

Synthesis of Novel N¹ and N² Indazole Derivatives

PRASANNA BETHANAMUDI^a, SRINIVAS BANDARI^a, KANAKARAJU SANKARI^b,
 AMARNATH VELIDANDI^b, AND G V P. CHANDRAMOULI^{b*}

^aResearch centre, Department of Chemistry
 Chaitanya P. G. College, Warangal-506 004, A. P., India

^bDepartment of Chemistry
 National Institute of Technology, Warangal-506 004, A.P., India
 gvpc_2000@yahoo.co.in

Received 21 August 2011; Accepted 27 October 2011

Abstract: The alkylation of 5-cyano indazoles **2** in the presence of readily available imidizolium salts (ionic liquids) (Bmim)BF₄ as phase transfer catalyst were performed to afford the regio isomers *N*¹-and *N*²-(substituted alkyl)-5-cyano indazoles. The *N*¹-alkylated cyano indazoles were converted to the corresponding *N*¹-(substituted alkyl)-5-aminomethyl and 5-carbaldehydes **5(a-f)** and **6(a-f)**.

Keywords: Cyano indazoles, PTC catalyst, (Bmim)BF₄.

Introduction

Indazoles are of considerable interest due to variety of their biological applications. Especially the 1,3,5-substituted indazoles have been studied as receptor antagonists of the peptideo-leukotrienes¹. 1-benzyl-3-(5¹-hydroxymethyl-2¹-furyl)indazole show anti platelet activity², whereas 7-nitroindazole exhibits hypertensive³, antinociceptive and cardiovascular effects⁴. The *N*-methyl derivatives of 7-nitro-1*H*-indazole and 3-bromo-7-nitro-1*H*-indazoles show neuroprotective and NOS-1/NOS-11 activities⁵. Recently, a series of *N*¹-(substituted benzyl)-3-(substituted aryl)indazoles were evaluated for their antiangiogenic activity⁶. Some of indazoles derivatives 3-methyl-1*H*-indazoles shown significant analgesic, anti-inflammatory and anti-pyretic activities⁷ and also exhibits as kinase inhibitors⁸. In continuation of our work on synthesis of new heterocyclics, we herein report the alkylation reactions of 5-cyano indazole **2** in the presence of readily available ionic liquids (Bmim)BF₄ as phase transfer catalyst were performed to afford the regio isomers of 1*H* and 2*H*-indazole derivatives **3(a-f)** and **4(a-f)**. The compounds **3(a-f)** were converted to the corresponding *N*¹-(substituted alkyl)-5-aminomethyl and 5-carbaldehydes **5(a-f)** and **6(a-f)** (Scheme 1).

Experimental

Melting points were recorded on electrothermal (type 9100) melting point apparatus and are not corrected. ¹H NMR spectra were recorded on a Bruker WM-300 MHz spectrometer in δ ppm using TMS as internal standard. IR spectra in K Br were recorded by a Perkin-Elmer PE-633 infrared spectrometer. The mass spectra of the compounds were recorded on Joel TMS-D300 at 70 eV. Microanalyses were carried out on a Carlo-Erba 1106 micro analyzer.

Synthesis of 1-alkyl-5-cyano-1H-indazoles and 2-alkyl-5-cyano-2H-indazoles 3 (a-f) and 4(a-f)

To a vigorously stirred solution of 5-cyanoindazole **2** (10 mmol) and powdered anhydrous potassium carbonate (20 mmol) in ethyl acetate (15 mL) was added the appropriate alkyl chlorides (10 mol). To this reaction mixture a catalytic amount of (Bmim)BF₄ ionic liquid (1 mmol) was added and the mixture was allowed to stand at 60 °C for 3 h (monitored by TLC). The reaction mixture was cooled filtered and solid washed with ethylacetatae. The filtrate was diluted with water and extracted with Ethyl acetate. The organic layers were combined and washed with brine solution, finally evaporation of the organic layers afforded the crude product observed two isomers on TLC which were separated by column chromatography through a alumina column (MeOH : DCM 1:9) to yield the respective pure products.

1-((Pyridin-4-yl)methyl)-1H-indazole-5-carbonitrile 3(a)

m.p. 148-149 °C; ¹H NMR (DMSO-*d*₆) δ: 8.61-8.63 (dd, 2H, Py-H), 8.14-8.15 (dd, 1H, Ar-H), 8.10 (s, 1H, indazole-H), 7.79-7.81 (dd, 1H, Py-H), 7.42-7.46 (dd, 1H, Py-H), 7.10-7.12 (dd, 2H, Ar-H), 5.65 (s, 2H, -CH₂); mass (m/z): 234 (M⁺); Anal.Calcd for C₁₄H₁₀N₄: C, 71.78; H, 4.30; N, 23.92. Found: C, 71.77; H, 4.28; N, 23.90%.

1-((Pyridin-3-yl)methyl)-1H-indazole-5-carbonitrile 3(b)

m.p. 140-141 °C; ¹H NMR (DMSO-*d*₆) δ: 8.57-8.61 (dd, 2H, Py-H), 8.18 (s, 1H, Ar-H), 8.10 (s, 1H, indazole-H), 7.75 (dd, 1H, Ar-H), 7.42-7.44 (dd, 1H, Py-H), 7.28 (dd, 1H, Py-H), 7.16 (dd, 1H, Ar-H), 5.64 (s, 2H, -CH₂); mass (m/z): 234 (M⁺); Anal.Calcd for C₁₄H₁₀N₄: C, 71.78; H, 4.30; N, 23.92: Found: C, 71.77; H, 4.28; N, 23.90%.

1-(3-(Dimethylamino)benzyl)-1H-indazole-5-carbonitrile 3(c)

m.p. 124-126 °C; ¹H NMR (DMSO-*d*₆) δ: 8.12 (m, 1H, Ar-H), 7.98 (m, 1H, indazole-H), 7.62 (m, 2H, Ar-H), 7.02 (m, 1H, Ar-H), 6.34-6.42 (m, 3H, Ar-H), 4.92 (s, 2H, -CH₂), 2.90 (s, 6H, 2×CH₃); mass (m/z): 276 (M⁺); Anal.Calcd for C₁₇H₁₆N₄: C, 73.89; H, 5.84; N, 20.27. Found: C, 73.87; H, 5.82; N, 20.26%.

1-((Diethylamino)ethyl)-1H-indazole-5-carbonitrile 3(d)

m.p. 112-114°C; ¹H NMR (DMSO-*d*₆) δ: 8.19 (s, 1H, Ar-H), 8.12 (s, 1H, indazole-H), 7.74-7.77 (dd, 1H, Ar-H), 7.38-7.41 (dd, 1H, Ar-H), 4.47-4.51 (t, 2H, -CH₂), 3.02-2.98 (t, 2H, -CH₂), 2.52-2.59 (q, 4H, 2xCH₂), 0.92-0.96 (t, 6H, 2xCH₃); mass (m/z): 242 (M⁺); Anal.Calcd for C₁₄H₁₈N₄: C, 69.39; H, 7.49; N, 23.12. Found: C, 69.38; H, 7.47; N, 23.08%.

1-(2-Methoxyethyl)-1H-indazole-5-carbonitrile 3(e)

m.p. 102-104°C; ¹H NMR (DMSO-*d*₆) δ: 8.14 (m, 1H, Ar-H), 8.04 (m, 1H, indazole-H), 7.60-7.68 (dd, 1H, Ar-H), 7.46-7.50 (dd, 1H, Ar-H), 3.98 (s, 3H, -OCH₃), 3.90 (t, 2H, CH₂), 3.88 (t, 2H, -OCH₂); mass (m/z): 201 (M⁺); Anal. Calcd for C₁₁H₁₁N₃O: C, 65.64; H, 5.50; N, 20.88; Found: C, 65.60; H, 5.49; N, 20.86%.

1-(2-Hydroxyethyl)-1H-indazole-5-carbonitrile 3(f)

m.p. 109-110 °C; ¹H NMR (DMSO-d₆) δ: 8.04 (s, 1H, Ar-H), 7.82 (s, 1H, indazole-H), 7.42-7.48 (dd, 2H, Ar-H), 4.48 (t, 2H, -OCH₂), 4.12 (t, 2H, CH₂), 2.2 (br, 1H, -OH); mass (m/z): 187 (M⁺); Anal. Calcd for C₁₀H₉N₃O: C, 64.14; H, 4.84; N, 22.48; Found: C, 64.12; H, 4.82; N, 22.46%.

2-((Pyridin-4-yl)methyl)-2H-indazole-5-carbonitrile 4(a)

m.p. 159-161 °C; ¹H NMR (DMSO-d₆) δ: 8.64 (dd, 2H, Py-H), 8.14 (m, 1H, Ar-H), 7.88 (m, 1H, indazole-H), 7.64 (dd, 1H, Ar-H), 7.56 (dd, 1H, Ar-H), 7.14 (dd, 2H, Py-H), 5.64 (s, 2H, -CH₂); mass (m/z): 234 (M⁺); Anal. Calcd for C₁₄H₁₀N₄: C, 71.78; H, 4.30; N, 23.92; Found: C, 71.76; H, 4.28; N, 23.90%.

2-((Pyridin-3-yl)methyl)-2H-indazole-5-carbonitrile 4(b)

m.p. 168-170 °C; ¹H NMR (DMSO-d₆) δ: 8.60 (dd, 2H, Py-H), 8.12 (m, 1H, Ar-H), 7.92 (m, 1H, indazole-H), 7.74 (dd, 1H, Ar-H), 7.68 (dd, 1H, Py-H), 7.62 (dd, 1H, Ar-H), 7.16 (dd, 1H, Ar-H), 5.64 (s, 2H, -CH₂); mass (m/z): 234 (M⁺); Anal. Calcd for C₁₄H₁₀N₄: C, 71.78; H, 4.30; N, 23.92; Found: C, 71.76; H, 4.28; N, 23.90%.

2-(3-(Dimethylamino)benzyl)-2H-indazole-5-carbonitrile 4(c)

m.p. 154-156 °C; ¹H NMR (DMSO-d₆) δ: 8.12 (m, 1H, Ar-H), 7.98 (m, 1H, indazole-H), 7.62 (m, 2H, Ar-H), 7.02 (m, 1H, Ar-H), 6.42-6.34 (m, 3H, Ar-H), 5.62 (s, 2H, -CH₂), 2.90 (s, 6H, 2×CH₃); mass (m/z): 276 (M⁺); Anal. Calcd for C₁₇H₁₆N₄: C, 73.89; H, 5.84; N, 20.27; Found: C, 73.87; H, 5.82; N, 20.26%.

2-((Diethylamino)ethyl)-2H-indazole-5-carbonitrile 4(d)

m.p. 149-151 °C; ¹H NMR (DMSO-d₆) δ: 8.14 (m, 1H, Ar-H), 8.02 (m, 1H, indazole-H), 7.62-7.70 (m, 2H, Ar-H), 4.48-4.51 (t, 2H, -CH₂), 3.00-2.96 (t, 2H, -CH₂), 2.54-2.60 (q, 4H, 2×CH₂), 0.96-0.98 (t, 6H, 2×CH₃); mass (m/z): 242 (M⁺); Anal. Calcd for C₁₄H₁₈N₄: C, 69.39; H, 7.49; N, 23.12. Found: C, 69.38; H, 7.47; N, 23.08%.

2-(2-Methoxyethyl)-2H-indazole-5-carbonitrile 4(e)

m.p. 134-136 °C; ¹H NMR (DMSO-d₆) δ: 8.12 (m, 1H, Ar-H), 8.04 (m, 1H, indazole-H), 7.68-7.60 (dd, 1H, Ar-H), 7.50-7.46 (dd, 1H, Ar-H), 3.98 (s, 3H, -OCH₃), 3.90 (t, 2H, CH₂), 3.88 (t, 2H, -OCH₂); mass (m/z): 201 (M⁺); Anal. Calcd for C₁₁H₁₁N₃O: C, 65.64; H, 5.50; N, 20.88; Found: C, 65.62; H, 5.52; N, 20.86%.

2-(2-Hydroxyethyl)-2H-indazole-5-carbonitrile 4(f)

m.p. 141-142 °C; ¹H NMR (DMSO-d₆) δ: 8.04 (s, 1H, Ar-H), 7.82 (s, 1H, indazole-1H), 7.48-7.42 (dd, 2H, Ar-H), 4.48 (t, 2H, -OCH₂), 4.12 (t, 2H, CH₂), 2.2 (br, 1H, -OH); mass (m/z): 187 (M⁺); Anal. Calcd for C₁₀H₉N₃O: C, 64.14; H, 4.84; N, 22.48; Found: C, 64.10; H, 4.86; N, 22.46 %.

Synthesis of 1-alkyl-5-amino methyl-1H indazoles 5(a-f)

To a solution of lithium aluminium hydride (2.0 mmol) in dry tetrahydrofuran (10 mL) cooled to 0 °C, was added gradually a solution of substituted indazoles **3(a-f)** (1.0 m mol) in tetrahydrofuran (10 mL) and maintained for 30 minutes. Then the reaction mixture was allowed to raise temperature until reflux and stirred for 4 h, after the reaction was completed (monitored by TLC), cooled to 0 °C and quenched with water (10 mL), and 10 mL of 1N NaOH solution, precipitate was filtered through a pad of celite and washed with THF: MeOH (3:1 ratio). Solvent was evaporated under vacuo provided a solid which was purified

by column chromatography elution with MeOH: CH₂Cl₂ saturated with NH₃ (10:60:30) to get the corresponding compounds **5(a-f)**.

1-((Pyridin-4-yl)methyl)-1H-indazol-5-yl)methanamine (5a)

Yield: 72%, m.p. 152-154 °C; ¹H NMR (DMSO-*d*₆) δ: 8.93-8.90 (dd, 2H, Py-H), 8.12 (s, 1H, indazole-H), 7.92 (s, 1H, Ar-H), 7.48-7.42 (dd, 2H, Ar-H), 7.32-7.28 (dd, 2H, Py-H), 4.42 (s, 2H, -CH₂), 4.12 (s, 2H, -CH₂NH₂); mass (*m/z*): 238 (M⁺). Anal. Calcd for C₁₄H₁₄N₄: C, 70.57; H, 5.92; N, 23.51. Found: C, 70.54; H, 5.90; N, 23.54%.

1-((Pyridin-3-yl)methyl)-1H-indazol-5-yl)methanamine (5b)

Yield: 79%, m.p. 146-147 °C; ¹H NMR (DMSO-*d*₆) δ: 8.86-8.84 (dd, 2H, Py-H), 8.12 (s, 1H, indazole-H), 7.98 (s, 1H, Ar-H), 7.46-7.42 (dd, 2H, Ar-H), 7.32-7.24 (dd, 2H, Py-H), 4.42 (s, 2H, -CH₂), 4.12 (s, 2H, -CH₂NH₂); mass (*m/z*): 238 (M⁺). Anal. Calcd for C₁₄H₁₄N₄: C, 70.57; H, 5.92; N, 23.51. Found: C, 70.54; H, 5.88; N, 23.50%.

3-(5-(Aminomethyl)-1H-indazol-1-yl)methyl-N,N-dimethylbenzenamine (5c)

Yield: 84%, m.p. 158-160 °C; ¹H NMR (DMSO-*d*₆) δ: 8.23 (s, 1H, indazole-H), 8.04 (m, 1H, Ar-H), 7.80-7.74 (m, 1H, Ar-H), 7.67 (dd, 1H, Ar-H), 7.74-7.70 (m, 1H, Ar-H), 6.66-6.60 (m, 3H, Ar-H), 4.20 (s, 2H, -CH₂), 3.98 (s, 2H, -CH₂), 2.92 (s, 6H, N-(CH₃)₂); mass (*m/z*): 281 (M⁺). Anal. Calcd for C₁₇H₂₀N₄: C, 72.83; H, 7.19; N, 19.98. Found: C, 72.80; H, 7.22; N, 19.96%.

N-(5-(Aminomethyl)-1H-indazol-1-yl)ethyl-N-ethylethanamine (5d)

Yield: 69%, m.p. 137-139 °C; ¹H NMR (DMSO-*d*₆) δ: 7.95 (s, 1H, indazole-H), 7.68-7.65 (m, 1H, Ar-H), 7.54 (m, 1H, Ar-H), 7.24-7.21 (m, 1H, Ar-H), 4.47-4.43 (t, 2H, CH₂), 3.92 (s, 2H, CH₂), 3.02-2.98 (t, 2H, CH₂), 2.66-2.52 (q, 4H, 2xCH₂), 1.0 - 0.96 (t, 6H, 2xCH₃); mass (*m/z*): 247 (M⁺). Anal. Calcd for C₁₄H₂₂N₄: C, 68.26; H, 9.00; N, 22.74. Found: C, 68.24; H, 9.02; N, 22.72%.

1-(2-Methoxyethyl)-1H-indazol-5-yl)methanamine (5e)

Yield: 74%, m.p. 124-126 °C; ¹H NMR (DMSO-*d*₆) δ: 7.98 (s, 1H, indazole-H), 7.64 (m, 1H, Ar-H), 7.38-7.24 (m, 2H, Ar-H), 4.28-4.24 (t, 2H, CH₂), 4.08-4.00 (t, 2H, -CH₂), 3.90 (s, 2H, -CH₂), 3.54 (s, 3H, -OCH₃); mass (*m/z*): 205 (M⁺). Anal. Calcd for C₁₁H₁₅N₃O: C, 64.36; H, 7.38; N, 20.49; Found: C, 64.32; H, 7.40; N, 20.47 %.

2-(5-(Aminomethyl)-1H-indazol-1-yl)ethanol (5f)

Yield: 76%, m.p. 134-136 °C; ¹H NMR (DMSO-*d*₆) δ: 8.02 (s, 1H, indazole-H), 7.70 (s, 1H, Ar-H), 7.48-7.40 (m, 2H, Ar-H), 4.50-4.48 (t, 2H, -CH₂), 4.14-4.10 (t, 2H, -CH₂), 3.94 (s, 2H, -CH₂), 1.60 (br, 1H, -OH); mass (*m/z*): 191 (M⁺). Anal. Calcd for C₁₀H₁₃N₃O: C, 62.81; H, 6.85; N, 21.97; Found: C, 62.82; H, 6.84; N, 21.94 %.

Synthesis of 1-alkyl-1H-indazole-5-carbaldehyde 6 (a-f)

Compound **3 (a-f)** (2.0 mmol) was added gradually to a stirred solution of 75% formic acid (10 mL) and Raney Nickel (3.1 mmol). The reaction mixture was allowed to raise the temperature until reflux for 2 h (monitored by TLC). After completion, the reaction mixture was cooled to room temperature and the catalyst filtered through a pad of celite and washed several times with water. The products were extracted with chloroform (3x10 mL), distilled under vacuum to obtained crude compounds **6(a-f)** and these were purified by column chromatography (MeOH: CHCl₃; 2:8).

1-(Pyridin-4yl)methyl-1*H*-indazole-5-carbaldehyde (6a)

Yield: 76%, m.p. 141-143 °C; ^1H NMR (CDCl_3) δ : 10.01 (s, 1H, -CHO), 8.63-8.61 (m, 2H, Py-H), 8.24-8.22 (dd, 2H, Ar-H), 7.84-7.80 (m, 2H, -Ar-H), 7.13-7.11 (dd, 2H, Py-H), 5.66 (s, 2H, -CH₂); mass (*m/z*): 237 (M^+). Anal. Calcd for $\text{C}_{14}\text{H}_{11}\text{N}_3\text{O}$: C, 70.82; H, 4.62; N, 17.82; Found: C, 70.80; H, 4.64; N, 17.80%.

1-(Pyridin-3yl)-methyl-1*H*-indazole-5-carbaldehyde (6b)

Yield: 72%, m.p. 133-134 °C; ^1H NMR (CDCl_3) δ : 9.98 (s, 1H, -CHO), 8.54-8.62 (m, 2H, Py-H), 8.20-8.18 (m, 2H, Ar-H), 7.82-7.76 (m, 2H, -Ar-H), 7.14-7.12 (m, 2H, Py-H), 5.64 (s, 2H, -CH₂); mass (*m/z*): 237 (M^+). Anal. Calcd for $\text{C}_{14}\text{H}_{11}\text{N}_3\text{O}$: C, 70.82; H, 4.62; N, 17.82; Found: C, 70.80; H, 4.64; N, 17.80%.

1-(3-(Dimethyl amino)-benzyl)-1*H*-indazole-5-carbaldehyde (6c)

Yield: 68%, m.p. 138-140 °C; ^1H NMR (CDCl_3) δ : 10.02 (s, 1H, -CHO), 8.23 (s, 1H, indazole-H), 8.01 (s, 1H, Ar-H), 7.67-7.74 (m, 2H, Ar-H), 7.23-7.26 (m, 1H, -Ar-H), 6.46-6.44 (m, 3H, Ar-H), 5.56 (s, 2H, -CH₂), 2.78 (s, 6H, -N(CH₃)₂); mass (*m/z*): 279 (M^+). Anal. Calcd for $\text{C}_{17}\text{H}_{17}\text{N}_3\text{O}$: C, 73.10; H, 6.12; N, 15.08; Found: C, 73.08; H, 6.14; N, 15.06%.

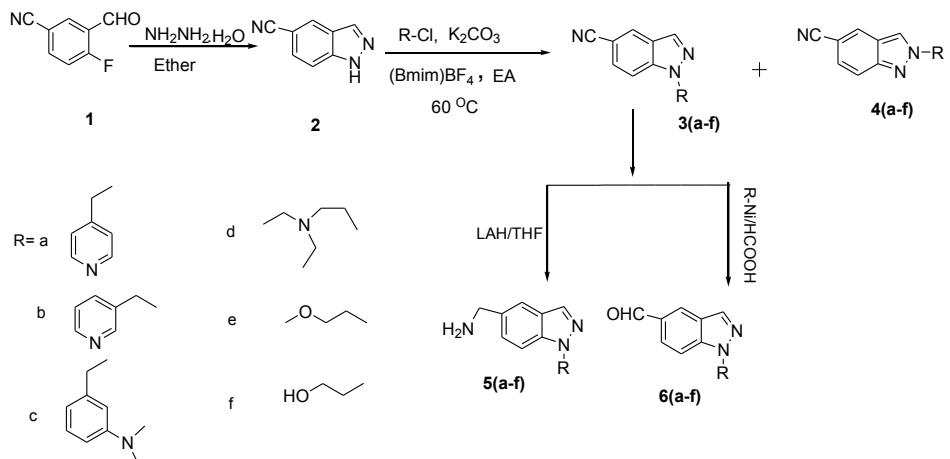
1-(N,N'-Diethylamino)ethyl-1*H*-indazole-5-carbaldehyde (6d)

Yield: 76%, m.p. 121-123 °C; ^1H NMR (CDCl_3) δ : 9.98 (s, 1H, -CHO), 8.25-8.21 (m, 2H, Ar-H), 7.81-7.72 (m, 2H, Ar-H), 4.50-4.45 (t, 2H, -CH₂), 3.02-2.97 (t, 2H, -CH₂), 2.58-2.51 (q, 4H, 2x-CH₂), 0.98-0.93 (t, 6H, 2xCH₃); mass (*m/z*): 245 (M^+). Anal. Calcd for $\text{C}_{14}\text{H}_{19}\text{N}_3\text{O}$: C, 68.71; H, 5.63; N, 20.13; Found: C, 68.70; H, 5.60; N, 20.12%.

1-(2-Methoxy ethyl)-1*H*-indazole-5-carbaldehyde (6e)

Yield: 69%, m.p. 134-136 °C; ^1H NMR (CDCl_3) δ : 10.21 (s, 1H, -CHO), 8.23 (s, 1H, indazole-H), 8.12 (s, 1H, Ar-H), 7.56 (dd, 1H, Ar-H), 7.48 (dd, 1H, Ar-H), 4.28-4.12 (t, 2H, -CH₂), 3.98-3.92 (t, 2H, -CH₂), 3.52 (s, 3H, -OCH₃); mass (*m/z*): 204 (M^+). Anal. Calcd for $\text{C}_{11}\text{H}_{12}\text{N}_2\text{O}_2$: C, 64.69; H, 5.92; N, 13.72; Found: C, 64.67; H, 5.90; N, 13.70%.

1-(2-Hydroxy ethyl)-1*H*-indazole-5-carbaldehyde (6f)


Yield: 67%, m.p. 127-129 °C; ^1H NMR (CDCl_3) δ : 10.34 (s, 1H, -CHO), 8.27 (s, 1H, indazole-H), 8.20 (s, 1H, Ar-H), 7.98-7.94 (dd, 1H, Ar-H), 7.63-7.53 (dd, 1H, Ar-H), 4.54-4.51 (t, 2H, -CH₂), 4.17-4.03 (t, 2H, CH₂), 2.76 (br, 1H, -OH); mass (*m/z*): 190 (M^+). Anal. Calcd for $\text{C}_{10}\text{H}_{10}\text{N}_2\text{O}_2$: C, 63.15; H, 5.30; N, 14.73; Found: C, 63.14; H, 5.32; N, 14.72%.

Results and Discussion

The general synthesis of indazoles involve the cyclization of aryl hydrazones containing ortho bromo, chloro or nitro groups^{9,10} and is limited mainly to hydrazones of aryl ketones. Recently the cyclization of the hydrazone of a benzaldehyde substituted with ortho fluorine has been reported¹¹. The 2-aryl-2*H*-indazoles were synthesized by the Pd-catalyzed intramolecular amination of the corresponding *N*-aryl-*N*-(orthobromobenzyl) hydrazines¹². The alkylation of indazoles using phase transfer catalyst (TBAB) is known¹³ but it is limited to benzyl substitution at 1 and 2 positions of indazoles. Phase transfer catalysts (PTCs) are powerful reagents in chemical transformations¹⁴, the characteristics of which include mild reaction conditions, safety, operational simplicity and selectivity. Thus, finding a new phase transfer catalyst to promote various organic transformations is of considerable interest. Although many phase transfer catalysts are known quaternary salts formed from ammonia¹⁵ are only used for alkylation reactions. Thus, we planned to use imidazolium salts (generally known

as ionic liquids) having bulky cations as phase transfer catalysts for alkylations. We herein report (Bmim)BF₄ ionic liquid as phase transfer catalyst for alkylations of 5-cyano indazole **2**.

Compound 5-cyano indazole¹⁶ **2** was subjected to alkylation by treating with (4-chloromethyl) pyridine in the presence of (Bmim)BF₄ to yield **3a** as major regio isomer (86%) and **4a** as minor regio isomer (14%) (Table 1). These isomers were separated by column chromatography and characterized by ¹H NMR and mass. After comparing the physical and spectral data of these regio isomers, it was discovered that the melting points of all the N¹ regio isomers were relatively lower than those of their corresponding N² regio isomers and the structures of N¹-regio isomers were also confirmed by known procedure. It was also noticed that no selectivity was observed in the absence of (Bmim)BF₄ (Table 2). Compounds **3(a-f)** and **4(a-f)** were converted to 1-alkyl-5-amino methyl-1*H*-indazoles **5(a-f)** and 1-alkyl-1*H*-indazole-5-carbaldehydes **6(a-f)** by treating with LAH in THF and Raney Nickel in formic acid. The structures of these compounds were established on the basis of their elemental and spectral data (¹H NMR, Mass).

Scheme 1

Table 1. Alkylation of 5-cyano-indazole **2** under (Bmim)BF₄ ionic liquid as phase transfer catalyst.

Catalyst	Entry	Yield, %	Entry	Yield, %
(Bmim)BF ₄	3a	86	4a	14
	3b	88	4b	12
	3c	83	4c	17
	3d	79	4d	21
	3e	82	4e	18
	3f	80	4f	20

Table 2. Alkylation of 5-cyano-indazole **2** in absence of (Bmim)BF₄ ionic liquid.

S.No	Catalyst	Yield, % of 3a	Yield, % of 4a
1	No catalyst	52	48
2	TBAB	58	42
3	TBAI	55	45
4	CTAB	47	53

Conclusion

We have demonstrated that environmentally benign imidazolium salts can be used as phase transfer catalyst for the alkylations on indazole under mild conditions. Notably, the derivatives **3(a-f)** were obtained in very good yield.

Acknowledgment

The authors are thankful to the Chairman, Chaitanya P. G. College and Director, NIT-Warangal for providing research facilities.

References

1. Matassa V G, Maduskuie Jr T P, Shapiro H S, Hesp B, Snyder D W, Aharony D and Krell Kaith R A, *J Med Chem.*, 1990, **33**, 1781-90.
2. Fang Y L, Jin C L, Li J H, Tsang M H, Sheng C T, Che M T, Chin C W, Fong C C and Sheng C K, *J Med Chem.*, 2001, **44**, 3746-49.
3. Sedlakova B, Cacanyiova S, Ondrias K, Kristek F and Krizanova O, *Gen Physiol Biophys.*, 2009, **28 (3)**, 225-32.
4. Moore P K, Wallace P, Gaffen Z, Hart Sc and Babbedge R C, *Br J Pharmacol.*, 1993, **110**, 219-24.
5. Claramunt R M, Lopez C, Perez-Medina C, Perez-Torralba M, Elguero J, Escames G and Acuna-castroviejo D, *Bioorg Med Chem.*, 2009, **17**, 6180-87.
6. Haung L J, Shih M L, Chen H S, Pan S L, Teng C M, Lee F Y and Kuo S C, *Bioorg Med Chem.*, 2006, **14**, 528-536.
7. Vijay A M, Antony J A, Chandrakumar R R, Koilraj M, Sujatha R and Shanmug sundram P, *Biosci Biotechnol Res.*, 2008, **5**, 313.
8. PCT Int Appl., 2008, WO 20008074749 A1 20080626.
9. Behr L C, *The Chemistry of Heterocyclic Compounds*, Inter science Publishers, John Wiley, 1967, **Vol. 22**, pp 289-382.
10. Elguero J, *Comprehensive Heterocyclic Chemistry*, Pergamon Press, 1984, **5**, 167-372.
11. Petrenko N I and Gerasimova T N *J. Fluorine Chem.*, 1990, **49**, 359-66.
12. Jinhua J S and Nathan K Y, *Org Lett.*, 2000, **2**, 519-21.
13. Shumeiko A E, Afonkin A A, Pazumova N G and Kostrikin M L, *Russian J Org Chem.*, 2006, **42**, 292-93.
14. Lygo B and Andrews B I, *Acc Chem Res.*, 2004, **32**, 518-25. b) Jones R A, *Quaterenary Ammonium Salts*, 1st Ed., Academic; London, 2001 c) Ooi T, *Chem. Rev* 2003, **103**, 3013.
15. a) Heiszman J, Bitter I, Harsany, K Toke L, *Synthesis*, 1987, 738-739; b) Singh R K and Danishefsky S, *J Org Chem.*, 1975, **40**, 2969-70; c) Choudhary A, Baumstark A L and Ke L, *Synthesis* 1989, 688-90.
16. Frank Halley and Xavier Sava, *Synth Commun.*, 1997, **27(7)**, 1199-1207.