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ABSTRACT

Multisensor target tracking is finding many applications these
days, due to its advantages like accurate target tracking and
cheaper in cost. Range and range rate measurements from
sensor often used for tracking target. In estimating target
location in central station, Kalman filter and its extensions
(like extended Kalman Filter) are generally preferred, because
if we go to the Multilateration process we will get more error
even though it may takes less time for calculation. Extended
Kalman filter is of two step algorithm prediction and updation.
In updating the current state, the Kalman gain or correction
factor plays a vital role in convergence of the filter. Kalman
gain intern depends upon the initialization of process noise
and measurement noise covariance matrices which is called
tuning of filter. The process which is going to be estimated is
unobservable to the tracker.
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1. INTRODUCTION

A target is of anything whose position is interest to us. A
target tracking is a process in which we have to locate the
position of the moving target from the obtained measurements
from the many numbers of sensors. The goal of a tracking
system is to process the measurements obtained from the
target and use them to estimate, its current state, such as the
position and velocity of the object. The main objective of
Radar Systems is to track the target. Tracking is a fundamental
necessity and widely used for both military applications and in
civilian cases.

Previously the radar systems were constructed with separate
transmitters and receivers to avoid the transmitter and receiver
switching and to use the continuous waves this type of system
is nothing but the monostatic radar system. Due to economical
and operational efficiency, monostatic radar has dominated,
after the invention of duplexers and pulsed transmission. In
multi Static systems, there is only one transmitter and many
receivers will present and number of radar receivers measure
bistatic range i.e. transmitter—target-receiver distance and
bistatic Doppler (bistatic range-rate divided by the wavelength
at the frequency of the radar operation). The motivation for the
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separate trackers is to develop a multi-sensor, joint-tracking
system that employs radar sensors.

There are various kinds of bistatic radars are being proposed
by taking the radio-electronic background noise from
radio/TV station transmitters, mobile phones, wireless PC, etc.
where characteristics like target’s Doppler and angle of arrival
are measured [1]. The main technology of the future is to
design and use of low-cost sensor networks in order to replace
large aperture antennas. Various receivers can be deployed
over a large area has the advantage of demanding a huge effort
to neutralize the rid and each node can be easily replaced with
a minimal cost [2]

The multistatic radar system, consists of single transmitter,
placed in a high altitude site, at least four receivers (radar
sensors) distributed in a lower altitude area and a central
station processing unit. The multiple sensors, single tracking
system as shown in figurel: The transmitter emits a FMCW
signal which is reflected by the natural environment and the
targets inside the radar surveillance area. Measurement
processing generally includes a form of thresholding
(measurement detection) process.

Information loss during the thresholding has to be taken care
and in very low SNR scenarios, thresholding might not be
used, which leads to Track before Detect algorithms with high
computation cost. Detections originate not only from targets
being tracked, but also from thermal noise as well as from
various objects such as terrain; clouds and these unwanted
measurements are usually termed clutter. Target trackers (TT)
are widely used in air defence, ground target tracking, and
missile defence.

Target tracking have two portions: Data association algorithm
section and estimation and prediction section. Data association
is the process to match a measurement to a landmark .Gating
is a technique for eliminating unlikely measurement-to-track
pairings and the purpose of gating is to reduce computational
expense by eliminating from consideration measurements
which are far from the predicted measurement location Data
association algorithms deal with situations where there are
measurements of uncertain origin. The signal after data
association algorithms passed to filtering section in central
station
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Figurel: Multiple sensor Tracking

2. PROBLEM FORMULATION

The problem is to estimate the target kinematic state (position
and velocity) from noise corrupted measurements. Target
tracking is basically a modeled based and they assume that the
target motion and its observations can be represented by some
known mathematical models accurately. The most commonly
used such models are those known as state-space models, in
the following form.

X = (X)) +W o (1)

where Xy, is the target state, at the discrete time t, which are
indexed by k ,wy is process noise sequences, respectively in
all the three directions that is in x,y and z directions, zero

Central Station

mean Gaussian with covariance O, which is nothing but

w, =~ N(0,0;)
The measurement model for every system can be written as

z, =h(x,)+v,
Where z,is measurement vector, and v, ® N (0, R, ) which
is assumed as zero mean white Gaussian noise with covariance
R, is called measurement noise covariance.

The range and range rate equations which are obtained are
non-linear equations and are not easy to solve directly for
calculating the exact point of target in the range using the
range and range rate equations and so it can be solved using
the technique called as the Multilateration. The points which
are obtained based on this model will give more error in the
calculation process. And so the next stage is applying moving
average filter to the obtained points and then going to the
Multilateration process. If we apply in this way for the moving
average filter as the window length is go on increasing it will
take more time to calculate the exact point in the range and
range rate measurements of target. Of course if we apply a
filter it will give less error compared to the crude process that
is Multilateration. But even in this process it is having an error
like, in the error adding direction the moving average filter is
not able to give the exact results and the target estimation path
is totally deviating from its original path.

Then the next stage is applying the Kalman filter to the
obtained measurements but in Kalman filter it is having a
problem like we are applying on the non linear equations in
cases with high measurement noise in bearing, the probability
distributions may also be highly non-Gaussian in (X, y). So
moving to the next stage that is the Extended Kalman filter in
this process it will linearize the non linear equations and so the
computational complexity decreases and we can get the

accurate output in less time. Coming to the calculation of
initial points Multilateration process is more helpful and
through those initial points we can apply both the filters to the
obtained measurements.

3. MATHEMATICAL MODELING
3.1 Constant velocity Model.
The target motion model is second order kinetic model i,e
constant velocity model with position and velocity
components in each of the three coordinates x,y and z.

Xo=py o 2 Voo Vo Y ]7...(3)
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Where 7', = sampling interval, w, = level of covariance in X-
directional noise, w,= level of covariance in Y-directional

noise, w_= level of covariance in Z-directional noise

The variation in velocity is modeled as zero mean white noise
accelerations. The process noise intensity in each coordinate is
assumed to be small which accounts for air turbulence, slow
turns and small linear acceleration.

The process noise covariance for this model can be given by
O, = Elw.w,1=

(g *T°/20 0 0 q.*T'/8 0 0 )
0 q,*7; 120 0 0 q,*7;' /8 0
0 0 q.*T 120 0 0 q.*T'/8
q.%T'/8 0 0 q.*T /13 0 0
0 q,*T;' I8 0 0 q,*T} /3 0
0 0 q.*T'/8 0 0 q.*1 /3]

3.2 Nearly constant velocity model

The target motion model is first order kinematics model,
position and velocity in all the three direction. In this model
the velocity itself is treated as an error in all the three co-
ordinates x, y and z.

xal [T OO0T, 0 0] [x] [, 0 0
Viw | 0010 0 T, 0| |»| |0 T, 0 (6)
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ka1 2k
The variation in velocity is modeled as zero mean white noise
velocities. The process noise intensity in each coordinate is
assumed to be small which accounts for air turbulence, slow
turns and small linear velocity. The process noise covariance
matrix for this model can be given by

O, = E[w,.w/]=
q.*T° 13 0 0 q.*T/2 0 0

0 q,*T} /3 0 0 q*T'/2 0

0 0 q.*T* /3 0 0 q.*T7 /2
q. %7712 0 0 q.*T, 0 0

0 gq*T2 0 0 q,*T, 0

0 0 .*T 2 0 0 q.*T,
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3.3 Measurement Model.

As mentioned, each radar-sensor measures bi-static range and
bi-static Doppler. These measurements, processed locally (at
each receiver) and transformed to bi-static range and bi-static
velocity (forming bi-static tracks), are sent to the central
station.

zZp = [r1r2r3r4v Vi ViV, ]T ..(8)

Where r; and Uy are the bi-static range and bi-static range-rate,
respectively, measured by the ith receiver.

Taking transmitter as the origin of the coordinate frame the,

the relationship of each measurement with the filter state
vector is described via the nonlinear measurement model

7 h( ) hr (xk) " (9)
k= xk +Vk = vk
hv,, (xk )

where vy is the measurement noise assumed to be zero-mean
Gaussian with covariance matrix

22 22 2 2 2 2
n O-rz O-r3 O-r4 O-vll O-v12 O-vr3 O-Vr4 }

..(10)

and o, being the range and range-rate error

o
i

R, = a’iag{a
witho,

standard deviations,
(E{wiw"} = 0) and

respectively, that is vy ~ N(O,Ry)

h(x,)= [h} (e )2 (xR (xR (x, )]T (1D
hy G = [, oo el ol (o] 12)
The range of i" receiver is given by
hi(x,)=r, =\/x2 +yP i+
' : SR . (13)

VG =)+ h =3, + (54 —2,)
The range rate measurement can be given by

, XpVe +Vpv, +zZpv,
() =y, = Tn i

\/x +yp +zp
R .(14)
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Where (X, ,),,z, )are the Cartesian coordinates of the i"

receiver.
4. MULTILATERATION

In this section we consider the problem of determining the
target’s absolute position based on distance or range
measurements from the four bistatic receivers. We will
consider the dynamic case in which the target position changes
over time and the detection times are partially over lapping.
We can implement this concept in both the two dimension and
three dimension as we are dealing with the three dimension we
will directly move to the three dimension co-ordinates
calculation.

If we denote the unknown location of the target as (x,y,z), and
the i-th sensors location as (X;,Y;, Z; ) and range estimate as

tithen the following set of equations hold true assuming no
range error To determine the distance from the sensor to a

targetr‘=\/(xi _x)z+(yl_ _y)z+(zi —Z)Z ..(15)

However, all real measurements have some degree of error, so
we add an error term to the range estimate to account for any
errors between the actual range and the estimated range, which
gives A, Ignoring the error term for the moment, squaring

both sides, and writing in vector notation for n independent
range estimates gives

—x) + ()’1_")2 (zi— Z)j |7
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..(16)
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Expand the elements which are present in the left side then
linearize the equations by subtracting the bottom row from
each of the remaining rows (which eliminates all unknown
square terms), moving all remaining square terms to the right
hand side and factoring the unknown variables resulting in
gmguw.gﬂ | AR
X, ~ X ) =), = 2 2_2_ 2,2 2 2 2. 2

2 2 2 y Tttty atz, (]7)
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For an exactly determined solution where precisely four
independent sensors report estimated ranges, we can write
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which can be easily solvable as a system of three unknowns
with three equations.
5. Kalman filter

Kalman proposed a recursive solution of the discrete-time
linear filtering problem. Kalman Filter (KF) is a recursive,
linear, optimal, real-time sequential data processing algorithm
used to estimate states of a dynamic system in a noisy
environment. Kalman algorithm is given below

In deriving the equations for the Kalman filter, we begin with
the goal of finding an equation that computes an a posteriori

state estimate X, as a linear combination of an a priori

estimate X, and a weighted difference between an actual

measurement Z, .From that calculate the Kalman gain and the

update the prior estimate. nter prior estimate and
Ifs error covariance P,

Kk =P Pyl +Rp™!

Kalman gain |
X = Fie Xy Xk =Xkt
- T
Pew =F P Fe + 0O KiGr—Hixk)
A update

P/\' :([_K/\’H/\’)P/\j
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In this paper the prior estimate )?; is taken from the points

obtained using the Multilateration process and the covariance
Matrices are taken from the section 3.1 for constant velocity
and from 3.2 for nearly constant velocity model

6. EXTENDED KALMAN FILTER

When the system has non linear equations and if non linear
function f; and hy in (1) are sufficiently differential the
variation of KF i,e Extended Kalman filter may be used. In
EKF f; and hy are linearised about the estimated trajectory.
The recursive estimation equations for the extended Kalman
filter can be written as the following five steps algorithm.

e Initialize state vector and state covariance matrix

(D

e Compute Kalman gain matrix from state covariance
and estimated measurement covariance

K, = })k\k—lHkT(HkEc\k—lHkT +R)" @

e update state vector by using Kalman Gain in step 1
with prediction  error  vector

XprkroPerna

Multiplying

X = Xy + K (2 = B(xre-1)) ... 3)

where the Kalman gain Ky is determined by
e Update error covariance

Pow = =K H)Fy (I - K.H) +KRK; ..4)

e Predict new state vector and state covariance matrix:

X1 = f(Xi-ak-1) .5
Py = Ec—lPk—Hk—lF;cT—l +0, ()

Fi.1 and Hy are the Jacobian matrices of the system equation
and measurement equation.
7. Simulations and Results

Two types of motion have been simulated (NCV, CV) with
maximum acceleration 10 m/s* (approximately 6 g, where g is
the gravity acceleration assumed to be 9.81 m/s®). Firstly, as
far as multi static radar deployment is concerned, the
transmitter is placed in [0, 0, Om], while the four receivers are
assumed to be at:

@) [31500, 0, -700 m];

(ii) [35000, -3500, -200 m];

(iii) [38500, 0, -500 m]

(iv) [35000, -3500, -300 m].
The radar frequency of operation was selected to beat the
lower band of UHF (438MHz). The signal bandwidth was
assumed to be 10 MHz. The trajectory under consideration is a
target flying in the 3-D (x-y-z plane) starting with an initial
position [Xo, Yo, Zo] = [ 25000m, 4000m, -1000m] moving with
constant velocity system model with an initial velocity [vyo,
Vyo, V0] = [ 0 m/s, -83.3 m/s, 100 m/s] for 100s.
Finally, the target resumes a constant velocity motion, with the
velocity it had attained. The sampling interval Ty was assumed
to be 1 s which means that the number of measurements is the
same as time in seconds. The data generated using the noise

covariances as shown in table below in case of actual and
worst cases.

With  minimum | With medium | With worst
noise noise noise
0.1 1 1.257

yvm/sec

Tablel: Co variances used in Data generation
Where W, .. includes wy, Wy and w, as the error is equal in all
directions for both the CV and NCV models.

Simulated Target Motion in 3D Dimension for CV medium noise

ration
kalman filter
Extended kalman filter

4000 g
Y-axis 2

Figure 3: True and estimated trajectories in medium noise for CV
Figure 3 gives filtering results with Multilateration Kalman
filter and Extended Kalman filter in medium noise for CV

Simulated Target Motion in 3D Dimension for CV low noise
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Figure 4: True and estimated trajectories in medium noise for CV
Figure 4 gives filtering results with Multilateration Kalman
filter and Extended Kalman filter in low noise for CV

Simulated Target Motion in 3D Dimension for CV worst noise
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Figure 5: True and estimated trajectories in medium noise for CV
Figure 5 gives filtering results with Multilateration Kalman
filter and Extended Kalman filter in worst noise for CV

Simulated Target Motion in 30 Dimension for NCV medium noise
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Figure 6: True and estimated trajectories in medium noise for NCV
Figure 6 gives filtering results with Multilateration Kalman
filter and Extended Kalman filter in medium noise for NCV

X-axis
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Simulated Target Motion in 30 Dimension for NCV low noise
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Figure 7: True and estimated trajectories in low noise for NCV
Figure 7 gives filtering results with Multilateration Kalman
filter and Extended Kalman filter in low noise for NCV

Simulated Target Motion in 3D Dimension for NCV worst noise

RMSE  for  Trajectory | RMSE in RMSE in RMSE in
(NCV worst noise) in (m) X direction | Y direction | Z direction
Multilateration 704.2037 704.2037 704.2037
Kalman filter 478.1970 126.4845 137.8188
Extended Kalman filter 374.1424 102.4684 255.2048
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Figure 8: True and estimated trajectories in worst noise for NCV
Figure 8 gives filtering results with Multilateration Kalman

filter and Extended Kalman filter in worst noise for NCV

RMSE for Trajectory (CV | RMSE in RMSE in RMSE in
medium noise) in (m) X direction | Y direction | Z direction
Multilateration 814.3054 814.3054 814.3054
Kalman filter 518.9386 130.1882 120.3703
Extended Kalman filter 365.9418 97.4251 134.1129

Table 2. RMSE in X,Y and Z in three types of filtering in CV

RMSE for Trajectory (CV [ RMSE in RMSE in RMSE in

low noise) in (m) X direction | Y direction | Z direction

Multilateration 866.7759 866.7759 866.7759
Kalman filter 533.5174 127.6189 89.2014
Extended Kalman filter 341.4703 90.3468 70.8218

Table 3. RMSE in X,Y and Z in three types of filtering in CV

RMSE for Trajectory (CV | RMSE in RMSE in RMSE in
worst noise) in (m) X direction | Y direction Z direction
Multilateration 711.5454 711.5454 711.5454
Kalman filter 485.1850 129.7865 138.4240
Extended Kalman filter 375.4411 108.3810 292.0858

Table 4. RMSE in X,Y and Z in three types of filtering in CV

RMSE for Trajectory(NCV [ RMSE in RMSE in RMSE in
medium noise) in (m) X direction | Y direction | Z direction
Multilateration 808.1105 808.1105 808.1105
Kalman filter 512.1745 126.7189 122.6046
Extended Kalman filter 368.1115 93.3359 127.4227

Table 5. RMSE in X,Y and Z in three types of filtering in N CV

RMSE  for  Trajectory | RMSE in RMSE in RMSE in
(NCV low noise) in (m) X direction | Y direction | Z direction
Multilateration 866.7759 866.7759 866.7759
Kalman filter 533.5127 127.6189 89.2014
Extended Kalman filter 341.4703 90.6956 70.8217

Table 6. RMSE in X,Y and Z in three types of filtering in N CV

Table 7. RMSE in X,Y and Z in three types of filtering in N CV
Tables 2-7 shows the RMSE obtained for all the trajectories in
all the directions that is in X,Y and Z directions for both the
CV andNCV.
8. CONCLUSION
The paper presented a performance evolution of Kalman
filters for target tracking using bistatic range and range rate
measurements in various ways of changes occurring in noise.
On comparing the results (plots and the tables) given above
the extended kalman filter gives more precise values than the
Kalman filter and Multilateration. When the noise is less the
extended Kalman filter is giving more and more precise values
in all the directions same as in the case of the medium noise.
In the worst noise condition the EKF is having more error in z
direction except that in remaining all conditions EKF is more
suitable. Either the motion of the target is modeled using the
constant velocity or nearly constant velocity the EKF is more
preferable compared to the Kalman filter and Multilateration
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