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Abstract—Segmentation and boundary detection is one of the
most important task in image processing. In segmentation, an
image is partitioned into a set of distinct regions. This is an
intermediate step in various image processing applications like
content based image and video retrieval, object recognition and
tracking, and biomedical engineering etc. In this paper, we
implemented an geometric active contour model which uses level
set methods and an energy function, by minimizing it we can
evolve the boundary of an object. This algorithm does not depend
on the gradient of the image, so its performance is good for noisy
images also. It can be used to detect lesion or tumor in an MRI
image.
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I. INTRODUCTION

Boundary detection and segmentation of objects has many
applications in object tracking and object recognition, robotics,
and biomedical engineering. The detection of object bound-
aries through active contours is an emerging new research
topic in computer vision and pattern recognition. In general,
most of the active contour models converge towards some
desired contour by minimizing a sum of internal and external
energy terms. For such type of active contours we define a
contour as an initial segmentation in the image plane and then
we solve this contour using mathematical equations. The goal
is to stop the evolution of contour on the exact boundary of the
object. The evolution equation can be defined in different ways
such as the contour may move with a velocity that depends on
the local curvature or the gradient of the image at the given
point.

The active contours are classified into three types: paramet-
ric [1]-[4], non-parametric or geometric active contours [5]—
[7] and physics inspired particle based [8]. Despite this large
number of approaches, none of the parametric active contour
models are able to handle the problems associated with image
noise contamination, sensitivity to the algorithm parameters,
complex high curvature boundaries, initialization sensitivity,
ineffective stopping criteria and slow convergence rate. Non-
parametric approaches are initialization independent and are
able to handle high curvature regions and topology.

II. PARAMETRIC METHODS

Parametric contours are explicitly represented as parameter-
ized curves [9] in a Lagrangian formulation. In classical para-
metric contours, we define an energy functional by minimizing
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it we can extract the object boundaries. This energy function
represents a dynamic equation that consists both internal and
external forces. In this, the external forces are conservative
which can be expressed as gradients of scalar potential func-
tion. In general, a parametric active contour can be represented
as a time varying curve [10] X(s,t) = [X (s,t), Y (s,t)] where
se[0, 1] is arc length and t is artificial time.

’YXt - Fint + Fert (1)

In the above equation X; is partial derivative of X, —vyX; is the
damping factor (v is non negative), the external force(Fe,;)
attracts the contour towards the boundary of the object and
the internal force(F;,;) is the sum of elastic force and rigid
force.

Felastic = [Q(S, t)Xs(S7 t)]s (2)
Frigid = [6(57 t)Xss(57 t)]ss (3)

where the parameters a(s,t),3(s,t) control the contour’s
elasticity and rigidity. Finally, the active contour comes to
steady state when the sum of damping factor, internal and
external forces becomes zero.

III. GEOMETRIC MODELS AND LEVEL SET METHODS

In geometric active contour models we define a contour
in the image plane as an initial segmentation and then this
contour is evolved using some mathematical equations. The
main aim is to stop the evolution of contour on the boundary
of the image foreground region. The evolution equation can be
defined in different ways such as the contour may move with
a velocity that depends on gradient of the image at a given
point.

A. Level Set Methods

Level set methods [11] are one of the most important tool
used to perform contour evolution. We define some function
¢(i,7,t) (the level-set function) as shown in Fig. 1, where (i,
j) are coordinates of the image plane and t is the time. At any
given time t, the level set function simultaneously represents
an edge contour and image segmentation. The edge contour
is nothing but the zero level set (i,j) s.t. ¢(¢,7,t) = 0, and
the two segmented regions are given by ¢ > 0 and ¢ < 0 as
shown in Fig. 1. The LSF is subjected to various mathematical
equations such that it will reach the steady state ¢ that gives a
useful segmentation of the image. If we define the foreground
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Fig. 1. Example level set function

to be the region where ¢ > 0, then the foreground found by
this segmentation algorithm would be the region inside the
circle. Level set methods are especially useful because they
can easily handle topological changes in the edge contour that
would be difficult to handle with a model that directly evolves
the contour. Since this contour is computed indirectly as the
zero contour of a surface, there are no computational issues
when this contour splits from, say a single circle into two
distinct closed curves; the level set function is represented by
a smooth surface in either case.

The most important and difficult step is to actually deter-
mine a LSF which locates the boundaries in a meaningful way.
The simplest example is to define the level set function to be
value of a gray level image at each pixel minus threshold value,
i.e. set ¢(i,7) = I(i,j)—t. Then the LSF is positive in regions
where the gray level is above the threshold, and negative in
regions where the gray level is below the threshold. The level
set formalism is not necessary for this example but it illustrates
the basic idea.

B. Variational Level Set Methods

This geometric active contour algorithm uses variational
calculus methods to evolve the level set function. Variational
methods work by defining a level set function that minimizes
some functional energy. In this context, by functional we mean
a mapping that takes a level set function ¢ as input, and returns
a real number. The problem is then to seek a function ¢ that
is a critical point (minimum or maximum) of this functional.
The hope is that we can come up with a functional whose
critical points are level sets that give useful segmentations for
a given problem.

For example, if we have a bi-level image I with domain
that takes on only the values - 1 and 1. A function F is defined
such that, for any function ¢ : 0 —IR

FM=AHWL 4

where H is the Heaviside function H(x) = {1,z > 0;0,z =
0}. In case of discrete images, the integral is represented as
sum of all the image pixels in the given region. The value of
above equation is the integration of I over all the pixels where
¢ is positive. Ignoring for a second how we can determine a
minimizer for the above function computationally, we came

to know that the minimizers are those functions ¢ which are
positive only where I = -1.

It is very difficult to define an appropriate functional and
determining a method to minimize that functional. In this
paper we will focus on such type of functional which performs
well for different types of images and describe how it performs
image segmentation.

IV. THE GEOMETRIC ACTIVE CONTOUR ALGORITHM
A. Energy Functional formulation

In this active contour model, we define a fitting energy
functional. The goal of this active contour algorithm is to
minimize this fitting energy functional for a given image,
and the minimizing LSF ¢ will define the segmentation. The
general form of the fitting energy [5] is

F(¢) = p(Jo | v H()|dx)P + v [ H(¢)dz+

>\1/ I — o1 2H (6)dx + AQ/ I — co2(1 — H(¢)dz) (5)
Q Q
and

H(p) = %(1 + %arctan(%)) (6)

Where p, v, A1, A2 and p are the user defined parameters for a
particular class of images. The equation (5) is a generalization
of the Mumford-Shah functional [12]. The Mumford-Shah
functional is obtained by setting p = 1, v = 0, and A\;= Ao
= 1. In the above equation (6), H is the Heavyside function
and e is the smallest non zero value used to avoid division by
zero problem, I represents the image to be segmented, and €2
is the image domain. ¢ is the average intensity in the region
where ¢ > 0 and similarly, cy is the average intensity in the
region where ¢ < 0, given by

. :M o Jo I.(1 — H(¢))dxdy
YT H(@)dedy 7T (1 H(¢))dady

The first term in the equation(5), u([,| v H(¢)|dz)?,
represents the edge contours length for a given segmentation.
If we expect a region with a smooth boundary, we might
weight this term more heavily to avoid finding a complex
(and therefore long) perimeter. Similarly, the second term
v [, H(¢)dx is a penalty on the total area of the foreground
region found by the segmentaion.

The third term, Xy [, |I — c1|*H(¢)dx , represents the
variance of the image gray level [13] in the foreground region
which measures how uniform the region is in terms of pixel
intensity. Similarly the fourth term Ay [, [I—c2|*(1—H (¢))dx
measures for the background region. Minimizing the sum of
these last two terms, leads to a segmentation into a foreground
and background region that are each as uniform as possible.
For example, in a bi-level image where pixels takes only
two values, the sum of these terms is minimized by taking
a segmentation that includes all pixels of the first value in the

(N
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foreground region, and no pixels of the second value. Usually,
we take A= Ay = 1, but we can adjust them as necessary to
weight one term more heavily. If we set A\;=2 and A\s=1, then
our final segmentation will have a more uniform foreground
region (since the energy contributed by the variance in the
foreground region is weighted more heavily), at the expense
of allowing more variation in the background. In applications
where we expect an approximately black background and
foreground objects with varying gray levels, we have to set
AL < Ag.

B. Fitting energy minimization

Euler-Lagrange equations and the gradient-descent method
[14] are used to derive the following evolution equation for
the level set function ¢ which will minimize the fitting energy

F(¢).

¢ = () [up(Jo 6(8) v )P

A0
| 7 9|

C. Reinitializing the Level Set Function

div( )—v =M —c1)’p+ Xl —c2)’]  (8)

It is necessary at each iteration to rescale the level set
function to keep it from becoming too flat. This is necessary
because of blurring that occurs due to use of the smoothed
delta function 6, which is the derivative of H(¢).

i = sign(o(t))(1 — [V ¢)) ©

The steady state of this evolution will be the signed distance
function to the zero level contour of ¢; that is, it will have the
same sign as ¢ at each point, and the magnitude at that point
will be the distance from that point to the contour ¢=0. We
then reinitialize ¢ to .

In practice we have to evolve this partial differential equa-
tion(8) until the zero level set function achieves steady state;
we have to compute Q at each time step as shown below

Q= Zl(b?fj“d)zljﬂ_l o ¢;nj
#lle7y| < Al

and stop the iteration when QQ < At.h? where At is time step
and h is a constant.

(10)

V. SIMULATION RESULTS

In this section, we discuss simulation results of the proposed
method for real and synthetic images. The default parameters
used in this algorithm are v = 1900, 7t = 0.5 and h = 0.18. The
parmeter ;. depends on the size of the objects to be segmented
i.e., we have to chose small value for y to segment small
objects in the image and large value for big objects. A; and
Ao are scaling factors used to control foreground and back
ground intensity levels.

Fig. 2 shows the simulation of magnetic resonance im-
age(MRI) of brain with the parameters p =2, \; =0.98 and \,
= 1.0. Fig. 2(a) is the MRI of brain which has a tumor. Fig. 2(b)
is the initial levelset contour which is selected automatically.

Fig. 2. Segmentation of brain tumor in MRI image (a) original image (b)
initial levelset contour (c) intermediate result (d) final output

Fig. 3.  White matter detection in brain (a) MRI image of brain (b) levelset
function (c) intermediate segmentation result (d) final output

Fig. 2(c,d) are intermediate and final segmentation results.The
black spot in the Fig. 2(d) represents the lesion in the brain.

In Fig. 3, we have shown that our proposed method can
detect white matter in the brain. The parameters used for this
image are A\; = 1.0, A\ = 8.0 and p = 5. In this method, the
initial levelset contour is defined automatically and its location
does not effect the segmentation of objects.

Fig. 4 represents the simulation of CT scan image. In this,
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TABLE I
COMPARISON OF ACTIVE CONTOUR METHODS
Parameter GVFS TS | DRLSE | Proposed method
Iterations 720 560 800 450
accuracy medium | less | medium high
Execution time(sec) 86 289 60 37

TS [15] algorithm uses gradient descent optimization
method to track object boundaries. It is highly sensitive to local
minima and takes more time to converge towards boundary.
Fig. 5(a) shows the result of TS algorithm which failed to
detect the leaf true boundary.

GVEFS [2] algorithm uses PDE and diffusion technique to
spread the external energy so that it attracts the initial level
set contour from large distances towards the object boundary.

Fig. 4. Liver cancer detection (a) CT scan image of liver (b) Initial levelset ~The problem with GVES is, it fails to track high curvature

contour (c) intermediate segmentation result (d) final segmented output(arrow Object boundaries as shown in Fig. 5(b).
mark indicating diseased area)

In case of DRLSE [16], the levelset function regularity is
intrinsically maintained during its evolution towards boundary.
It uses two terms to detect object boundaries. First, distance
regularization term which maintains regularity of LSF. Sec-
ond, external force which attracts LSF towards boundary.
The Fig. 5(c) shows the segmentation of DRLSE image, its
performance is better than TS and GVFS but fails to detect
exact boundary.

Fig. 5(d) shows the result of proposed method which detects
the exact leaf boundary when compared to other methods.

Table I compares the proposed method with existing active

{a) TS (b) GVFS

VI. CONCLUSION

(c) DRLSE T — contour methods interms of accuracy, iterationas and execution

time. From this table, we can say that the proposed method

is faster than other algorithms and also its accuracy is high in
' case of boundary detection.

: ‘ The proposed algorithm for locating object boundaries

- is effective on various types of images. This is useful in

cases where an edge based segmentation algorithm will not

sufficient, since it depends on the global properties which

includes graylevel intensities and contour lengths instead of

Fig. 5. Comparison of proposed method with TS, GVES and DRLSE  ]ocal properties like gradients.

respectively

This algorithm takes several seconds to compute, so it is
not suitable for real time video applications where frame rate
is high. But it has a significant role in offline image analysis
like lesion detection in MRI images.

Finally, this geometric active contour model represents
an exciting trend in image analysis. Different mathematical
concepts also played significant role in image analysis such
A. comparison with existing methods as variational calculus and partial differential equations in
detecting object boundaries.

the algorithm is used to detect the cancer in the liver. The
parameters used for this segmentation are A\;=1.0, A2=4.0 and
u= 4.0. The black spot in Fig. 4(d) pointed by arrow mark
indicates the liver cancer.

The performance of proposed method is compared with
traditional snake(TS), Distance regularized levelset evolution
(DRLSE) and Gradient vector flow snake(GVFES) for an image
shown in Fig. 5.
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