use. It encourages
s S e AT TN et
Pl T e A e Pogke us to further explore the suggested PRBG.
PEL A PO M N e N L N
DD 100 200 300 400 500 BOO Foo 800 900 1000
Time [M=9576890767] ACKNOWLEDGEMENT
Fig. 6. Scatter Plot of Proposed Algorithm We acknowledge our regards and thanks to Banasthali
i ith for providin n ni rform h
« 10° Correlation in New PRBG M dyap t. o .p ov d gusa opportu ty to .pe 0 such a
45 . ‘ . : : . ‘ . research in their premises and letting us use their resources.
o Mt BT bPy pde we s g g mamens e et
4 ES Sedieedls SUetE 8o, ey
R SO T o7 ALan Rs REFERENCES
Z’,:v"‘:’,’.(" o o] v % o5 ,‘: e ATy Y [1]1 J. E. Gentle, Random Number Generation and Monte Carlo Methods,
- e - U W b s = .
T Wl e Springer, 1998, pp. 217.
e X s % ARt P R) z
Sozsfn * Feare 15 BTy TS L WG E e A [2] D. E. Kunth, The Art of Computer Programming, vol 2: Semi-Numerical
E , .:,,‘: - 3.‘. Si Ly 2T e e W St L Algorithms, 2nd ed., Addison- Wesley, 1981.
= BT Mo N e E R T e T ERIE . . .
= v, s .'3‘ P .:.".. oy ; e ‘f.‘ :" e [3] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M.
i iR ;,f‘. LA osmee SRy :»’.;"""" R Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, San Vo, Statistical
P e R e LT Ry $ ¢,'x;‘:‘:"' i test suite for random and pseudo random number generators for
L A, L e e L T ef ol e cryptographic applications, NIST special publication 800-22, 2001.
bl - N NI . i T e . .
= % ".a'?i..’;': S GO mumne SRR R [4] G. Marsaglia, DIEHARD statistical tests,
-l + ittt . U ST ase, i et W i
oL o : i 4 5= e e + o ggpé//wwwstat.ﬁu.edu/pub/dtehard/, 1995, last accessed on July 26,
attime t w10® 13.
. . (5] D. E. Knuth, The art of ComputerProgramming: Semi Emperical
Fig. 7. Correlation Graph algorithms, Addison Wesley, 1998, Reading, USA.

[6] H. Gustafson, E. Dawson,L. Nielsen, W. Caelli, “4 computer package

Timing Analysis: Fast number generation is a desirable Jfor measuring the strength of encryption algorithms”, J. Computer

property of pseudo-random number generators; especially the Security, vol. 13 (1994), pp. 687-697.

ones to be used for simulation must generate .numb.ers fa.St [7]1 1. Soto, Statistical testing of random number generators, Proc. of 22nd

enough. We have computed the total running time in National Information System Security Conference

nanoseconds to generate one million numbers with following http://csre.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf

testing parameters: [8] M. Haahr, S. Haahr, Random.org, http:/random.org , last accessed on
July 26, 2013.

e Linux environment [9]1 GCC, the GNU Compiler Collection, http://gcc.gnu.org/ , last accessed

e gcc compiler on July 26, 2013. ‘

e Intel core i3 processor, 3192 Mhz [10] The GNU Multiple Precision Arithmetic Library, http://gmplib.org/ , last
accessed on July 26, 2013.

e 4GB RAM

[11] Matlab: The Language of Technical Computing,

. . e . . . http:// .mathworks.in/products/matlab/, last d July 26,
With no complier optimization and including time 20$3_wwwma works-procuctsimatiubl, fast accessed on iy

consumed in initialization i.e. reading seed from stdin buffer,
the proposed algorithm generated 10° numbers in

366

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 06,2025 at 09:13:17 UTC from IEEE Xplore. Restrictions apply.

