
Electrical Power and Energy Systems 62 (2014) 897–911
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes
Optimal spot pricing in electricity market with inelastic load using
constrained bat algorithm
http://dx.doi.org/10.1016/j.ijepes.2014.05.023
0142-0615/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +91 9494842708.
E-mail addresses: murali233.nitw@gmail.com (M. Murali), sailaja_matam@

yahoo.com (M. Sailaja Kumari), sydulumaheswarapu@yahoo.co.in (M. Sydulu).
M. Murali ⇑, M. Sailaja Kumari, M. Sydulu
Electrical Engineering Department, NIT Warangal, Warangal 506 004, India

a r t i c l e i n f o
Article history:
Received 20 May 2013
Received in revised form 26 April 2014
Accepted 13 May 2014
Available online 21 June 2014

Keywords:
Bat algorithm
Concentrated loss
Distributed loss
Delivery factors
a b s t r a c t

In restructured electricity markets, an effective transmission pricing is required to address transmission
issues and to generate correct economic signals. These prices depend on generator bids, load levels and
transmission network constraints. A congestion charge is incurred when the system is constrained due to
physical limitations. Spot pricing or Locational Marginal Pricing (LMP) or Nodal pricing is a popular
method in restructured power markets to address these issues. This paper presents a DC optimal power
flow (DCOPF) based spot pricing approach in single auction model with fuel cost minimization as
objective function. This is solved with a heuristic technique called Bat algorithm and the results are com-
pared with Linear Programming (LP) and Genetic algorithm (GA) approaches in a constrained pool based
restructured electricity market. The developed models have been tested on IEEE 14 bus system, New
England 39 bus system and 75 bus Indian practical power system. Different cases such as without loss,
concentrated loss and distributed loss are considered for this problem. Two types of generator bids i.e.,
fixed bids and linear bids are considered for generators. Load is assumed to be inelastic. Generator profit,
ISO profit and Social surplus during congestion have been computed in all the cases. In most of the cases
studied, Bat algorithm is proven to be better than LP and GA algorithms for fuel cost minimization and
social welfare (Social surplus) improvement.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

In April 2003 in a White Paper, the U.S. Federal Energy Regula-
tory Commission (FERC) proposed a market design for common
adoption by U.S. wholesale power markets. The electric power
industry has undergone deregulation around the world, a core
tenet of which is to build an open-access, unambiguous and fair
electricity markets. Proper and fair pricing of real power is an
important issue in this competitive market. Core features of a
market design include; a two settlement system consisting of a
day-ahead market supported by a real-time market to ensure con-
tinual balancing of supply and demand for power; and grid conges-
tion management by means of Spot pricing also called Locational
Marginal Pricing (LMP) or Nodal pricing.

Under the deregulated electricity market environment, trans-
mission networks play a vital role in supporting the transaction
between producers and consumers. One limitation on transmission
flow is congestion. Congestion occurs when transmission lines or
transformers operate at or above its thermal limits and this
prevents the system operators from dispatching additional power
from a specific generator. Congestion can result in an overall
increase in the cost of power delivery. Presently there are two
pricing structures [10] that are being used in a competitive energy
market to account for congestion: the uniform pricing based
market clearing price (MCP) and the non-uniform pricing method
(LMP). In the first method, all generators are paid the same price
(MCP) based on the bid of the marginal generator that would be
dispatched in the absence of congestion. The second method
(LMP) has been the basic approach in power markets to calculate
nodal prices and to manage transmission congestion. The theory
of spot price, which was first proposed by Schweppe et al. [1], is
increasingly being employed in the form of (LMP) within an OPF
framework. The LMP at a location is defined as the marginal cost
to supply an additional increment of power to the location without
violating any system security limits [15]. Because of the effects of
both transmission losses and transmission system congestion,
LMP can vary significantly from one location to another. Mathe-
matically, LMP at any node in the system is the dual variable
(sometimes called a shadow price) for the equality constraint at
that node (sum of injections and withdrawals is equal to zero).
Or, LMP is the additional cost of providing one additional MW at
a certain node [19]. Buyers pay ISO based on their price for
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Fig. 1. Fixed bids.
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dispatched energy. The ISO pays sellers based on their respective
prices. The LMP difference between two adjacent buses is the
congestion cost which arises when the energy is transferred from
one location (injection) to the other location (withdrawal).
Marginal losses represent incremental changes in system losses
due to incremental demand changes. Incremental losses yield
additional costs which are referred to as the cost of marginal
losses. Thus LMP is the summation of the costs of marginal energy,
marginal loss and congestion. Therefore LMP is stated as follows:

LMP ¼ generation marginal costþ congestion cost

þ marginal loss cost ð1Þ

In this decomposition model, LMP congestion component at Bus B,
i.e., LMPcong

B remains invariant w.r.to different reference buses, and
the combination of the other two components, i.e., LMPenergy

þLMPloss
B , is also reference-independent. But each of LMPenergy or

LMPloss
B is still reference-dependent [36].

LMP’s can be derived using either an ACOPF model or a DCOPF
model [2–5,7–9].

The objective function of OPF is maximizing Social surplus
while meeting the load in the power system and respecting oper-
ational constraints. In the absence of price elastic load (which is
mostly the case in the real time market) maximizing social welfare
is equivalent to minimizing the total production cost. In this paper
load is assumed to be price inelastic. There are two approaches to
calculate nodal prices in RTM: ex post and ex ante. NY ISO uses ex
ante prices as the real time prices and penalises non-performing
resources on the basis of reduced generation quantity [11],
whereas ISO NE, PJM and MISO adopt the ex post pricing that pro-
vides dispatch incentives on the ground of rational prices [12,13].
Both ex ante and ex post approaches have their own merits and
demerits. For example ex ante pricing does not have the capability
to penalise non-performing units, whereas ex post pricing has
some difficulties in implementing co-optimization of the energy
and reserves [30]. In market planning and simulation, DC model
is desired due to its robustness and speed [20]. DCOPF is broadly
employed by a number of industrial spot price simulators, such
as ABB’s Gid View™, GE’s MAPS™, Siemens’ Promod IVR, and Power
World [18,6]. Several papers have reported different models for
price calculation. Ref. [14] describes components of nodal prices
for electric power systems. Ref. [16,17] demonstrated the useful-
ness of DC power flow in calculating loss penalty factors, which
has a significant impact on generation scheduling. It also pointed
out that it is not advisable to apply predetermined loss penalty
factors from a typical scenario to all cases. Ref. [21] presented a
slack-bus-independent approach to calculate LMPs and its conges-
tion components. Ref. [22] presented LMP simulation algorithms to
address marginal loss pricing based on the dc model. Literature
shows that dc model is acceptable in optimal power flow studies
if the line flow is not very high, the voltage profile is sufficiently
flat, and the R/X ratio is less than 0.25 [23]. Ref. [25] presented
Nodal pricing with Genetic algorithm for congestion management
with DCOPF for lossless system. Ref. [26] presented different meth-
ods and properties on LMP calculations based on DCOPF with and
without loss. An LP based approach for LMP without loss case [33],
with concentrated case and distributed loss case using DCOPF
model is presented in [28] with piecewise linear cost curves but
it does not give actual marginal cost of generation. Ref. [29]
presented Cummulant and Gram Charlier (CGC) method for calcu-
lating LMP and compared the results with Monte Carlo and point
estimation method. This method combines the concept of Cumm-
ulants and Gram-Charlier expansion theory to obtain Probabilistic
Distribution Functions (PDF) and Cummulative Distribution Func-
tion (CDF) of LMP. This method is complex and time consuming.
Ref. [30] gives a systematic description on how the LMP’s are
produced; it also described both the modeling and implementation
challenges and solutions. Ref. [31] described ACOPF based LMP cal-
culation considering distributed loss. In [37] the authors described
ACOPF based probabilistic calculation of LMP with Point Estima-
tion method. In [38] LMP calculation with GA based DCOPF is pre-
sented in two cases of losses i.e., without loss and concentrated
loss for IEEE 14 bus, New England 39 bus and 75 bus Indian power
systems.

The present paper proposes a metaheuristic algorithm called
Bat algorithm (BA) [35] introduced for the first time in power sys-
tem application area for solving DCOPF problem of LMP calculation
without loss, with concentrated loss and with distributed loss
models with linear bid. All these three loss models have been
attempted for fixed generation bids and linear generation bids in
LP (Power World simulation) approach and GA. Then Bat algorithm
results are compared with LP and GA approaches. LMP components
are derived for all the three models of losses and presented in this
paper. In concentrated loss DCOPF model total system loss is sup-
plied by the slack bus which creates a burden on the slack bus. To
eliminate a large mismatch at the slack bus, loss is distributed
among the buses as an extra load.

‘Types of generator bids’ describes different types of bids used
for generators. The problem formulation for LMP calculation using
delivery factors is discussed in ‘Mathematical formulation for
nodal price calculation’ for all the loss models. ‘Implementation
of Bat algorithm for spot price calculation’ presents Bat algorithm
implementation. ‘Results and discussion’ gives results and discus-
sion for IEEE 14 bus system, New England 39 bus system and 75
bus Indian power system. ‘Conclusion’ concludes the paper.
Types of generator bids

In general, generators bids depend on many factors, some of
which (e.g. strategic behavior) are difficult to model. To avoid
excessive complexity, generators bids are assumed to be equal to
their incremental costs for perfect competition. Two bidding mod-
els are generally used, namely; fixed generator bids (corresponding
to piecewise-linear heat rates) and linear bids (corresponding to
quadratic heat rates).
Fixed bids

The piecewise linear heat rate curve is converted to an approx-
imate fixed incremental heat rate for each unit through Linear
regression method. The cost changes in steps with respect to gen-
eration. Nordic pool uses such type of bids. The main drawback of
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this bid is it does not give true marginal cost of generator. The fixed
bid curve for piecewise linear cost characteristics is shown in Fig. 1.
These types of bids are under practice in PJM market.

Linear bids

The non-smooth nature of the fixed bid shown in Fig. 1 may
result in step changes in prices at certain load levels. One way to
mitigate this is to use linear bids for the generating units. This will
result in a much smoother supply curve as shown in Fig. 2 and also
gives the actual marginal cost of a generator. These types of bids
are under practice in Nordic Pool market. The generator cost curve
is given by (2).

CiðPGiÞ ¼ ai þ biPGi þ ciP
2
Gið$=hrÞ ð2Þ

where Ci(PGi) is the cost of unit i generating PGi MW, ai is the no-load
cost, bi is the linear cost coefficient and ci is the quadratic cost coef-
ficient of unit i. These a, b, c coefficients of generators are given by
manufacturer of the generator. The incremental costs of the units
can be modeled as fixed quantities (Fig. 1) or can be expressed as
linear function with slope m of the unit outputs (Fig. 2) as in (3).
The linear price curve introduces non-linearities in the problem;
however, it is a more realistic representation of price than that of
a fixed price.

dCiðPGiÞ=dPGi ¼ bi þ 2ciPGið$=MW hÞ ð3Þ
Evaluate new 
fitness values Fnew

if 
(Fnew <= Fitness (i))&(rand<Ai)

Accept new 
solutions

best=current best

yes

Increase ri and 
reduce Ai

Update current 

no

Generate a random 
number (rand)
Mathematical formulation for nodal price calculation

Nodal prices using DCOPF with and without considering line
losses for generator fixed bids is simulated with Linear Program-
ming (LP) approach [28] using Power World Simulator (12th
version). Then GA with generator fixed bids is attempted to mini-
mize the fuel cost, and following that the GA with generator linear
bids is attempted for further optimization. It was observed that
using generator linear bids gives minimal fuel cost than fixed bids
of all loss cases for all the test systems discussed in this paper.
Finally, Bat algorithm with generator linear bids is proposed for
further optimization. Active power generations of the generators
except slack generation are considered as variables for optimiza-
tion problem. The obtained power generations are used in calcula-
tion of spot prices with and without loss for the congested
transmission system. Generation Shift factors (GSF) have been used
for the calculation of transmission line flows. Delivery factors (DF)
at all buses have been used to consider the impact of marginal
losses on nodal prices.

The location of reference bus or slack bus will not impact nodal
prices, when ignoring system losses. But, the individual components
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Fig. 2. Linear bids.
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Fig. 3. Flow chart of Bat algorithm.
of nodal price depend on the location of reference bus. If transmis-
sion losses are balanced at reference bus, i.e., in concentrated loss
model, the bus spot prices depend on the location of reference
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bus. In distributed loss model, the bus nodal prices are independent
of the choice of reference bus. It should also be noted that although
the line flow based on GSF is the same with different references
buses, actual GSF values depend on the choice of slack bus.

Generation shift factor

Generation shift factor is the ratio of change in power flow of
line ‘k’ to change in power injection at bus ‘i’. GSF can be computed
using (4), where B�1 is the inverse of B matrix, xk is reactance of
line k, ‘a’ and ‘b’ are sending and receiving end buses of line k.

GSFk�i ¼ ðB�1
ða;iÞ � B�1

ðb;iÞÞ=xk ð4Þ
Delivery factor

The delivery factor (DFi) at the ith bus represents the effective
MW delivered to the customers to serve the load at that bus. It is
defined as (5)

DFi ¼ 1� LFi ¼ 1� @Ploss=@Pi ð5Þ

Ploss ¼
XM

k¼1

F2
k � Rk ð6Þ

Fk ¼
XN

i¼1

GSFk�i � Pi ð7Þ

@Ploss

@Pi
¼
XM

k¼1

@

@Pi
ðF2

k � RkÞ ¼
XM

k¼1

Rk � 2Fk �
@Fk

@Pi

¼
XM

k¼1

2� Rk � GSFk�i �
XN

j¼1

GSFk�j � Pj

 !
ð8Þ

In (5)–(7), LFi represents the loss factor at bus ‘i’ which is calcu-
lated using (8), Fk is the power flow in line k, Rk is the resistance of
line k, Pi is the injected power at bus i, GSFk�i is the generation shift
factor to line ‘k’ from bus ‘i’. LFi may be viewed as the change of total
system loss with respect to 1 MW increase in injection at that bus.
Interestingly, the loss factor at a bus may be positive or negative.
When it is positive, it implies that an increase of injection at the
bus may increase the total system loss. If it is negative, it implies
that an increase of injection at that bus reduce the total loss.
Table 1
Comparison of results with different methods for three loss models of 437 IEEE 14 bus sy

Generator bus
no.

Power generations in MW without loss case 1 Power generation
loss case 2

LP approach
fixed bids

GA approach Bat
linear
bids

LP approach
fixed bids

GA

Fixed
bids

Linear
bids

Fix
bid

1 (Slack bus) 142 141.37 141.37 141.23 147.143 1
2 117 117.62 117.62 117.77 117 1
System loss

(MW)
5.143

Fuel cost ($/hr) 3222.97 3223.11 2985.01 2985.015 3286.434 32
ISO payment to
Generator ($/

hr)
3178.51 3178.17 5681.85 5676.213 3238.464 32

Generator
profit ($/hr)

�44.46 �44.94 2696.84 2691.198 �47.97 �

Load payment
to ISO ($/hr)

4716.081 4715.85 7219.53 7213.915 5005.321 51

ISO profit
($/hr)

1537.571 1537.67 1537.67 1537.702 1766.861 18

Social surplus
($/hr)

1493.11 1492.73 4234.51 4228.9 1718.891 18

Iterations 29 35
CPU time (sec) 4.091 2.793
Spot price calculation with different loss cases

Case 1: Without losses using DCOPF
In this method the objective function is minimization of total

marginal production cost subjected to power balance and line flow
constraints [32]. Spot prices are calculated from the obtained
generator power outputs. ISO payments to generators, Generator
profit, load payment to ISO, total ISO profit and system Social
Welfare are also calculated.

The objective function is

Minimize J ¼
XN

i¼1

CiðsÞ ð9Þ

s:t:
XN

i¼1

PGi
¼
XN

i¼1

PDi
ð10Þ

Fk � limitk; k ¼ 1;2; . . . ;M ð11Þ
Pmin

Gi
� PGi

� Pmax
Gi

; i ¼ 1;2; . . . ;N ð12Þ

where N is number of buses, M is number of lines, C(s) is cost func-
tion of the generator i.e. ðCiðsÞ ¼ biPGi þ ciP

2
GiÞ in $/hr, PGi is output

power of generator at bus i (MW), PDi is the demand at bus i
(MW), Fk is line flow of line k, limitk is thermal limit of line k.

Case 2: With concentrated loss using DCOPF
In this method also the main objective is minimization of total

marginal production cost subjected to energy balance and line flow
constraints. However, in nodal price based electricity markets, sys-
tem marginal losses have significant impact on the economics of
power system operation. So, system marginal losses have to be
taken into account for obtaining accurate prices. In this model it
is assumed that total system loss is supplied by slack bus genera-
tor. The problem is to

Minimize J ¼
XN

i¼1

CiðsÞ ð13Þ

XN

i¼1

DFi � ðPiÞ þ Ploss ¼ 0 ð14Þ

Fk 6 limitk; k ¼ 1;2; . . . ;M ð15Þ
Pmin

Gi 6 PGi
� Pmax

Gi ; i ¼ 1;2; . . . ;N ð16Þ
stem.

s in MW with concentrated Power generations in MW with distributed loss
case 3

approach Bat
linear
bids

LP approach
fixed bids

GA approach Bat
linear
bids

ed
s

Linear
bids

Fixed
bids

Linear
bids

44.9 144.9 144.75 147.143 140.48 140.48 145.78
17.62 117.62 117.77 117 122.00 122.00 116.81

3.527 3.527 3.52 5.143 3.485 3.485 3.604

66.64 3063.56 3063.32 3286.434 3267.13 3063.33 3060.01

32.49 5919.08 5915.588 3238.464 3231.06 5744.59 5950.123

34.14 2855.51 2852.268 �47.97 �36.06 2681.26 2890.113

07.1 7829.63 7834.127 5006.246 5104.78 7652.58 7867.24

74.61 1910.55 1918.539 1767.782 1873.72 1907.99 1917.12

40.47 4766.06 4770.807 1719.812 1837.65 4589.25 4807.233

29 35 68 10
4.091 2.793 7.51 0.3996



M. Murali et al. / Electrical Power and Energy Systems 62 (2014) 897–911 901
where Ploss is the total system loss. Ploss in (14) is used to offset the
doubled average system loss caused by the marginal loss factor (LF)
and the marginal delivery factor (DF). The derivation of (14) is given
in Appendix A.

After getting power outputs of generators for the above dis-
patch, slack bus power is calculated using (10) or (14) and the price
at the reference (slack) bus needs to be calculated by substituting
slack bus power either in fixed bids or linear bids. At the reference
bus, both loss price and congestion price are always zero. There-
fore, the price at the reference bus is equal to the energy compo-
nent. Now the LMP formulation at a bus B can be written as

LMPB ¼ LMPenergy þ LMPcong
B þ LMPloss

B ð17Þ

The decomposition of LMP is shown here

LMPenergy ¼ k ¼ price at the reference bus ð18Þ

LMPcong
B ¼ �

XM

k¼1

GSFk�B � lk ð19Þ

where lk is the constraint cost or shadow price of line k, defined as:

lk ¼
change in total cos t

change in constra int’s flow

LMPloss
B ¼ k� DFB � 1ð Þ

ðLMPloss
B ¼ 0 for lossless power systemÞ

ð20Þ
Case 3: With distributed loss using DCOPF
Concentrated loss model addresses the marginal loss price

through the delivery factors. However, the line flow constraint in
(15) still assumes a lossless network. But the equality constraint
in (14) informs that total generation is greater than the total
demand by the average system loss. This causes a mismatch at
slack bus and this mismatch is absorbed by the system slack bus.
If system demand is huge e.g., a few GW then the system loss
may be of the order of hundreds of MW and it may not be possible
to add all the losses to slack bus. To address this issue, it is neces-
sary that the line losses are shared among buses. This paper
employs the concept of distributed loss to represent the losses of
the lines connected to a bus. In this method system losses are dis-
tributed among all the buses and eliminate the large mismatch at
the reference bus. By this approach, loss in each transmission line
is divided into two equal halves, and each half is added to respec-
tive end buses of the line as an extra load. So for each bus, the total
Table 2
Spot prices at all buses for all models of IEEE 14 bus system.

Bus
no.

LMP’s at all buses ($/MW h)

Without loss model case 1 Concentrated loss mode

LP approach
fixed bids

GA approach Bat linear
bids

LP approach
fixed bids

GA a

Fixed
bids

Linear
bids

Fixed
bids

1 12.34 12.34 22.00 21.99 12.34 12.3
2 12.19 12.18 21.85 21.83 12.16 12.2
3 11.76 11.75 21.42 21.40 11.64 12.1
4 11.38 11.38 21.05 21.03 11.20 11.5
5 12.91 12.91 22.58 22.56 13.02 13.3
6

23.77 23.76 33.43 33.41 25.95 26.2
7 27.58 27.57 37.24 37.22 30.49 30.8
8 27.58 27.57 37.24 37.22 30.49 30.8
9 36.10 36.09 45.76 45.74 40.63 41.0

10 33.91 33.9 43.57 43.55 38.02 38.4
11 28.93 28.92 38.59 38.57 32.09 32.4
12 24.74 24.74 34.4 34.39 27.11 27.4
13 25.50 25.5 35.17 35.15 28.02 28.4
14 31.47 31.46 41.13 41.11 35.12 35.5
extra load is the sum of halves of line losses which are connected to
that bus. The extra load at bus ‘i’ is assumed as Ei, and it is defined
as follows:

Ei ¼
XMi

k¼1

1
2
� F2

k � Rk ð21Þ

where Mi is number of lines connected to bus i. The line flow Fk for
this model is calculated as in (22).

Fk ¼
XN

i¼1

GSFk�i � ðGi � Di � EiÞ ð22Þ

The algorithm for this problem is the same as in case 2. After getting
power outputs of generators, spot prices at all buses are calculated
using (17)–(20). With this approach, the fuel cost is further reduced
than the concentrated loss model and the burden on the slack bus is
eliminated.

All the 3 above mentioned cases have been initially attempted
with Linear Programming approach with fixed bids (LP-FB),
Genetic algorithm with fixed bids (GA-FB) and GA with Linear bids
(GA-LB). Since, GA-LB results are proved to be better than GA-FB
and LP-FB, in further optimization GA-LB results are compared
with Bat with linear bids (BA-LB) approach. For case 2, in LP
approach, loss is calculated using ac load flow and is added to
the slack bus as load by modifying the line data with resistance
(R) taken as 10% of reactance (x) to make the system linear [28].
For case 3, in LP approach to make an equivalent model of distrib-
uted loss; loss is calculated as in case 2 but it is distributed to all
the generators as extra loads.
Implementation of Bat algorithm for spot price calculation

For global optimization problems with a single objective, if the
design functions are highly nonlinear, global optimality is not easy
to achieve. Metaheuristic algorithms are very powerful in dealing
with this kind of optimization. Furthermore, real-world optimiza-
tion problems always involve a certain degree of uncertainty or
noise. For example, material properties for a design product may
vary significantly; an optimal design should be robust enough to
allow homogeneity and also provide good choice for the deci-
sion-makers or designers.

In addition, metaheuristic algorithms start to emerge as a major
player for global optimization; they often mimic the successful
l case 2 Distributed loss model case 3

pproach Bat linear
bids

LP approach
fixed bids

GA approach Bat linear
bids

Linear
bids

Fixed
bids

Linear
bids

4 22.52 22.51 12.34 12.34 21.87 22.65
7 22.56 22.57 12.16 12.27 21.89 22.70
1 22.69 22.72 11.64 12.11 22.00 22.84
8 22.08 22.10 11.20 11.57 21.40 22.22
4 23.8 23.81 13.02 13.34 23.12 23.94

8 36.74 36.76 25.95 26.27 36.06 36.88
6 41.36 41.38 30.50 30.85 40.67 41.50
6 41.36 41.38 30.50 30.85 40.67 41.50
0 51.50 51.52 40.65 41.00 50.81 51.64
0 48.91 48.93 38.03 38.4 48.23 49.05
5 42.95 42.96 32.10 32.45 42.26 43.09
8 37.99 38.01 27.12 27.48 37.31 38.13
0 38.91 38.93 28.02 28.39 38.23 39.05
5 46.09 46.12 35.13 35.54 45.41 46.24
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characteristics in nature, especially biological systems. Many new
algorithms are emerging with many important applications.

In this paper, a metaheuristic search algorithm, called Bat
algorithm, which is a real coded algorithm has been proposed for
solving DCOPF based spot price calculation with different loss
cases for a congested system. Preliminary studies show that it is
very promising and could outperform existing algorithms. The
results of BA are validated with LP and GA and proved to be better.

Bat algorithm

The basic steps of Bat algorithm for single objective optimization
are outlined here. The echolocation characteristics of microbats can
Fu
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Fig. 4. Fuel cost comparison for case 1 of 458 IEEE 14 bus system.
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Fig. 5. Fuel cost comparison for case 2 of IEEE 14 bus system.
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Fig. 6. Fuel cost comparison for case 3 of IEEE 14 bus system.
be idealized to develop various bat-inspired algorithms or bat
algorithms. In the basic bat algorithm developed by Yang [35], the
following approximate or idealized rules were used.

1. All bats use echolocation to sense distance, and they also ‘know’
the difference between food/prey and background barriers in
some magical way;
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Fig. 7. LMP’s comparison for case 1 of IEEE 14 bus system.
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Fig. 8. LMP’s comparison for case 2 of IEEE 14 bus system.
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Fig. 9. LMP’s comparison for case 3 of 500 IEEE 14 bus system.
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2. Bats fly randomly with velocity m1 at position xi with a frequency
fmin, with varying wavelength k and loudness A0 to search for
prey. They can automatically adjust the wavelength (or fre-
quency) of their emitted pulses and adjust the rate of pulse
emission r 2 [0,1], depending on the proximity of their target;
Fig. 11. Power World simulation of IEEE 14
3. Although the loudness can vary in many ways, we assume that
the loudness varies from a large (positive) A0 to a minimum
constant value Amin.

Generally frequency f is selected in the range of [fmin, fmax]
corresponding to the wavelength range of [kmin,kmax]. For example
frequency in the range of [20 kHz,500 kHz] corresponds to wave-
lengths of range of 0.7–17 mm. The ranges can be chosen freely
to suit different applications.

Bat motion
Bat position xi and velocity vi in a d-dimensional search space at

a time step ‘t’ are updated using (23)–(25).

fi ¼ fmin þ ðfmax � fminÞb ð23Þ

mtþ1
i ¼ mit þ ðxt

i � x�Þfi ð24Þ

Xtþ1
i ¼ xt

i þ v t
i ð25Þ

where b 2 [0,1] is a random vector drawn from a uniform distribu-
tion. Here ‘x’ is the current global best location (solution) which is
located after comparing all the solutions among all the ‘n’ bats at
bus system for 536 case 1 with LP-FB.



Table 3
Comparison of results with different methods for three loss models of New England 39 bus system.

Generator bus no. Power generations in MW without loss case 1 Power Generations in MW with concentrated
loss case 2

Power generations in MW with distributed loss
case 3

LP approach
fixed bids

GA approach Bat linear
bids

LP approach
fixed bids

GA approach Bat linear
bids

LP approach
fixed bids

GA approach Bat linear
bids

Fixed bids Linear
bids

Fixed bids Linear
bids

Fixed bids Linear
bids

30 220 300.48 300.48 86.38 220 300.48 300.48 86.38 220 197.65 197.65 280.22
31 (Slack bus) 609.2 609.1 609.1 650.53 643.3 638.55 638.55 685.33 612.614 609.05 609.05 663.69
32 750 653.35 653.35 639.20 750 653.35 653.35 639.20 750 673.53 673.53 735.62
33 650 654.67 654.67 610.65 650 654.67 654.67 610.65 653.414 654.67 654.67 628.68
34 608 548.78 548.78 599.42 608 548.78 548.78 599.42 608 437.19 437.19 607.96
35 605 577.6 577.6 668.01 605 577.6 577.6 668.01 605 700.43 700.43 476.48
36 406 382.18 382.18 414.63 406 382.18 382.18 414.63 406 387.45 387.45 489.03
37 640 506.97 506.97 588.80 640 506.97 506.97 588.80 640 567.92 567.92 394.13
38 777.3 818.64 818.64 900.59 777.3 818.64 818.64 900.59 804.612 853.99 853.99 880.96
39 885 1098.68 1098.68 992.23 885 1098.68 1098.68 992.23 885 1099.73 1099.73 1024.07
System loss (MW) 34.14 29.45 29.45 34.79 34.14 31.17 31.17 30.37
Fuel cost ($/hr) 82080.92 81086.69 62351.02 61930.4 82461.48 81415.38 62686.57 62336.00 82542.22 81569.19 62847.49 62792.68
ISO payment to

generator ($/hr)
83023.089 70538.12 71427.7 55108.18 83403.645 70098.32 72062.12 55792.75 83484.39 70024.2 70905.26 55105.19

Generator profit
($/hr)

942.169 �10548.56 9076.68 �6822.21 942.165 �11317.06 9375.54 �6543.24 942.17 �11544.98 8057.77 �7687.49

Load payment to
ISO ($/hr)

86633.59 68639.58 69529.15 53248.3 86633.59 68528.46 70501.73 54342.14 86633.59 68473.59 69359.15 53700.44

ISO profit ($/hr) 3610.50 �1898.54 �1898.54 �1859.87 3229.945 �1569.85 �1560.39 -1450.6 3149.2 �1550.61 �1546.11 �1404.74
Social surplus ($/hr) 4552.669 �12447.11 7178.14 �8682.09 4172.11 �12886.92 7815.15 �7993.85 4091.37 �13095.6 6511.66 �9092.23
Iterations 267 188 267 188 188 50
CPU time (sec) 151.179 109.936 113.642 9.138 115.506 10.827

Fu
el

 c
os

t (
$/

hr
)

Fig. 12. Fuel cost comparison for case 1 of New England 39 bus system.
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Fig. 13. Fuel cost comparison for case 2 of New England 39 bus system.
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Fig. 14. Fuel cost comparison for case 3 of New England 39 bus system.
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each iteration ‘i’. As the product kifi is the velocity increment, we can
use fi (or ki) to adjust the velocity change while fixing the other fac-
tor ki (or fi), depending on the type of the problem of interest. In this
paper fmin = 0 and fmax = 1 are used. Initially, each bat is randomly
assigned a frequency which is drawn uniformly from [fmin, fmax].

For the local search part, once a solution is selected from among
the current best solutions, a new solution for each bat is generated
locally using random walk

xnew ¼ xold þ eAt ð26Þ

where e is a random number vector drawn from [�1,1], while
At ¼ hAt

i i is the average loudness of all the bats at this time step.
The update of the velocities and positions of bats have some

similarity to the procedure in the standard particle swarm
optimization, as fi essentially controls the pace and range of the
movement of the swarming particles. To a degree, BA can be con-
sidered as a balanced combination of the standard particle swarm
optimization and the intensive local search controlled by the loud-
ness and pulse rate.

In this method power generations of generators (PGi) except
slack bus are taken as the control variables in the chromosomes.
The problem is formulated as minimizing the objective function
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Fig. 15. LMP’s comparison for case 1 of New England 39 bus system.
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(9) subjected to (10) or (14) as equality and (15) as inequality
constraints.

Loudness and pulse emission
Furthermore, the loudness Ai and the rate ri of pulse emission

have to be updated accordingly as the iterations proceed. As the
loudness usually decreases once a bat has found its prey, while
the rate of pulse emission increases, the loudness can be chosen
as any value of convenience. For example, we can use A0 = 100
and Amin = 1. For simplicity, we can also use A0 = 1 and Amin = 0,
assuming Amin = 0 means that a bat has just found the prey and
temporarily stop emitting any sound. Now we have

Atþ1
i ¼ aAt

i ; r
t
i ¼ r0

i ½1� expð�ctÞ� ð27Þ

where a and c are constants. For any 0 < a < 1 and c > 0, we have

At
i ! 0; rt

i ! r0
i ; as t !1 ð28Þ

In the simplest case, we can use a = c, and we have used a = c = 0.9
in our simulations. Bat algorithm is very promising for solving non-
linear global optimization problems.

Constraints handling
Constraints are handled by using penalty function approach. If

an individual Sj is a feasible solution and satisfies all constraints,
Table 4
LMP’s at all buses for all models of New England 39 bus system.

Bus
no.

LMP’s at all buses ($/MW h)

Without loss model case 1 Concentrated loss mode

LP approach
fixed bids

GA approach Bat linear
bids

LP approach
fixed bids

GA a

Fixed
bids

Linear
bids

Fixed
bids

1 14.09 11.16 11.3 8.65 14.09 11.1
2 14.09 11.16 11.3 8.65 14.09 11.0
3 14.09 11.16 11.3 8.65 14.09 11.2
4 14.09 11.16 11.3 8.65 14.09 11.2
5 14.09 11.16 11.3 8.65 14.09 11.1
6 14.09 11.16 11.3 8.65 14.09 11.1
7 14.09 11.16 11.3 8.65 14.09 11.2
8 14.09 11.16 11.3 8.65 14.09 11.2
9 14.09 11.16 11.3 8.65 14.09 11.2

10 14.09 11.16 11.3 8.65 14.09 11.0
11 14.09 11.16 11.3 8.65 14.09 11.1
12 14.09 11.16 11.3 8.65 14.09 11.1
13 14.09 11.16 11.3 8.65 14.09 11.1
14 14.09 11.16 11.3 8.65 14.09 11.1
15 14.09 11.16 11.3 8.65 14.09 11.2
16 14.09 11.16 11.3 8.65 14.09 11.1
17 14.09 11.16 11.3 8.65 14.09 11.2
18 14.09 11.16 11.3 8.65 14.09 11.2
19 14.09 11.16 11.3 8.65 14.09 10.9
20 14.09 11.16 11.3 8.65 14.09 10.9
21 14.09 11.16 11.3 8.65 14.09 11.1
22 14.09 11.16 11.3 8.65 14.09 10.9
23 14.09 11.16 11.3 8.65 14.09 11.0
24 14.09 11.16 11.3 8.65 14.09 11.1
25 14.09 11.16 11.3 8.65 14.09 11.0
26 14.09 11.16 11.3 8.65 14.09 11.1
27 14.09 11.16 11.3 8.65 14.09 11.2
28 14.09 11.16 11.3 8.65 14.09 10.9
29 14.09 11.16 11.3 8.65 14.09 10.8
30 14.09 11.16 11.3 8.65 14.09 11.0
31 11.16 11.16 11.3 11.55 11.16 11.1
32 14.09 11.16 11.3 8.65 14.09 11.0
33 11.24 14.06 14.2 8.65 11.24 13.8
34 14.09 11.16 11.3 8.65 14.09 10.9
35 14.09 11.16 11.3 8.65 14.09 10.9
36 14.09 11.16 11.3 8.65 14.09 11.0
37 14.09 11.16 11.3 8.65 14.09 11.0
38 14.09 11.16 11.3 8.65 14.09 10.8
39 14.09 11.16 11.3 8.65 14.09 11.1
its fitness will be measured by taking the reciprocal of the fuel cost
function, or else it needs to be penalized. Using the exterior penalty
function approach, the violated operating constraints are incorpo-
rated as penalties in objective function.

Calculate the fitness function, FF = 100/(1 + J + penalties).The
penalties are calculated for (10) or (14), (11) and slack bus power
if they are violated as follows:
l case 2 Distributed loss model case 3

pproach Bat linear
bids

LP approach
fixed bids

GA approach Bat linear
bids

Linear
bids

Fixed
bids

Linear
bids

4 11.46 8.92 14.09 11.14 11.28 8.79
8 11.39 8.82 14.09 11.08 11.22 8.70
2 11.54 8.93 14.09 11.21 11.36 8.81
4 11.57 8.95 14.09 11.24 11.39 8.83
8 11.51 8.89 14.09 11.18 11.33 8.76
6 11.48 8.86 14.09 11.16 11.30 8.73
4 11.56 8.95 14.09 11.24 11.38 8.82
6 11.58 8.97 14.09 11.26 11.40 8.85
1 11.53 8.98 14.09 11.21 11.35 8.85
7 11.39 8.76 14.09 11.06 11.21 8.62

11.42 8.80 14.09 11.09 11.24 8.66
11.42 8.80 14.09 11.1 11.24 8.66
11.42 8.80 14.09 11.1 11.24 8.66

8 11.5 8.87 14.09 11.17 11.32 8.75
3 11.55 8.90 14.09 11.22 11.36 8.79
9 11.51 8.84 14.09 11.17 11.32 8.74
1 11.53 8.88 14.09 11.19 11.34 8.78
3 11.55 8.91 14.09 11.22 11.36 8.81
6 11.27 8.59 14.09 10.99 11.13 8.52
6 11.27 8.59 14.09 10.99 11.13 8.52
3 11.45 8.75 14.09 11.09 11.23 8.66
8 11.30 8.57 14.09 10.92 11.06 8.49
0 11.32 8.60 14.09 10.95 11.09 8.48
9 11.52 8.84 14.09 11.17 11.32 8.74
4 11.36 8.75 14.09 11.03 11.17 8.68
1 11.43 8.77 14.09 11.08 11.23 8.69
0 11.53 8.87 14.09 11.18 11.33 8.78
6 11.28 8.56 14.09 10.92 11.06 8.50
5 11.16 8.43 14.09 10.8 10.94 8.37
8 11.39 8.82 14.09 11.08 11.22 8.70
6 11.48 11.76 11.16 11.16 11.3 11.63
7 11.39 8.76 14.09 11.06 11.21 8.62
6 14.17 8.59 11.24 13.89 14.03 8.52
6 11.27 8.59 14.09 10.99 11.13 8.52
8 11.3 8.57 14.09 10.92 11.06 8.49
0 11.32 8.6 14.09 10.95 11.09 8.48
4 11.36 8.75 14.09 11.03 11.17 8.68
5 11.16 8.43 14.09 10.8 10.94 8.37
7 11.49 8.98 14.09 11.17 11.32 8.85
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Fig. 16. Convergence characteristics comparison of GA and BA for case 3 of New
England 39 bus system.
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Penalty function for line flows:

pcost_f = lambda_f(k) � df � (|pflow(k)| � limit)2.

Penalty function for power balance:

pcost_error= lambda_error � (error)2.

Penalty function for slack bus power:
Fig. 17. Power World simulation of New Englan
pcost_s = lambda_s � ds � (pgen (nslack) � s_limit)2.

where lambda_f(k), df, lambda_error, lambda_s, ds are all con-
stant values and are maintained same value for all the three loss
cases in each test system. This constraint handling procedure is
same in GA and BA.

Pseudo code

Initialize the bat population xi (i = 1, 2, . . . ,n) and vi

Initialize frequencies fi, pulse rates ri and the loudness Ai

while (t < Max number of iterations)
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions (23)–(25)
Select a solution among the best solutions
if (rand > ri)
Generate a local solution around the selected best solution
end if
Evaluate new solutions
if (rand < Ai & f(xi) < f(x�))
Accept the new solutions
Increase ri and reduce Ai

end if
Rank the bats and find the current best x�

end while
d 39 bus system for 650 case 2 with LP-FB.
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Once the convergence is arrived at:

(i) Calculate the energy price of the reference bus either with fixed
bids or with linear bids and then calculate LMP’s at all buses
using (17) and the decomposition of LMP using (18)–(20).

(ii) Calculate ISO payments to generators (Ri power generation
at bus i � LMP at bus i) and then calculate generator profit
(ISO payment to generators-fuel cost).

(iii) Calculate load payment to ISO (Ri load at bus i � LMP at bus
i), and ISO profit (load payment to ISO–ISO payment to
generators) for all the cases.

(iv) Finally calculate the Social Welfare or Social surplus (Gener-
ator profit + ISO profit) for all loss cases.

BA flow chart

Fig. 3 represents flow chart of all the steps involved in Bat
algorithm.

Results and discussion

The developed BA based DCOPF for cases 1–3 for LMP estimation
are applied on IEEE 14 bus system [27], New England 39 bus system
[24] and 75 bus Indian power system [34]. GA parameters used are
Population size: 40, number of bits for each generator in the
chromosome: 12, Elitism probability: 0.15, Crossover probability:
Table 5
Comparison of results with different methods for three loss models of 75 bus Indian pow

Generator bus
no.

Power generations in MW without loss case 1 Power generation
loss case 2

LP
approach
fixed bids

GA approach Bat
linear
bids

LP
approach
fixed bids

GA a

Fixed
bids

Linear
bids

Fixe
bids

1 (Slack bus) 684.2 730.05 730.05 814.56 795.367 793.

2 360 282.52 282.52 353.64 360 282.
3 280 279.93 279.93 260.10 280 279.
4 185 189.87 189.87 198.09 185 189.
5 25 25.0 25.0 25.00 25 25.0
6 220 219.95 219.95 199.70 220 219.
7 160 159.96 159.96 159.24 160 159.
8 180 179.96 179.96 179.00 180 179.
9 505.92 201.59 201.59 358.29 525 201.
10 180 179.96 179.96 179.40 180 179.
11 209 208.95 208.95 208.98 209 208.
12 775 1106.8 1106.8 1045.55 775 1106
13 1000 999.76 999.76 931.97 1000 999.
14 250 249.94 249.94 249.03 250 249.
15 554 553.87 553.87 405.49 554 553.
System loss

(MW)
130.247 63.5

Fuel cost
($/hr)

56097.0356 55981.2 48528.21 48141.71 57347.664 5669

ISO payment
to
generator
($/hr)

60239.80 63277.41 61718.34 64529.94 63427.678 6508

Generator
profit
($/hr)

4142.7644 7296.2 13190.12 16388.22 6080.014 8392

Load payment
to ISO
($/hr)

60859.55 62641.35 61093.03 63878.68 62641.35 6524

ISO profit
($/hr)

619.75 �636.06 �625.3 �651.26 �786.328 153.

Social surplus
($/hr)

4762.51 6660.14 12564.82 15736.96 5293.686 8546

Iterations 396 125
CPU time

(sec)
897.928 236.978
0.85, Mutation probability: 0.01, Tolerance: 0.0001. BA parameters
used are Population size: 25 (10–25), Loudness: 0.25 (0–1), Pulse
rate: 0.5 (0–1), fmin = 0, fmax = 0.02, a = 0.9, c = 0.9. IEEE 14 bus
system has 2 generators, 39 bus system has 10 generators and 75
bus system has 15 generators. The solution reported is the best
solution over 20 different runs. The proposed BA-LB is compared
with GA-LB, GA-FB and LP-FB for all the three cases. After the spot
prices have been obtained using the above approaches, ISO pay-
ments to generators, Load payments to ISO, generator profit, ISO
profit and Social surplus (Social welfare) have been computed.

Case study 1: IEEE 14 bus test system

IEEE 14 bus system [27] has 2 generators, 17 lines and 3 trans-
formers. Results for all the cases are presented in Tables 1 and 2.
For the base case loading, i.e., 259 MW only 9th line connecting
4–9 buses is congested with all approaches whose shadow price
is 91.747 $/MW h for case 1 and 109.253 $/MW h for cases 2 and
3. The corresponding generator power outputs are listed in Table 1.
Spot prices at all buses are presented in Table 2. From Table 1, it
can be observed that BA-LB gives the most optimal fuel cost for
cases 1, 2 and 3 and it can also be illustrated that slack bus power
in distributed loss model is reduced than in concentrated loss
model and burden on the slack generator is removed. As this study
of spot pricing is a real time study; the CPU time of the algorithm is
also an important parameter which should also be taken care of by
er system.

s in MW with concentrated Power generations in MW with distributed loss
case 3

pproach Bat linear
bids

LP
approach
fixed bids

GA approach Bat
linear
bids

d Linear
bids

Fixed
bids

Linear
bids

64 793.64 902.698
(Limit
violated)

786.682 785.98 785.98 798.79

52 282.52 353.64 360 270.41 270.41 225.73
93 279.93 260.10 280 279.93 279.93 278.28
87 189.87 198.09 193.683 199.02 199.02 199.72

25.0 25.00 25 75.95 75.95 32.68
95 219.95 199.70 220 219.95 219.95 189.25
96 159.96 159.24 160 159.96 159.96 159.13
96 179.96 179.00 180 179.96 179.96 179.30
59 201.59 358.29 525 305.5 305.5 447.66
96 179.96 179.40 180 179.96 179.96 179.77
95 208.95 208.98 209 208.95 208.95 208.50
.8 1106.8 1045.55 775 962.5 962.5 1090.54

76 999.76 931.97 1000 999.76 999.76 997.32
94 249.94 249.03 250 249.94 249.94 249.93
87 553.87 405.49 554 553.87 553.87 438.56
9 63.59 88.135 130.247 63.58 63.58 106.516

6.62 49237.91 49175.81 58070.319 57376.59 49569.53 49557.2

9.39 65660.11 70079.86 63395.79 65166.35 65469.86 66910.11

.77 16422.2 20904.05 5325.471 7789.75 15900.32 17352.83

3.39 65814.16 70428.97 62641.35 65218.56 65519.71 67138.81

99 153.94 349.11 �754.44 52.21 49.84 228.692

.76 16576.14 21253.16 4571.031 7841.96 15950.17 17581.52

396 125 312 60
672.491 114.817 703.208 118.389
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Fig. 20. Fuel cost comparison for case 3 of 75 bus Indian power system.
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the system operator. The CPU time of convergence with BA is much
less than GA and moreover Social surplus or social welfare is also
improved with BA as compared to other methods in all the loss
cases. If the difference in the fuel cost is small, then system
operator chooses a method which consumes less CPU time. So in
this connection BA gains more priority than GA and hence BA
can be considered as better algorithm for spot pricing problem.
Figs. 4–6 present a comparison of fuel cost for all the three loss
cases. Figs. 7–9 show the spot price comparison for cases 1, 2
and 3. From these figures it can be observed that due to congestion
in the line 4–9, LMP at 4th bus is minimum and LMP at 9th bus is
maximum, thus a large variation in LMPs can be observed. Fig. 10
shows the convergence characteristics of GA and BA. Fig. 11 shows
the Power World simulation of case 1 with LP-FB.

Fig. 10 shows that GA takes 68 iterations for convergence where
as BA converges only in 10 iterations; and CPU time per iteration is
also very less for BA than for GA. So, total convergence time with
BA is drastically reduced.

The simulation diagrams of LP-FB with Power World simulator
for cases 2 & 3 are similar to Fig. 11; and therefore they are not
shown here. In Fig. 11 for the congested line (1 line is overloaded
i.e., 4–9 line), loading is indicated in red color.

Case study 2: New England 39 bus test system

This system is a 345 kV transmission system in New England
having 10 generators, 34 lines and 12 transformers. For this system
also congestion occurred for base case loading (6150.5 MW) only.
The generation dispatch for New England 39 bus system [24] is
presented in Table 3. For all the three cases of loss in LP-FB
approach (Power World simulation) lines 37 and 39 connecting
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Fig. 18. Fuel 676 cost comparison for case 1 of 75 bus Indian power system.
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Fig. 19. Fuel cost comparison for case 2 of 75 bus Indian power system.

Bus no.s

Fig. 21. LMP’s comparison 686 for case 1 of 75 bus Indian power system.
buses (6–31), (19–33) respectively are congested, whereas in
GA-FB and in GA-LB methods, line 39 is only congested and in
BA-LB, line 37 is congested for all the three loss cases. Figs. 12–
14 show the comparison of fuel cost. In this system also BA-LB
gives minimum fuel cost and convergence time is also very less
with BA as compared with GA for without loss, concentrated loss
and distributed loss models. Prices are also calculated at all buses
and are presented in Table 4. Fig. 15 shows the nodal prices com-
parison of case 1. Due to congestion in the system, LMP’s at buses
31 and 33 are different, indicating large variation in prices. Fig. 16
shows the convergence characteristics comparison of GA and BA.
Fig. 17 shows the Power World simulation of case 2 with LP-FB.
From Table 3 it is observed that slack bus generation in distributed
loss model is reduced than in concentrated loss model and there-
fore burden on slack generator is removed. The shadow price for
both the congested lines is 2.9 $/MW h for cases 1, 2 and 3.

Bus spot price comparison graphs of cases 2 & 3 are as similar as
Fig. 15, for which data is provided in Table 4 and hence they are not
shown here. In Fig. 15 in all the methods, the LMP’s for the buses
except at the congested buses are same due to the absentia of loss
price in the LMP components.

GA takes 188 iterations to converge the OPF problem whereas
BA converges only in 50 iterations as is shown by Fig. 16. Therefore
the net execution time of BA reduces, and this makes the Indepen-
dent System Operator (ISO) to calculate the prices of the buses in
less time than with GA.

In Fig. 17 for the congested lines (2 lines congested) loading is
indicated in red color.1 Fig. 17 illustrates that the total system loss
1 For interpretation of color in Fig. 17, the reader is referred to the web version of
this article.
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Fig. 22. Convergence characteristics comparison of GA and BA for case 3 of 75 bus
Indian power system.
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is added to the slack bus 31 as an extra load to consider the effect of
concentrated loss in the simulation. Similarly cases 1 & 3 are also
simulated with Power World Simulators.

Case study 3: 75 bus Indian power system

The developed algorithms are also tested on 75 bus Indian
power system (Uttar Pradesh State Electricity Board data i.e.,
400 kV, 220 kV and 132 kV grid data) [34]. This system has 15 gen-
erators, 72 lines and 24 transformers. For base case loading of this
system 9th line connecting 4–28 buses shows congestion for all the
Fig. 23. Power World simulation of 75 bus Ind
three cases of losses with all methods. The corresponding results
are listed in Table 5. The spot prices at all buses are also calculated
but not shown here. The fuel cost comparison graphs for cases 1, 2
and 3 are shown in Figs. 18–20 respectively. Fig. 21 shows the spot
prices comparison for case 1 and this graph implies that due to
congestion in the line 4–28, LMP at 4th bus undergoes a large var-
iation. Convergence characteristics of GA and BA is represented in
Fig. 22. Fig. 23 shows Power World simulation of case 3 with LP-FB.
This case study also, highlighted that BA approach with linear bids
of generators minimizes the total fuel cost of the system and
improves the Social surplus of the system. Slack generator power
in distributed loss model is comparatively reduced than in concen-
trated loss model. The shadow price of congested line is 3.35
$/MW h for case 1, 3.67 $/MW h for case 2 and 3.7 $/MW h for case 3.

From the above Table 5 it can be observed that in case 2, bat lin-
ear bids, slack bus generation violated the maximum limit which is
the major drawback of case 2 pointed out in this paper. In case 3,
bat linear bids, slack bus generation sets within its limits.

Bus spot price comparison graphs of cases 2 & 3 are also similar
as Fig. 21 and are not shown here. In Fig. 21 in all the methods, the
LMP’s for all the buses except at the 4th bus are same due to the
absentia of loss price in the LMP components.

From Fig. 22 it is revealed that GA converges in 312 iterations
but BA converges only in 60 iterations. Thus it can be concluded
that convergence time of OPF with BA is significantly reduced. This
helps the system operator to analyze the situation satisfactorily
and quickly.

In Fig. 23 for the congested line (100% loaded line i.e., 4–28
line), loading is indicated in red color. In Fig. 23 the system loss
is distributed to all the generators and the circuit is modeled as
an equivalent model of distributed loss system in Power World
ian power system for case 3 with LP-FB.
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Simulator and then the simulation is carried out. The simulations
for cases 1 & 2 are also simulated in a similar manner using Power
World Simulator.

From Tables 1, 3 and 5 it was observed that generator profits,
ISO profits and Social surplus are negative in some cases. This is
because, the objective function of this problem is fuel cost minimi-
zation and in the process of minimizing the fuel cost alone, param-
eters like generator profit, ISO profit and Social surplus are found to
be negative. These negative values can be removed, when consum-
ers are modeled as elastic consumers while modifying the objec-
tive function as social welfare maximization for LMP calculation.
From the results of all the test systems it was also observed that
BA-LB gives the most optimal fuel cost, improved Social Welfare
compared to others for all the three cases. The advantage of using
linear bid over fixed bid is, it recovers true marginal cost of slack
generator or energy price for determining spot price. As mentioned
in case 3 of ‘Spot price calculation with different loss cases’, in con-
centrated loss model it is not feasible to add total system loss to
slack generator which may create a burden on slack generator or
slack generator may violate its limit. So distributed loss model is
also proposed in this paper, in which total system loss is distrib-
uted among all the generators, and hence burden on slack genera-
tor is removed. It is observed that, slack bus generation in
distributed loss model is reduced than in concentrated loss model
for all the test systems studied in this paper.

Conclusion

This paper proposed Bat algorithm based DCOPF for evaluating
the spot prices in pool based electricity market. It presented a
transmission pricing scheme to recover congestion cost, loss cost
and some percentage of existing system cost using LP-FB, GA-FB,
GA-LB and BA-LB methods with different loss cases during conges-
tion in the system in a pool type electricity market. Nodal prices
have been estimated for all loss cases of the system. The product
of difference in LMP’s of two ends of a line with line flow recovers
the sum of congestion price and loss price of that particular line
and sum of this amount on all the lines in the system forms mer-
chandising surplus or transmission opportunity cost. This amount
is kept with ISO as ISO profit, and utilized for future transmission
expansion. The generator profit and Social surplus have also been
evaluated. Bat algorithm with linear generator bids evolves as a
better optimization algorithm for LMP estimation in the power sys-
tems. This study also explored the effect of type of generator bids
and various loss models on spot prices. Distributing loss to all gen-
erators (distributed loss model), rather than concentrating at slack
generator removes the burden on slack generator. Further, consid-
ering generator linear bids leads to true fuel cost of generators.
Spot prices with linear bids are calculated to avoid the nonsmooth
nature of bid curve in fixed bids. Finally this paper concludes that,
Bat algorithm based on DCOPF with generator linear bids exhibits
reliable convergence with reduced fuel cost and improved Social
Welfare of the system in most of the loss cases for all test systems
studied and can assist the system operator in obtaining correct
economic signals during congestion in the transmission system.

Appendix A
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