

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/280464568>

Spectroscopic investigations of the PbO–MoO₃–P₂O₅V₂O₅ glass system

Article in Physics and Chemistry of Glasses European Journal of Glass Science and Technology Part B · August 2015

DOI: 10.13036/17533562.56.4.169

CITATIONS

6

READS

172

7 authors, including:

Laxmikanth Cherupally

The University of Dodoma

46 PUBLICATIONS 679 CITATIONS

[SEE PROFILE](#)

P. Syam Prasad

National Institute of Technology, Warangal

77 PUBLICATIONS 800 CITATIONS

[SEE PROFILE](#)

Himamaheswara Rao Vemula

Institute of Aeronautical Engineering

7 PUBLICATIONS 181 CITATIONS

[SEE PROFILE](#)

M. Mohan Babu

Trenčianska Univerzita Alexandra Dubčeka V Trenčíne

18 PUBLICATIONS 332 CITATIONS

[SEE PROFILE](#)

Spectroscopic investigations of the $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5:\text{V}_2\text{O}_5$ glass system

P. Syam Prasad,^{1*} V. Himamaheswara Rao,¹ M. Mohan Babu,¹ P. Venkateswara Rao,² G. Naga Raju³ & C. Laxmikanth⁴

¹Department of Physics, National Institute of Technology, Warangal, India

²Department of Physics, The University of the West Indies, Mona campus, Kingston 7, Jamaica

³Department of Physics, Krishna University-PG Centre, Nuzvid, India

⁴Department of Physics, The University of Dodoma, Tanzania

Manuscript received 20 January 2015

Manuscript accepted 12 February 2015

V_2O_5 doped $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5$ glasses were prepared by melt-quenching and the amorphous nature of these samples was confirmed by XRD. EPR data indicate the presence of V^{4+} ions in a square-pyramidal coordination (C_{4v}). The experimental EPR spectra were simulated assuming a superposition of two signals; one with hyperfine structure (HFS) typical for isolated ions and the other one consist of a broad line without HFS characteristic of clustered ions. The optical absorption spectra of the glasses exhibited two broad absorption bands corresponding to ${}^2\text{B}_2 \rightarrow {}^2\text{B}_1$ and ${}^2\text{B}_2 \rightarrow {}^2\text{E}$ transitions of VO^{2+} ions, with increasing concentration of V_2O_5 , the half width and peak height of these bands were observed to increase. The IR bands of phosphate groups were strongly reduced for 0.6 mol% of V_2O_5 due to the depolymerisation of the phosphate network and to the appearance of new vibrations characteristic of $\text{P}-\text{O}-\text{V}$ and $\text{V}-\text{O}-\text{V}$ linkages showing the network former role of V_2O_5 .

1. Introduction

Phosphate glasses have superior physical properties such as low melting temperature, high thermal expansion coefficient, strong glass forming ability, high electrical conductivity and simple structure. Because of this, phosphate glasses have attracted increased recent attention compared with silicate or borate glasses^(1–4) and also these properties make them useful candidates for fast ion conducting materials.⁽⁵⁾ During the last two decades phosphate glasses have been investigated intensively, but there is still a great interest in developing new glasses related to the demands of both industry and technology. These glasses have poor chemical durability that often limits their usefulness, but which can be improved by the substitution of various oxides such as lead oxide.^(6,7) In the last decades lead oxide was not only used as a constituent in several borate glasses,^(8,9) but also in phosphate glasses⁽¹⁰⁾ in order to reach new and useful physical and chemical properties for technological applications. The structural role of PbO in many oxide glasses is interesting because it has been demonstrated that it plays a dual role, as network modifier and the former.⁽¹¹⁾ Several interesting properties of phosphate glasses have been found to result from the incorporation of PbO into the glass network. For instance, PbO is useful for shielding against high energy radiations, including nuclear radiation⁽¹²⁾ and

its addition may result in the formation of $\text{P}-\text{O}-\text{Pb}$ bonds. These bonds also lead to an improvement of the chemical durability of phosphate glasses.⁽¹³⁾

The introduction of MoO_3 in phosphate glasses leads to the formation of various molybdenum units that enter into the glass network by crosslinking phosphate chains.^(14,15) Infrared spectroscopic investigations of a few PbO modified molybdochosphate glasses reveals that the addition of the modifier depolymerises the phosphorous–oxygen chain by forming new $\text{P}-\text{O}-\text{Pb}$ bonds and nonbridging oxygens in the network.⁽¹⁶⁾ A few studies of the compositional dependence of the glass network structure in a few molybdochosphate glasses show that increasing MoO_3 content leads to the transformation of $\text{Mo}-\text{O}-$ and $\text{P}-\text{O}$ bonds into $\text{Mo}-\text{O}-\text{Mo}$ and weaker $\text{Mo}-\text{O}-\text{P}$ bridging bonds.^(17,18) Semiconducting transition metal oxide glasses have gained importance in recent years due to their possible applications in various technological fields.^(19–22) Transition metal ions are very interesting ions to probe in glass networks because of their broad radial distribution of outer d-orbital electron functions and their sensitive response to the surrounding cations.^(23–26) Among various semiconducting transition metal oxide glasses, vanadate glasses find applications in memory and switching devices. V_2O_5 is known to participate in the glass network with VO_5 pyramidal structural units. Several vanadate glasses show semiconducting behaviour with electrical conductivities of 10^{-3} – 10^{-5} (W cm)⁻¹, which is known to be due to electron hopping between V^{4+} to V^{5+} ions in the glass network. The content of vanadium in different valence states in the

*Corresponding author. Email syam9405@gmail.com

Original version presented at the International Seminar on Glasses and Other Functional Materials (ISGFM), Andhra Pradesh, India, 11–13 December 2014

DOI: 10.13036/17533562.56.4.169

glass depends upon the quantitative properties of the modifiers and glass formers in the glass, the size and field strength of the ions in the glass structure, mobility of the modifier cation, etc. Hence, the connection between the state and the position of the vanadium ion and the structure and physical properties of the glass is expected to be highly interesting. Moreover, vanadium glasses are identified as n-type semiconductors for low values of the V^{4+}/V^{5+} ratio. Vanadium ions may also be present in the glass network in V^{2+} and V^{3+} states.⁽²⁷⁾

The objective of the present study is intended to investigate quantitatively the spectroscopic properties, viz. optical absorption, electron spin resonance (ESR) spectra and infrared spectra of PbO – MoO_3 – P_2O_5 glasses containing different concentrations of V_2O_5 . The infrared spectral techniques can be used for obtaining information on the structural details of these glasses as they are very sensitive to the local symmetry, the character of the chemical bond and other structural properties. Information about the valence state and the distribution of the vanadium ion depending on their concentration can be obtained by means of optical absorption and ESR measurements.

2. Experimental methods

The glass samples of compositions used for the present study are $30PbO$ – $5MoO_3$ – $(65-x)P_2O_5$ – xV_2O_5 where x ranges from 0–1.0 mol%; the samples are labelled as V_0 ($x=0$), V_2 ($x=0.2$), V_4 ($x=0.4$), V_6 ($x=0.6$), V_8 ($x=0.8$) and V_{10} ($x=1.0$). The glasses used in the present measurements are prepared by melting and quenching. Reagent grade PbO , MoO_3 , P_2O_5 and V_2O_5 were thoroughly mixed in appropriate proportions and melted in a thick walled platinum crucible in the temperature range 950–1000°C in a PID temperature controlled furnace for about 30 min until a bubble free liquid was formed. The resultant melt was then poured into a brass mould and subsequently annealed at 300°C with a cooling rate of 1°C/min. $1\times 1\times 0.2$ cm samples prepared were ground and optically polished. The amorphous nature of samples was verified by x-ray diffraction (XRD) using a Rigaku D/Max ULTIMA III x-ray diffractometer with $Cu K\alpha$ radiation.

Differential thermal analysis (DTA) was carried out using STA 409C model DTA-TG instrument with a programmed heating rate of 10°C/min, in the temperature range 30–1000°C to determine the glass transition temperature and other glass forming ability parameters. The optical absorption spectra of the samples were recorded at room temperature in the wavelength range 300–2200 nm to a resolution of 0.1 nm using a JASCO Model V-670 UV-vis-NIR spectrophotometer. The ESR spectra of fine powders of the samples were recorded at room temperature on E11Z Varian X-band ($\nu=9.5$ GHz) ESR spectrometer. Infrared transmission spectra were recorded on a Bruker IFS 66

Table 1. Summary of physical parameters data for PbO – MoO_3 – P_2O_5 – V_2O_5 glasses

Glass	Density (g/cm^3)	Avg. Mol. Weight	N_i ($10^{21}/cm^3$)	R_i (\AA)
V_0	4.572	163.12	--	--
V_2	4.579	162.99	3.38	6.66
V_4	4.587	162.87	6.78	5.28
V_6	4.595	162.74	10.2	4.61
V_8	4.603	162.62	13.6	4.19
V_{10}	4.611	162.49	17.1	3.88

V–IR spectrophotometer with a resolution of 0.1 cm^{–1} in the range 400–2000 cm^{–1} using potassium bromide pellets (300 mg) containing pulverized glass (1.5 mg). The details of methods adopted for recording DTA, IR, ESR and optical absorption measurements were similar to those reported in our earlier papers.⁽²⁸⁾

3. Results

From the measured values of density d and calculated average molecular weight of the glasses various physical parameters such as vanadium ion concentration N_i and mean vanadium ion separation R_i in these glasses are evaluated using the conventional formulae⁽²⁹⁾ and are presented in Table 1.

The thermal analysis results of all the glasses under study are shown in Figure 1. The curves show an endothermic effect due to the glass transition temperature T_g in all samples. Further at higher temperatures an exothermic peak T_c is for the crystal growth and an endotherm, due to melting T_m were also detected. All the glasses exhibit the glass transition temperature T_g between 335 and 355 K. From the measured values of T_g , T_c and T_m , and the parameters (T_c-T_g) , (T_m-T_c) and Hruby's parameter (Hruby, 1972; the glass forming parameter) $K_g=(T_c-T_g)/(T_m-T_c)$, which give information on the stability of the glass against devitrification⁽³⁰⁾ were evaluated and are presented in Table 2. The good homogeneity of all the glass samples prepared is proved by the appearance of single peak due to the glass transition temperature in the DTA traces of all the glasses. Generally, unstable glasses show a crystallisation peak close

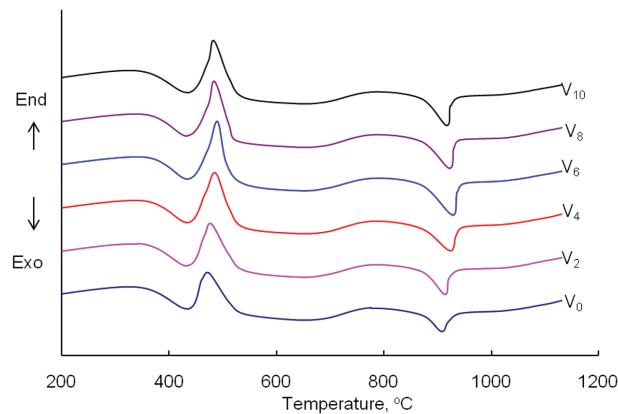


Figure 1. DTA patterns of PbO – MoO_3 – P_2O_5 glasses containing different concentrations of V_2O_5 [Colour available online]

Table 2. Summary of differential thermal analysis data for PbO – MoO_3 – P_2O_5 – V_2O_5 glasses

Glass	T_g /K	T_c /K	T_m /K	$K_{gl} = (T_c - T_g) / (T_m - T_c)$
V_0	338	473	907	0.3111
V_2	341	478	914	0.3142
V_4	348	486	923	0.3158
V_6	351	490	928	0.3173
V_8	349	485	922	0.3112
V_{10}	348	483	918	0.3103

to the glass transition temperature. Therefore, the temperature difference $T_c - T_g$ is a good indication of thermal stability because the higher the value of this difference, the greater the delay in nucleation (Mehta *et al.*, 2006). This parameter shows that thermal stability of the sample. The variation in the parameter K_{gl} with the variation of concentration of V^{4+} ion shows the maximum value for glass V_6 , as it increases with increasing vanadium concentration from 0.1 to 0.6 mol% and beyond 0.6 mol% V_2O_5 it decreases.

Figure 2 represents the optical absorption spectra of PbO – MoO_3 – P_2O_5 – V_2O_5 glass samples recorded at room temperature in the wavelength region 300–1200 nm. The absorption edge of the glass V_0 noticed at 406 nm had shifted to 375 nm by glass V_6 ; further increases in the concentration of V_2O_5 makes the edge shift gradually towards longer wavelengths. The spectra of all the glasses had absorption bands between 600 and 625 nm and a band between 970 and 1000 nm due to V^{5+} ion transition. The spectrum of glass V_6 exhibited two broad absorption bands with the meta-centres at 598 and 972 nm (Table 3) corresponding to $^2B_2 \rightarrow ^2B_1$ and $^2B_2 \rightarrow ^2E$ transitions of VO^{2+} ions.⁽³¹⁾ From the observed absorption edges, we have evaluated the optical band gaps (E_o) of these glasses by drawing Urbach plot between $(a\hbar w)^{1/2}$ and $\hbar w$ as per the equation:

$$\alpha(\omega)\hbar\omega = C(\hbar\omega - E_o)^2 \quad (1)$$

From the extrapolation of the linear portion of the curves of Figure 3, the values of optical band gap (E_o) were determined and are presented in Table 3. As the

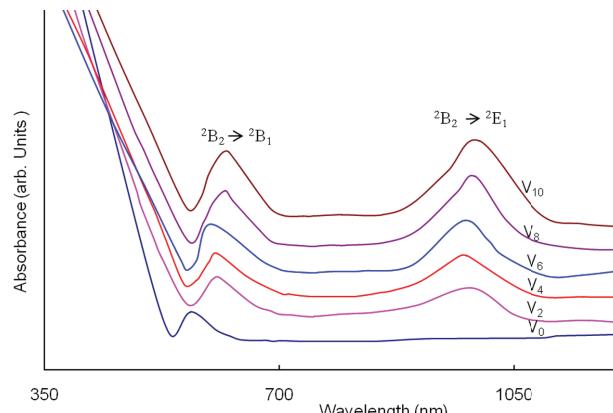


Figure 2. Optical absorption spectra of PbO – MoO_3 – P_2O_5 – V_2O_5 glasses containing different concentrations of V_2O_5 [Colour available online]

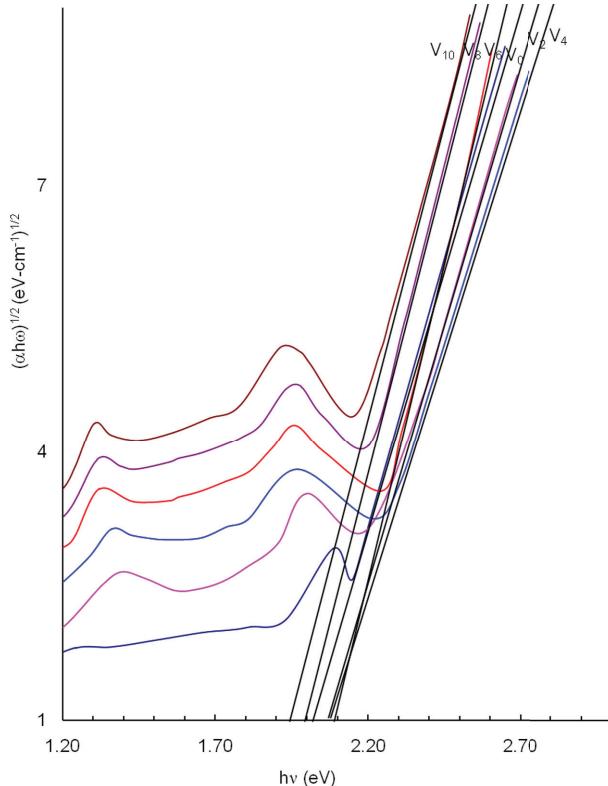


Figure 3. Plots to evaluate optical band gaps of PbO – MoO_3 – P_2O_5 glasses containing different concentrations of V_2O_5 [Colour available online]

concentration of vanadium oxide increases the value of E_o is found to increase up to 0.6 mol% beyond that it decreases.

The infrared transmission spectra of PbO – MoO_3 – P_2O_5 – V_2O_5 glasses (Figure 4) exhibit vibrational bands around 1310 cm^{-1} (band due to antisymmetrical vibrations of PO_2^- groups, this region may also consist of bands due to $P=O$ stretching vibrations), 1040 cm^{-1} (a normal vibrational mode of symmetrical stretching vibrations of PO_2^- in PO_4^{3-} groups), at 943 cm^{-1} due to $P-O-P$ asymmetric vibrations.^(32–35) Incidentally the band due to $P-O-P$ symmetric stretching vibrations also lies around 700 cm^{-1} .⁽³⁶⁾ Due to the intermediate nature of glass former MoO_3 , two new bands have also been located at 810 and 881 cm^{-1} in the spectrum of glass V_6 ; these bands have been attributed to n_1 and n_3 vibrational modes of MoO_4^{2-} tetrahedral units respectively.^(37–39) In the present glass system the percentage of the molybdenum is very small hence these two bands not influence the glass system. With

Table 3. Summary of optical absorption spectra data for PbO – MoO_3 – P_2O_5 – V_2O_5 glasses

Glass	Cut-off wavelength (nm)	Optical band gap E_o (eV)	Position of $^2B_2 \rightarrow ^2B_1$ band (nm)	Position of $^2B_2 \rightarrow ^2E$ Band (nm)
V_0	406	2.02	-	-
V_2	394	2.05	612	986
V_4	382	2.07	607	979
V_6	375	2.10	598	972
V_8	414	1.98	619	991
V_{10}	426	1.95	625	997

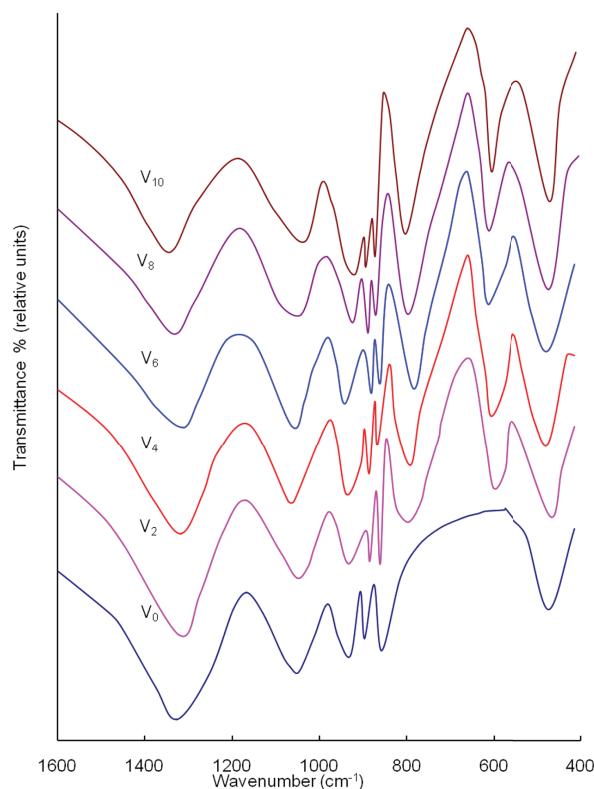


Figure 4. Infrared spectra of $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5$ glasses containing different concentrations of V_2O_5 [Colour available online]

the gradual increase of V_2O_5 in the $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5$ glasses, the following changes were observed in the spectra: (i) a considerable decrease in the intensity of the band due to $\text{P}=\text{O}$ stretching vibrations, (ii) the band due to $\text{P}-\text{O}-\text{P}$ asymmetric vibrations shifted towards lower wavenumbers with increasing intensity, (iii) up to nearly 0.6 mol% of V_2O_5 no notable change in the intensity PO_4^{3-} band was observed; however, beyond this concentration the intensity of this band clearly decreased. Further an intense absorption band with a meta-centre at about 780 cm^{-1} related to $\text{V}-\text{O}-\text{V}$ chains and a weak band at about 600 cm^{-1} corresponding to bending vibrations of the vanadium ions⁽⁴⁰⁾ have also been observed. In the region of symmetric stretching vibrations of PO_4^{3-} units (at about 1040 cm^{-1}) a band due to vibrations of isolated $\text{V}=\text{O}$ groups in the VO_5 trigonal bipyramids is also expected.⁽⁴¹⁾ A kink at about 472 cm^{-1} is formed due to PbO_4 units. A summary of the data on the positions of various bands in the infrared spectra of $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5$ glasses doped with different concentrations of V_2O_5 is presented in Table 4.

The ESR spectra (recorded at room temperature) for $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5$ doped with different concentrations of vanadium oxide glasses under investigation are shown in Figure 5; the spectra are observed to be complex made up of resolved hyperfine components arising from the unpaired 3d^1 electron of the ^{51}V isotope whose spin is $7/2$. As the concentration of V_2O_5 is increased, an increasing degree of resolution and

Table 4. Summary of infrared spectra absorption band positions in cm^{-1} for $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5:\text{V}_2\text{O}_5$ glasses

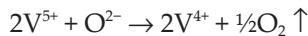
Assignment	Glass V_0	Glass V_2	Glass V_4	Glass V_6	Glass V_8	Glass V_{10}
$\text{PO}_2/\text{P}=\text{O}$ stretching	1326	1321	1317	1312	1330	1338
PO_4^{3-} groups	1046	1052	1058	1062	1041	1035
$\text{P}-\text{O}-\text{P}$ asymmetric bending	928	933	938	942	922	917
MoO_4 (v_1)	897	892	886	881	903	909
MoO_4 (v_3)	820	816	813	810	826	831
$\text{V}-\text{O}-\text{V}$ chains	-	793	789	785	798	804
$\text{V}-\text{O}-\text{V}$ bending	-	611	607	600	616	619
PbO_4 units	472	472	472	472	472	472

signal intensity were observed. The values of g_{\parallel} and g_{\perp} (obtained from these spectra) along with the other pertinent data are given in Table 5.

4. Discussion

P_2O_5 is a well known network former with PO_4 structural units with one of the four oxygen atoms in PO_4 tetrahedron being doubly bonded to the phosphorus atom with substantial p-bond character to account for the pentavalency of phosphorous.⁽⁴²⁾ The PO_4 tetrahedra are linked together with covalent bonding in chains or rings by bridging oxygens. Neighbouring phosphate chains are linked together by cross bonding between the metal cation and two nonbridging oxygen atoms of each PO_4 tetrahedron.

Figure 5. ESR spectra of $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5:\text{V}_2\text{O}_5$ glasses [Colour available online]


Table 5. ESR spectra data of $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5-\text{V}_2\text{O}_5$ glasses

Glass	g_{\parallel}	g_{\perp}	Δg_{\parallel}	Δg_{\perp}	$\Delta g_{\parallel}/\Delta g_{\perp}$
V_2	1.914	1.995	0.024	0.017	1.41
V_4	1.912	1.993	0.027	0.019	1.42
V_6	1.911	1.992	0.032	0.021	1.52
V_8	1.917	1.996	0.020	0.015	1.33
V_{10}	1.920	1.998	0.015	0.013	1.15

In general the P–O–P bond between PO_4 tetrahedra is much stronger than the cross bond between chains via the metal cations.⁽⁴³⁾

PbO in general is a glass modifier and occupies octahedral positions in the glass network. As a modifier it enters the glass network by transforming two Q^3 tetrahedra (viz. PO_4 tetrahedra with three bridging oxygens and one terminal bonded oxygen) into two Q^2 tetrahedra (viz. PO_4 tetrahedra with two bridging oxygens and two terminal bonded oxygens) and thus a PbO polyhedron is formed when it is surrounded by two Q^2 and several Q^3 tetrahedra. This structure behaves like a defect in the P_2O_5 network. To form octahedral units, Pb should be sp^3d_2 hybridized (6s, 6p and 6d orbitals).^(44,45) However, PbO may also participate in the glass network with PbO_4 structural units when the lead ion is linked to four oxygens in a covalent bond configuration.

Vanadium ions are expected to be present mainly as V^{5+} in the present $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5$ glass network. However, during the melting of the glasses at higher temperatures there is every possibility of the following redox equilibrium taking place:

the V^{5+} ions occupy network forming positions in VO_5 trigonal bipyramidal structural units whereas V^{4+} ions form VO^{2+} complexes, which may act as modifiers and distort the glass network.

Recollecting the data on DTA studies, we have observed that the values of the glass transition temperature T_g and glass forming ability parameter $K_{\text{gl}} = (T_c - T_g)/(T_m - T_c)$ exhibited maxima at 0.6 mol% of vanadium oxide. Normally, the bond length, cross-link density and closeness of packing, are responsible for variation of these parameters. With increasing V_2O_5 concentration up to 0.6 mol%, the explanation of these results is that, with the increasing presence of V_2O_5 in the glass network, vanadium ions mostly are present as V^{4+} ions occupying modifying positions. Such an increase obviously suggests a high degree of disorder in the network of glass V_6 .

The optical absorption spectrum of V_2O_5 doped glass exhibits two broad absorption bands at about 620 and 830 nm corresponding to ${}^2\text{B}_2 \rightarrow {}^2\text{B}_1$ and ${}^2\text{B}_2 \rightarrow {}^2\text{E}$ transitions of VO^{2+} ions respectively;⁽⁴⁶⁾ there is a noticeable shifting of the meta-centres of these two bands towards lower wavelength side with a gradual increase in the intensity with increasing V_2O_5 concentration. V^{4+} ions have ad^1 configuration with ${}^2\text{D}$ as the ground state. In the presence of pure octahedral

crystal field, the ${}^2\text{D}$ state splits into ${}^2\text{T}_2$ and ${}^2\text{E}$, while an octahedral field with tetragonal distortion further splits the ${}^2\text{T}_2$ level into ${}^2\text{E}$ and ${}^2\text{B}_2$; and ${}^2\text{E}$ level splits into ${}^2\text{A}_1$ and ${}^2\text{B}_1$. Among these levels, the ${}^2\text{B}_2$ level will be the ground state. Thus for the vanadyl ions we can expect three bands (on the basis of energy level scheme for molecular orbitals of a VO^{2+} ion in a ligand field of C_{4v} symmetry provided by Bullhausen & Gray⁽³¹⁾) corresponding to the transitions ${}^2\text{B}_2 \rightarrow {}^2\text{B}_1(\Delta_{\perp})$, ${}^2\text{B}_2 \rightarrow {}^2\text{E}(\Delta_{\parallel})$ and ${}^2\text{B}_2 \rightarrow {}^2\text{A}_1$. However, in the spectra of the present glasses, only the first two bands have been observed. The largest intensity and the half width of these bands for glass V_6 indicates that there is the largest concentration of VO^{2+} (vanadyl) ions in this glass. Such VO^{2+} ions are expected to participate in the depolymerisation of the glass network, creating more bonding defects and nonbridging oxygens (NBOs). As the concentration of vanadium oxide increases, the higher is the concentration of NBOs in the glass matrix. This leads to an increase in the degree of localisation of electrons thereby increasing the donor centres in the glass matrix. The presence of larger concentration of these donor centres decreases the optical band gap and shifts the absorption edge towards higher wavelength side as observed.

The near invariance of the vibrational band of PO_4^{3-} group observed in the infrared spectra of the glasses with up to 0.6 mol% V_2O_5 , suggests that the vanadium ions mostly occupy substitutional positions and participate in the formation of a layered structure with VO_5 trigonal bipyramids. With the gradual increase of V_2O_5 in the $\text{PbO}-\text{MoO}_3-\text{P}_2\text{O}_5$ glasses, a considerable decrease in the intensity of the bands due to P=O stretching vibrations and P–O–P symmetric stretching vibrations has been observed. Simultaneously an increase in the intensity of the bands due to P–O–P asymmetric bending vibrations has also been observed. These results indicate a growing disorder in the glass network with increasing V_2O_5 content.

The well-resolved hyperfine structure of the ESR spectra obtained for the glasses containing V_2O_5 (>0.6 mol%), is a typical of isolated V^{4+} ions in a ligand field of C_{4v} symmetry that are present as VO^{2+} species. The variations of the resolution and the line width of the ESR signal are obviously due to the variations in the concentration of V^{4+} ions and also due to structural and microstructural modifications, which can produce fluctuations in the degree of distortion or even of the coordination geometry of V^{4+} sites. The spectra indicate that VO^{2+} ions exist in the glass network in an octahedral sites with tetragonal compression since $g_{\parallel} \leq g_{\perp} \leq g_{\text{ee}}$,⁽⁴⁶⁾ further, an increase in the value of $\Delta g_{\parallel}/\Delta g_{\perp}$ with increasing V_2O_5 concentration (Table 5), indicates tetragonal distortion around vanadyl ions increases with increasing concentration of V_2O_5 . The broadening of the ESR signal with increasing concentration of V_2O_5 is apparently due to the pres-

ence of a larger concentration of V^{4+} ions and may also be due to exchange coupling between V^{3+} ions (if any) and V^{4+} ions.⁽⁴⁷⁾ The poor resolution of the ESR signal with low intensity in the spectra of the glasses containing low concentrations of V_2O_5 may be due to the presence of a low concentration of V^{4+} ions or a larger concentration of diamagnetic V^{5+} ions that occupy network-forming positions and also be due to an antiferromagnetic exchange interaction existing between V^{4+} ions (since V^{5+} ions are diamagnetic and there is no proof for the existence of considerable amounts of V^{3+} and V^{2+} ions) which may reduce the apparent concentration of V^{4+} ions.

5. Conclusions

A quantitative investigation of the spectroscopic properties, viz. optical absorption, ESR spectra and infrared spectra of PbO – MoO_3 – P_2O_5 glasses containing different concentrations of V_2O_5 has been undertaken. The results indicate that with increasing V_2O_5 concentrations up to 0.6 mol%, there is an increasing presence of V_2O_5 in the glass network with vanadium mostly present as V^{4+} ions that occupy network modifying positions. Such an increase obviously suggests a high degree of disorder in the glass network.

References

- Shih, P. Y., Yung, S. W., Chen, C. Y., Liu, H.S. & Chin, T.S. The effect of SnO and $PbCl_2$ on properties of stannous chlorophosphate glasses. *Mater. Chem. Phys.*, 1997, **50**, 63–9.
- Ganguli, M. & Rao, K. J. Studies of ternary Li_2SO_4 – Li_2O – P_2O_5 glasses. *J. Non-Cryst. Solids*, 1999, **243**, 251–67.
- Das, S. S., Baranwal, B. P., Gupta, C. P. & Singh, P. Characteristic of solid-state batteries with zinc/cadmium halide-doped silver phosphate glasses as electrolytes. *J. Power Sources*, 2003, **114**, 346–51.
- Kitsugi, T., Yamamuro, T., Nakamura, T., Oka, M. & Takeuchi, H. Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. *Biomaterials*, 1995, **16**, 1101.
- Campbell, J. H. & Suratwala, T. I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. *J. Non-Cryst. Solids*, 2000, **263**–264, 318–41.
- Masingu, A., Piccaluga, G. & Pinna, G. Structural properties of lead-iron phosphate glasses by x-ray diffraction. *J. Non-Cryst. Solids*, 1990, **122**, 52–8.
- Liu, H. S., Shih, P. Y. & Chin T. S. Low melting PbO – ZnO – P_2O_5 glasses. *Phys. Chem. Glasses*, 1996, **37** (6), 227–35.
- Saddeek, Y. B., Shaaban, E. R., Aly, K. A. & Sayed, I. M. Crystallisation kinetics of Li_2O – PbO – V_2O_5 glasses. *Phys. B*, 2009, **404**, 2412–18.
- Saddeek, Y. B., Gaafar, M. S. & Bashier, S. A. Structural influence of PbO by means of FTIR and acoustics on calcium aluminoborosilicate glass system. *J. Non-Cryst. Solids*, 2010, **356**, 1089–95.
- Magdas, D. A., Cozari, O., Chis, V., Ardelean, I. & Vedeanu, N. The structural dual role of Fe_2O_3 in some lead-phosphate glasses. *Vib. Spectrosc.*, 2008, **48**, 251–4.
- Salvaraj, U. & Rao, K. Role of lead in lead phosphomolybdate glasses and a model of structural units. *J. Non-Cryst. Solids*, 1988, **104**, 300–15.
- Sales, B. C. & Boatner, L.A. Lead phosphate glass as a stable medium for the immobilisation and disposal of high-level nuclear waste. *Mater. Lett.*, 1984, **2**, 301–4.
- Yasser Saddeek, B., Kaid, M. A. & Ebeid, M. R. FTIR and physical features of Al_2O_3 – La_2O_3 – P_2O_5 – PbO glasses. *J. Non-Cryst. Solids*, 2014, **387**, 30–5.
- Rada, M., Maties, V., Culea, M., Rada, S. & Culea, E. Dual role of the six-coordinated molybdenum and lead ions in novel of photochromic properties of the molybdenum–lead–borate glasses. *Spectrochim. Acta A*, 2010, **75**, 507–10.
- Aly, K. A., Dahshan, A. & Saddeek, Y. B. Effect of MoO_3 additions on the thermal stability and crystallisation kinetics of PbO – Sb_2O_3 – As_2O_3 glasses. *J. Therm. Anal. Calorim.* 2010, **100**, 543–9.
- Saddeek, Y. B. Network structure of molybdenum lead phosphate glasses: Infrared spectra and constants of elasticity. *Phys. B*, 2011, **406**, 562–6.
- Mogus-Milankovic, A., Santic, A., Gajovic, A. & Day, D. E. Spectroscopic investigation of Mo_3 – Fe_2O_3 – P_2O_5 and SnO – Fe_2O_3 – P_2O_5 glasses. Part I. *J. Non-Cryst. Solids*, 2003, **325**, 76–84.
- Boudlich, D., Haddad, M., Nadiri, A., Berger, R. & Kliava, J. Mo^{5+} ions as EPR structural probes in molybdenum phosphate glasses. *J. Non-Cryst. Solids*, 1998, **224**, 135–42.
- Lines, E. & Glass, A. M. *Principles and Applications of Ferroelectrics and Related Materials*, Clarendon Press, Oxford 1979, 459.
- Ghosh, A. & Chaudhuri, B. K. DC conductivity of V_2O_5 – Bi_2O_3 glasses. *J. Non-Cryst. Solids*, 1986, **83**, 151–61.
- Dimitrov, V. & Dimitriev, Y. Structure of glasses in PbO – V_2O_5 system. *J. Non-Cryst. Solids*, 1990, **122**, 133–8.
- Hufner, S. *Optical Spectra of Transparent Rare Earth Compounds*, Plenum Press, New York, 1968.
- Mogus-Milankovic, A., Santic, A., Gajovic, A. & Day, D. E. Electrical properties of sodium phosphate glasses containing Al_2O_3 and $/Fe_2O_3$. Part II. *J. Non-Cryst. Solids*, 2001, **296**, 57–64.
- Tandon, R. P. & Hotchandani, S. Electrical conductivity of semiconducting tungsten oxide glasses. *Phys. Status Solidi A*, 2001, **185**, 453–60.
- Syt'ko, V. V., Aleshkevich, N. A. & Umreiko, D. S. Spectroscopic characteristics of activated tungsten phosphate glasses in the VUV region. *J. Appl. Spectrosc.*, 2000, **67**, 587–9.
- Durga, D. K. & Veeraiah, N. Optical absorption and thermo luminescence properties of ZnF_2 – MO – TeO_2 ($MO=As_2O_3$, Bi_2O_3 and P_2O_5) glasses doped with chromium ions. *J. Lumin.*, 2002, **99**, 53–60.
- Nicula, A. I., Culea, E. & Lupsa, I. Magnetic behaviour and microstructure of xV_2O_5 – $(100-x)As_2O_3$ glasses. *J. Non-Cryst. Solids*, 1986, **79**, 325–32.
- Krishna Mohan, N. & Veeraiah, N. Dielectric and spectroscopic properties of PbO – Nb_2O_5 – P_2O_5 – V_2O_5 glass system. *Phys. Status Solidi A*, 2006, **203**, 2083.
- Ahmed, M. M., Hogarth, C. A. & Khan, M. N. A study of the electrical and optical properties of the GeO_2 – TeO_2 glass system. *J. Mater. Sci.*, 1984, **19**, 4040–4.
- Hruby, A. Evaluation of glassforming tendency by means of DTA. *Czech J. Phys. B*, 1972, **22**, 1187–93.
- Ballhausen, J. & Gray, H. B. The electronic structure of the vanadyl ion. *Inorg. Chem.*, 1962, **1**, 111–22.
- Little Flower, G., Sahaya Baskaran, G., Srinivasa Reddy, M. & Veeraiah, N. The structural investigations of PbO – P_2O_5 – Sb_2O_3 glasses with MoO_3 as additive by means of dielectric, spectroscopic and magnetic studies. *Phys. B*, 2007, **393**, 61–72.
- Gregor, R. B., Lytle, F. W., Sandstrom, D. R. & Schultz, P. Investigation of TiO_2 – SiO_2 glasses by x-ray absorption spectroscopy. *J. Non-Cryst. Solids*, 1983, **55**, 27–43.
- Ramos, A., Gandais, M. & Petiau, J. Study of nucleation process in (SiO_2 , Al_2O_3 , Li_2O) glasses, by x-ray absorption spectroscopy and transmission electron microscopy. *J. Phys. Colloq.*, 1985, **46** (C8), 491–4.
- Dumas, T. & Petiau, J. EXAFS study of titanium and zinc environments during nucleation in a cordierite glass. *J. Non-Cryst. Solids*, 1986, **81**, 201–20.
- Maino, D., Ardelean, I., Iliescu, T., Unra, S. & Cozari, O. Raman spectroscopic investigations of the oxide glass system $(1-x)(3B_2O_3$, $K_2O)xMO$ ($MO=V_2O_5$ or CuO). *J. Mol. Struct.* 1997, **410**, 291–4.
- Bala Murali Krishna, S., Ramesh Babu, A., Rajya Sree, Ch. & Krishna Rao, D. Influence of molybdenum ions on the structure of ZnO – As_2O_3 – Sb_2O_3 glass system by means of spectroscopic and dielectric studies. *J. Non-Cryst. Solids*, 2010, **356**, 1754–61.
- Iordanova, R., Dimitrov, V., Dimitriev, Y. & Klissurski, D. Glass formation and structure of glasses in the V_2O_5 – MoO_3 – Bi_2O_3 system. *J. Non-Cryst. Solids*, 1994, **180**, 58–65.
- Iordanova, R., Dimitriev, Y., Dimitrov, V., Kassabov, S. & Klissurski, D. Glass formation and structure in the system MoO_3 – Bi_2O_3 – Fe_2O_3 . *J. Non-Cryst. Solids*, 1998, **231**, 227–33.
- Balaji Rao, R. & Veeraiah, N. Study on some physical properties of Li_2O – MO – B_2O_3 : V_2O_5 glasses. *Phys. B*, 2004, **348**, 256–271.
- Balaji Rao, R., Gopal, N.O. & Veeraiah, N. Studies on the influence of V_2O_5 on dielectric relaxation and ac conduction phenomena of Li_2O – MgO – B_2O_3 glass system. *J. Alloys Compounds*, 2003, **368**, 25–37.
- Sahaya Baskaran, G., Little Flower, G., Krishna Rao, D. & Veeraiah, N. Structural role of In_2O_3 in PbO – P_2O_5 – As_2O_3 glass system by means of spectroscopic and dielectric studies. *J. Alloys Compounds*, 2007, **431**, 303–12.
- Ray, N. H. The structure and properties of inorganic polymeric phosphates. *Brit. Polym. J.*, 1979, **11**, 163–77.
- Damodaran, K. V. & Rao, K. J. A molecular dynamics investigation of the structure of PbO – PbF_2 glasses. *Chem. Phys. Lett.*, 1988, **148**, 57–61.
- Meyer, K. Characterisation of the structure of binary calcium ultraphosphate glasses by infrared and Raman spectroscopy. *Phys. Chem. Glasses*, 1998, **39** (2), 108–17.
- Gahlot, P. S., Seth, V. P., Agarwal, A., Sanghi, S., Chand, P. & Goyal, D. R. Role of PbO in EPR, optical properties and DC conductivity of vanadyl-doped alkali lead borate glasses. *Phys. B* 2005, **335**, 44–53.
- Khasa, S., Seth, V. P., Agarwal, A., Murali Krishna, R., Gupta, S. K. & Chand, P. Effect of nickel ions on electron paramagnetic resonance, DC conductivity and thermal behavior in vanadyl doped NiO – Li_2O – B_2O_3 glasses. *Mater. Chem. Phys.*, 2001, **72**, 366–73.