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Multisensor target tracking is finding many applications these 
days, due to its advantages like accurate target tracking and 
cheaper in cost. Range and range rate measurements from 
sensor often used for tracking target. In estimating target 
location in central station, Kalman filter and its extensions 
(like extended Kalman Filter) are generally preferred, because 
if we go to the Multilateration process we will get more error 
even though it may takes less time for calculation. Extended 
Kalman filter is of two step algorithm prediction and updation. 
In updating the current state, the Kalman gain or correction 
factor plays a vital role in convergence of the filter. Kalman 
gain intern depends upon the initialization of process noise 
and measurement noise covariance matrices which is called 
tuning of filter. The process which is going to be estimated is 
unobservable to the tracker. 
Keywords: Target tracking, Extended Kalman jilter, 
Multi/ateration, Range Rate measurement, Process noise 
Covariance, Measurement noise co variance matrices 

1. INTRODUCTION 

A target is of anything whose position is interest to us. A 
target tracking is a process in which we have to locate the 
position of the moving target from the obtained measurements 
from the many numbers of sensors. The goal of a tracking 
system is to process the measurements obtained from the 
target and use them to estimate, its current state, such as the 
position and velocity of the object. The main objective of 
Radar Systems is to track the target. Tracking is a fundamental 
necessity and widely used for both military applications and in 
civilian cases. 
Previously the radar systems were constructed with separate 
transmitters and receivers to avoid the transmitter and receiver 
switching and to use the continuous waves this type of system 
is nothing but the monostatic radar system. Due to economical 
and operational efficiency, monostatic radar has dominated, 
after the invention of duplexers and pulsed transmission. In 
multi Static systems, there is only one transmitter and many 
receivers will present and number of radar receivers measure 
bistatic range i.e. transmitter-target-receiver distance and 
bistatic Doppler (bistatic range-rate divided by the wavelength 
at the frequency of the radar operation). The motivation for the 
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separate trackers is to develop a multi-sensor, joint-tracking 
system that employs radar sensors. 
There are various kinds of bistatic radars are being proposed 
by taking the radio-electronic background noise from 
radio/TV station transmitters, mobile phones, wireless PC, etc. 
where characteristics like target's Doppler and angle of arrival 
are measured [1]. The main technology of the future is to 
design and use of low-cost sensor networks in order to replace 
large aperture antennas. Various receivers can be deployed 
over a large area has the advantage of demanding a huge effort 
to neutralize the rid and each node can be easily replaced with 
a minimal cost [2] 

The multistatic radar system, consists of single transmitter, 
placed in a high altitude site, at least four receivers (radar 
sensors) distributed in a lower altitude area and a central 
station processing unit. The multiple sensors, single tracking 
system as shown in figurel: The transmitter emits a FMCW 
signal which is reflected by the natural environment and the 
targets inside the radar surveillance area. Measurement 
processing generally includes a fonn of thresholding 
(measurement detection) process. 
Information loss during the thresholding has to be taken care 
and in very low SNR scenarios, thresholding might not be 
used, which leads to Track before Detect algorithms with high 
computation cost. Detections originate not only from targets 
being tracked, but also from thermal noise as well as from 
various objects such as terrain; clouds and these unwanted 
measurements are usually termed clutter. Target trackers (TT) 
are widely used in air defence, ground target tracking, and 
missile defence. 
Target tracking have two portions: Data association algorithm 
section and estimation and prediction section. Data association 
is the process to match a measurement to a landmark .Gating 
is a technique for eliminating unlikely measurement-to-track 
pairings and the purpose of gating is to reduce computational 
expense by eliminating from consideration measurements 
which are far from the predicted measurement location Data 
association algorithms deal with situations where there are 
measurements of uncertain origin. The signal after data 
association algorithms passed to filtering section in central 
station 

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on January 03,2025 at 05:00:25 UTC from IEEE Xplore.  Restrictions apply. 



Figure1: Multiple sensor Tracking 

2. PROBLEM FORMULATION 

The problem is to estimate the target kinematic state (position 
and velocity) from noise corrupted measurements. Target 
tracking is basically a modeled based and they assume that the 
target motion and its observations can be represented by some 
known mathematical models accurately. The most commonly 
used such models are those known as state-space models, in 
the following form. 

Xk+1 = !(Xk)+Wk ..................... (1) 
where Xb is the target state, at the discrete time tk which are 
indexed by k ,Wk is process noise sequences, respectively in 
all the three directions that is in x,y and z directions, zero 

mean Gaussian with covariance Qk which is nothing but 

Wk "" N (O,Qk ) 
The measurement model for every system can be written as 

Zk = h(xk)+Vk ......... (2) 

Where zkis measurement vector, and vk �N(O,Rk)which 

is assumed as zero mean white Gaussian noise with covariance 
Rk is called measurement noise covariance. 

The range and range rate equations which are obtained are 
non-linear equations and are not easy to solve directly for 
calculating the exact point of target in the range using the 
range and range rate equations and so it can be solved using 
the technique called as the Multilateration. The points which 
are obtained based on this model will give more error in the 
calculation process. And so the next stage is applying moving 
average filter to the obtained points and then going to the 
Multilateration process. If we apply in this way for the moving 
average filter as the window length is go on increasing it will 
take more time to calculate the exact point in the range and 
range rate measurements of target. Of course if we apply a 
filter it will give less error compared to the crude process that 
is Multilateration. But even in this process it is having an error 
like, in the error adding direction the moving average filter is 
not able to give the exact results and the target estimation path 
is totally deviating from its original path. 
Then the next stage is applying the Kalman filter to the 
obtained measurements but in Kalman filter it is having a 
problem like we are applying on the non linear equations in 
cases with high measurement noise in bearing, the probability 
distributions may also be highly non-Gaussian in (x, y). So 
moving to the next stage that is the Extended Kalman filter in 
this process it will linearize the non linear equations and so the 
computational complexity decreases and we can get the 

accurate output in less time. Coming to the calculation of 
initial points Multilateration process is more helpful and 
through those initial points we can apply both the filters to the 
obtained measurements. 

3. MATHEMATICAL MODELING 

3.1 Constant velocity Model. 
The target motion model is second order kinetic model i,e 
constant velocity model with position and velocity 
components in each of the three coordinates x,y and z. 

Xk = [Xk' Yk' Zk' vx,' vYk ' v z, r ... (3) 

Xk+l I 0 0 TK 0 0 Xk T,' 12 0 0 
Yk+] 0 I 0 0 TK 0 y, 0 T,' 12 0 

"[J(4) Zk+l 0 0 I 0 0 TK Z, 0 0 T,' 12 
x + 

VXk+l 0 0 0 I 0 0 VXk Tk 0 0 
VYk�1 0 0 0 0 I 0 v 0 T, 0 y, 
VZ*�I 0 0 0 0 0 v" 0 0 T, 

Where Tk = sampling interval, W x = level of covariance in X­

directional noise, W y = level of covariance in Y -directional 

noise, w: = level of covariance in Z-directional noise 
The variation in velocity is modeled as zero mean white noise 
accelerations. The process noise intensity in each coordinate is 
assumed to be small which accounts for air turbulence, slow 
turns and small linear acceleration. 
The process noise covariance for this model can be given by 
Qk = E[w" w;]= 
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3.2 Nearly constant velocity model 
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(5) 

The target motion model is fust order kinematics model, 
position and velocity in all the three direction. In this model 
the velocity itself is treated as an error in all the three co­
ordinates x, y and z. 
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The variation in velocity is modeled as zero mean white noise 
velocities. The process noise intensity in each coordinate is 
assumed to be small which accounts for air turbulence, slow 
turns and small linear velocity. The process noise covariance 
matrix for this model can be given by 
Qk = E[wk, w;] = 
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3.3 Measurement Model. 
As mentioned, each radar-sensor measures bi-static range and 
bi-static Doppler. These measurements, processed locally (at 
each receiver) and transformed to bi-static range and bi-static 
velocity (forming bi-static tracks), are sent to the central 
station. 

... (8) 
Where rj and vr.are the bi-static range and bi-static range-rate, ! 
respectively, measured by the ith receiver. 
Taking transmitter as the origin of the coordinate frame the, 
the relationship of each measurement with the filter state 
vector is described via the nonlinear measurement model [hr(Xk) ] Z k = h( x k ) + v k = + v k hv, (Xk) ... (9) 

where Vk is the measurement noise assumed to be zero-mean 
Gaussian with covariance matrix 

... (10) 
with (j" and (j v,; being the range and range-rate error 

standard deviations, respectively, that IS Vk � N(O,Rk) 
(E{wkw/} = 0) and 

hr(xk) = [h,1(Xk)h;(Xk)h:(xdh,\Xk)r 
rl 2 3 4 ]T hVr (Xk) = Lhv,. (Xk )hv, (Xk )hv, (Xk )hv, (xk) 

The range of illt receiver is given by 

i I 2 2 2 hr(xk)=r, =Vxk + Yk +zk + 
J(Xk -x,)2 + (Yk -y,)2 + (zk -zr)2 
The range rate measurement can be given by 

hi() XkVXk+YkvYk+zkvZk X =V = + v,. k Ij I 2. 2 2 VXk +Yk +Zk 
(Xk -XIj)VXk +(Yk -YIj)VYk +(Zk -Z,)VZk 
J(Xk -XIj)2 + (Yk -YIj)2 + (Zk -Zr)2 

... (11) 

... (12) 

... (13) 

... (14) 

Where (x" ,y" ,z,, ) are the Cartesian coordinates of the ith 

receiver. 
4. MUL TILATERA TION 

In this section we consider the problem of determining the 
target's absolute position based on distance or range 
measurements from the four bistatic receivers. We will 
consider the dynamic case in which the target position changes 
over time and the detection times are partially over lapping. 
We can implement this concept in both the two dimension and 
three dimension as we are dealing with the three dimension we 
will directly move to the three dimension co-ordinates 
calculation. 
If we denote the unknown location of the target as (x,y,z), and 
the i-th sensors location as (Xi, Yi , Zi) and range estimate as 
rithen the following set of equations hold true assuming no 
range error To determine the distance from the sensor to a 
target r; = J(xi -x) +(Yi -y) +(Zi -Z) ... (15) 

However, all real measurements have some degree of error, so 
we add an error term to the range estimate to account for any 
errors between the actual range and the estimated range, which 
gives L'l r; Ignoring the error term for the moment, squaring 

both sides, and writing in vector notation for n independent 
range estimates gives 

(Xl-X) + &1-Y) + (Zl-Z) 
(X2-X) + &2-Y) + (Z2-Z) 
(X3-X) + &3-Y) + (Z3-Z) 

2 r, ... (16) 

2 r" 

Expand the elements which are present in the left side then 
linearize the equations by subtracting the bottom row from 
each of the remaining rows (which eliminates all unknown 
square terms), moving all remaining square terms to the right 
hand side and factoring the unknown variables resulting in 

(X, - xJ (y, - y) (z, - z,) 
2 (X, - Xl) (y, - y,) (z, - z,) 

2 2 2 2 2 2 2 2 rJ - rn - Xl + Xn - Y1 + Yn - ZI + Zn 
2 2 2 2 2 2 2 2 r2- rn- X2+ Xn - Y2 + Yn - Z2+ Zn 

2 2 2 2 2 2 2 2 rn-I- rn - Xn-l+ Xn - Yn-I + Yn - Zn-l+ Zn 

(17) 

For an exactly determined solution where precisely four 
independent sensors report estimated ranges, we can write 

(X4 x,) (Y4 y,) (Z4 z,) Y r,-r4-X'+X4-Y,+Y4-Z,+Z4 
2 [ (X4=XJ (Y4?J (Z4=z'). [X l = [r�-r�-x:+x:-Y�+Y;-z�+z�l (18) 

(X4-xJ (Y4-y,) (z,-Z3) Z r;-r;-x;+ x;-Y:+ Y;-z;+z; 
which can be easily solvable as a system of three unknowns 
with three equations. 

5. Kalman filter 

Kalman proposed a recursive solution of the discrete-time 
linear filtering problem. Kalman Filter (KF) is a recursive, 
linear, optimal, real-time sequential data processing algorithm 
used to estimate states of a dynamic system in a noisy 
environment. Kalman algorithm is given below 
In deriving the equations for the Kalman filter, we begin with 
the goal of fmding an equation that computes an a posteriori 

state estimate Xk as a linear combination of an a priori 

estimate x; and a weighted difference between an actual 

measurement Z k .From that calculate the Kalman gain and the 

update the prior estimate. Fnter prior estimate a�d 

�s error covariance Pk 

---+ 
- T ( - T )-1 Kk= PkHk HkPkHk+Rk 

Kalman gain 

-

Xk+l = FkXk xk = xl( + 
Pk-+1 = FkPkF[ + Qk Kk(Zk -H kx7() 

update 

I Pk = (/-KkHk)Pk- l 
I 
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In this paper the prior estimate xk is taken from the points 

obtained using the Multilateration process and the covariance 
Matrices are taken from the section 3.1 for constant velocity 
and from 3.2 for nearly constant velocity model 

6.EXTENDED KALMAN FILTER 

When the system has non linear equations and if non linear 

function fk and hk in (1) are sufficiently differential the 

variation of KF i,e Extended Kalman filter may be used. In 

EKF fk and hk are linearised about the estimated trajectory. 

The recursive estimation equations for the extended Kalman 

filter can be written as the following five steps algorithm. 

• Initialize state vector and state covariance matrix 

X kl k-l' Pkl k-l ... (1) 

• Compute Kalman gain matrix from state covariance 

and estimated measurement covariance 
T T -l 

Kk = �lk-lHk (Hk�lk-lHk + Rk) ... (2) 

• update state vector by using Kalman Gain in step 1 

with Multiplying prediction error vector 
f\ 

Xk1k = Xk1k-1 + Kk(Zk - h(Xklk-l»)) 

where the Kalman gain Kk is determined by 

• Update error covariance 

... (3) 

T T Pk1k = (1 - KkHk)Pklk-l(J - KkHk) + KkRkKk ••• (4) 

• Predict new state vector and state covariance matrix: 

... (5) 

... (6) 

Fk-1 and Hk are the Jacobian matrices of the system equation 

and measurement equation. 

7. Simulations and Results 

Two types of motion have been simulated (NCV, CV) with 

maximum acceleration 10 mls2 (approximately 6 g, where g is 

the gravity acceleration assumed to be 9.81 mls2). Firstly, as 

far as multi static radar deployment is concerned, the 

transmitter is placed in [0, 0, Om], while the four receivers are 

assumed to be at: 

(i) [31500, 0, -700 m]; 
(ii) [35000, -3500, -200 m]; 
(iii) [38500, 0, -500 m] 
(iv) [35000, -3500, -300 m]. 

The radar frequency of operation was selected to beat the 
lower band of UHF (438MHz). The signal bandwidth was 
assumed to be 10 MHz. The trajectory under consideration is a 
target flying in the 3-D (x-y-z plane) starting with an initial 
position [xo, Yo, zo] = [ 25000m, 4000m, -1000m] moving with 
constant velocity system model with an initial velocity [v xo, 
VyO, vzo] = [ 0  mis, -83.3 mis, 100 mls] for 100s. 
Finally, the target resumes a constant velocity motion, with the 
velocity it had attained. The sampling interval Tk was assumed 
to be 1 s which means that the number of measurements is the 
same as time in seconds. The data generated using the noise 

covariances as shown in table below in case of actual and 
worst cases. 

With minimum With medium With worst 
noise noise noise 

Wm/sec 0.1 1 l. 257 
2 

Table 1: Co vanances used III Data generatIOn 
Where Wlnlsec2 includes Wx, Wy and Wz as the error is equal in all 
directions for both the CV and NCV models. 
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Figure 3: True and estimated trajectories in medium noise for CV 
Figure 3 gives filtering results with Multilateration Kalman 
filter and Extended Kalman filter in medium noise for CV 
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Figure 4: True and estimated trajectories in medium noise for CV 
Figure 4 gives filtering results with Multilateration Kalman 
filter and Extended Kalman filter in low noise for CV 
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Figure 5: True and estimated trajectories in medium noise for CV 
Figure 5 gives filtering results with Multilateration Kalman 
filter and Extended Kalman filter in worst noise for CV 
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Figure 6: True and estimated trajectories in medium noise for NCV 
Figure 6 gives filtering results with Multilateration Kalman 
filter and Extended Kalman filter in medium noise for NCV 
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Simulated Target Motion in 3D Dimension for NCV 10'W noise 
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Figure 7: True and estimated trajectories in low noise for NCV 
Figure 7 gives filtering results with Multilateration Kalman 
filter and Extended Kalman filter in low noise for NCV 
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Figure 8: True and estimated trajectories in worst noise for NCV 
Figure 8 gives filtering results with Multilateration Kalman 
filter and Extended Kalman filter in worst noise for NCV 
RMSE for Trajectory (CV RMSE in RMSE in RMSE in 

medium noise) in (m) X direction Y direction Z direction 

Multilateration 814.3054 814.3054 814.3054 

Kalman filter 518.9386 130.1882 120.3703 

Extended Kalman filter 365.9418 97.4251 134.1129 

Table 2. RMSE in X,Y and Z in three tvl es offilterine: in CV 
RMSE for Trajectory (CV RMSE in RMSE in RMSE in 

low noise) in (m) X direction Y direction Z direction 

Multilateration 866.7759 866.7759 866.7759 

Kalman filter 533.5174 127.6189 89.2014 

Extended Kalman filter 341.4703 90.3468 70.8218 

Table 3. RMSE in X,Y and Z in three tvl es offilterine: in CV 
RMSE for Trajectory (CV RMSE in RMSE in RMSE in 

worst noise) in (m) X direction Y direction Z direction 

Multilateration 711.5454 711.5454 711.5454 

Kalman filter 485.1850 129.7865 138.4240 

Extended Kalman filter 375.4411 108.3810 292.0858 

Table 4. RMSE in X,Y and Z in three types of filtering in CV 
RMSE for Trajectory(NCV RMSE in RMSE in RMSE in 

medium noise) in (m) X direction Y direction Z direction 

Multilateration 808.1105 808.1105 808.1105 

Kalman filter 512.1745 126.7189 122.6046 

Extended Kalman filter 368.1115 93.3359 127.4227 

a e In , an T bl 5 RMSE X Y d Z h In t ree types 0 fli Iltenng In N CV 
RMSE for Trajectory RMSE in RMSE in RMSE in 

(NCV low noise) in (m) X direction Y direction Z direction 

Multilateration 866.7759 866.7759 866.7759 

Kalman filter 533.5127 127.6189 89.2014 

Extended Kalman filter 341.4703 90.6956 70.8217 

Table 6. RMSE In X,Y and Z In three types of filtering in N CV 

RMSE for Trajectory RMSE in RMSE in RMSE in 

(NCV worst noise) in (m) X direction Y direction Z direction 

Multilateration 704.2037 704.2037 704.2037 

Kalman filter 478.1970 126.4845 137.8188 

Extended Kalman filter 374.1424 102.4684 255.2048 

Table 7. RMSE In X,Y and Z In three types offiltenng In N CV 
Tables 2-7 shows the RMSE obtained for all the trajectories in 
all the directions that is in X,Y and Z directions for both the 
CV andNCV. 

8. CONCLUSION 

The paper presented a performance evolution of Kalman 
filters for target tracking using bistatic range and range rate 
measurements in various ways of changes occurring in noise . 
On comparing the results (plots and the tables) given above 
the extended kalman filter gives more precise values than the 
Kalman filter and Multilateration. When the noise is less the 
extended Kalman filter is giving more and more precise values 
in all the directions same as in the case of the medium noise. 
In the worst noise condition the EKF is having more error in z 
direction except that in remaining all conditions EKF is more 
suitable. Either the motion of the target is modeled using the 
constant velocity or nearly constant velocity the EKF is more 
preferable compared to the Kalman filter and Multilateration 
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