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Abstract: Numerical analysis is performed to study the conjugate heat transfer effects on the
transient free convective couple stress fluid flow over a vertical slender hollow circular cylinder
with the inner surface at a constant temperature. A set of non-dimensional governing equations
namely, the continuity, momentum and energy equations is derived and these equations are
unsteady non-linear and coupled. An unconditionally stable Crank-Nicolson type of implicit
finite difference scheme is employed to obtain the discretised forms of governing equations.
These equations are solved using the Thomas and pentadiagonal algorithms. The numerical
results are compared and found to be in good agreement with previously published results as
special cases of the present investigation. Transient velocity and temperature profiles, average
skin-friction coefficient (Cf ) and average Nusselt number (Nu) are shown graphically. In all
these profiles it is observed that the time required for the variables to reach the steady-state
increases with the increasing values of conjugate-conduction parameter (P ) and Prandtl number.
In the vicinity of the hot wall, the velocity and temperature of the fluid decrease as P increases.
It is noticed that the steady-state values of Cf and Nu decreases as P increases.
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1 Introduction

Unsteady natural convective flow of a viscous
incompressible fluid is an important problem relevant to
many engineering applications. The exact solution for this
type of non-linear problems is still out of reach. Sparrow
and Gregg (1956) provided the first approximate solution
for the laminar buoyant flow of air bathing a vertical
cylinder heated with a prescribed surface temperature,
by applying the similarity method and power series
expansion. Minkowycz and Sparrow (1974) obtained the
solution for the same problem using the non-similarity
method. While Fujii and Uehara (1970) analysed the
local heat transfer results for arbitrary Prandtl numbers.
Lee et al. (1988) investigated the similar problem along
slender vertical cylinders and needles for the power-law
variation in the wall temperature. In general, Bottemanne
(1972) studied the combined effect of heat and mass
transfer in the steady laminar boundary layer of a vertical
cylinder for air and water vapour. Recently, Rani and Kim
(2008) investigated the unsteady effects for the similar
problem with temperature dependent viscosity. These types
of problems have great importance in many physical
situations such as the starting and shutting down of gas
turbines, recuperative and regenerative heat exchangers
and cooling passages in power reactors. In the glass and
polymer industries, hot filaments, which are considered as
a vertical cylinder, are cooled as they pass through the
surrounding environment. In most of these situations, the
temperature distribution in the fluid is mutually coupled to
the temperature distribution in the solid body over which
the fluid flows.

It can be observed that in the previous investigations
the wall conduction resistance in the case of convective
heat transfer between a solid cylinder wall and a fluid
flow is generally neglected, i.e., the wall is assumed to
be very thin and there is no conduction from the cylinder
wall. But in many practical problems the information
on the interfacial temperature is essential because the
heat transfer characteristics are mainly determined by
the temperature differences between the bulk flow and
the interface. In order to take the account of physical
reality, there has been a proclivity to move away from
considering idealised mathematical problems in which the
bounding wall is considered to be infinitesimally thin.
Thus the conduction in solid wall and the convection
in the fluid should be determined simultaneously. This
type of convective heat transfer is referred to as a
conjugate heat transfer (CHT) process and it arises
due to the finite thickness of the wall. These type of
problems have many practical applications, particularly
those related to energy conservation in buildings, cold
storage installations and cryogenic applications, such as
medical and space technology and studied extensively
(Gdalevich and Fertman, 1977; Miyamoto et al., 1980; Char
et al., 1990; Pop and Na, 2000; Kaya, 2011).

These type of CHT problems have the growing
importance in non-Newtonian fluids. They have application
in modern technology and industries. Some important

fields where couple stress fluids have applications includes
squeezing and lubrication (Chu et al., 2006; Lin, 1998;
Naduvinamani and Patilm 2009; Chang-Jian et al., 2010),
bio-fluidmechanics (Srivastava, 1986, 2003), MHD flows
and synthesis and plasticity of chemical compounds.
Another interesting application was studied by Umavathi
and Malashetty (1999) for the flow and heat transfer
characteristics of Oberbeck convection of a couple stress
fluid in a vertical porous stratum. Recently, Rani et al.
(2011) obtained the numerical solution for the transient free
convective couple stress fluid flow past a vertical cylinder.
Stokes (1966) generalised the classical Newtonian model
to include the effect of couple stresses in a way different
from that of Eringen (1966). This is one among the several
non-Newtonian fluid theories that are developed in the
twentieth century. In his theory Stokes considered a body
enclosing a volume without considering the microstructures
of the infinitesimal fluid volume element. The set of all
forces acting on an infinitesimal volume element is, in
general, assumed to be equivalent to a single resultant
force together with a resultant couple. The moment of
the couple is assumed to be of non-zero value. With this
assumption Stokes has proposed the theory of couple stress
fluids allowing for the sustenance of couple stresses in
addition to the usual stresses. Also, in his theory, curvature
twist rate tensor is proposed based on the pure kinematic
aspects of rotation vector and couple stress is defined in
terms of this curvature twist rate tensor. Accordingly, in
the balance of linear momentum of the couple stress flow
model, fourth order derivatives of velocities are involved
and, hence, separate angular momentum equation need not
be considered. These fluids can also sustain the existence
of body forces as usual and in addition by body couples as
well. The stress tensor is no longer symmetric in this theory.
This couple stress model has been widely used because of
its great mathematical simplicity compared to that of the
other models developed for the polar fluids. Recently, the
study of couple stress fluid flows has been the subject of
great interest, due to its widespread industrial and scientific
applications as in the case of micropolar fluids.

From the previous studies, it can be noted that the
CHT on the unsteady natural convective flow of a viscous
incompressible couple stress fluid over a vertical cylinder
has received very scant attention in the literature. Hence,
in the present investigation our attention is focused on
the conjugate problem of transient free convection over
the outside surface of a vertical slender hollow cylinder
immersed in a couple stress fluid. The temperature of
the inner surface of the cylinder is kept at a constant
value which is higher than the ambient fluid temperature
and the temperature of the outer surface is determined by
the conjugate solution of the steady-state energy equation
of the solid and the boundary layer equations of the
fluid flow. The governing equations are solved numerically
by the implicit finite difference method to obtain the
transient velocity and temperature profiles, coefficient of
skin-friction and heat transfer rate for different values of
conjugate-conduction parameter and Prandtl number.
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In Section 2, a detailed description about the formulation
of the problem is given. Also, the governing equations,
such as mass, momentum and energy equations of an
incompressible couple stress fluid flow past a vertical
cylinder are derived and non-dimensionalised. In Section 3,
the details about the grid generation and numerical
methods for solving the above governing equations are
given. In Section 4, transient two-dimensional velocity and
temperature profiles, average skin-friction coefficient and
heat transfer rate and comparison between couple stress
fluid flow and Newtonian fluid flow are analysed. Finally,
the concluding remarks are made in Section 5.

2 Formulation of the problem

A natural convective couple stress fluid flow past a vertical
slender hollow cylinder of length l and outer radius r0
(l >> r0) is considered. The x-axis is measured vertically
upward along the axis of the cylinder. The origin of x
is taken to be at the leading edge of the cylinder, where
the boundary layer thickness is zero. The radial coordinate,
r, is measured perpendicular to the axis of the cylinder.
Assume that the fluid have constant physical properties and
the fluid flow is unsteady, laminar and two-dimensional.
The surrounding stationary fluid temperature is assumed to
be of ambient temperature (T∞

′). The temperature of the
inside surface of the cylinder is maintained at a constant
temperature of T0

′, where T0
′ > T∞

′. Initially, i.e., at
time t′ = 0 it is assumed that the outer surface of the
cylinder and the fluid are of the same temperature T∞

′.
As time increases (t′ > 0), the temperature of the outer
surface of the cylinder is raised to the solid-fluid interface
temperature Tw

′ and maintained at the same level for all
time t′ > 0. This temperature Tw

′ is determined by the
conjugate solution of the steady-state energy equation of
the solid and the boundary layer equations of the fluid
flow and is discussed elsewhere. Due to this temperature
difference between the outer surface of the cylinder and
surrounding fluid, there occurs a density difference which
interacts with the gravitational force and hence there occurs
a natural convection flow (Boussinesq’s approximation).
It is assumed that the effect of viscous dissipation is
negligible in the energy equation. Under these assumptions,
the boundary layer equations of mass, momentum and
energy with Boussinesq’s approximation are as follows:

∂ (ru)

∂x
+

∂ (rv)

∂r
= 0 (1)

ρ

(
∂u

∂t′
+ u

∂u

∂x
+ v

∂u

∂r

)
= ρgβ

(
T ′ − T∞

′)+ µ

r

∂

∂r

(
r
∂u

∂r

)
(2)

− η∇4u

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂r
=

α

r

∂

∂r

(
r
∂T ′

∂r

)
(3)

where η is a material constant with the dimension of
momentum and describes the couple stress fluid property.
Usually, the ratio of material constants η and µ has the
dimensions of length square, i.e., r20 (see Stokes, 1984).

Stokes (1984) proposed mainly two types of boundary
conditions, namely, the vorticity of the fluid on the
boundary is equal to the rotational velocity of the boundary
and the couple stresses vanish on the boundary. The present
problem is solved based on the former boundary condition.
In view of this, the relevant initial and boundary conditions
are given by:

t′ = 0: u = 0, v = 0, T ′ = T∞
′ for all x and r

t′ > 0: u = 0, v = 0, T ′ = Tw
′ at r = r0

u = 0, v = 0, T ′ = T∞
′ at x = 0

u → 0, v → 0, T ′ → T∞
′ as r → ∞

(4)

and,

∂u

∂r
=

∂v

∂x
at r = r0 and as r → ∞ (5)

In the above equation (4), Tw
′ represents the unknown

solid-fluid interface temperature and is determined as
follows:

The governing equation for the temperature distribution
within the slender hollow circular cylinder, based on the
simplification that the wall of cylinder constantly transfers
its heat to the surrounding fluid, is given by (Chang, 2006)

∂2Ts
′

∂r2
+

1

r

∂Ts
′

∂r
= 0; 0 ≤ x ≤ l; ri ≤ r ≤ r0 (6)

subject to
Ts

′ = T0
′ at r = ri

Ts
′ = Tw

′ = T ′ (x, r0) at r = r0 (7)

The axial conduction term in the heat conduction
equation (6) of the cylinder can be omitted according to
Chang (2006), since the outer radius of the hollow cylinder,
r0, is assumed to be small compared to its length, l.

The general solution of equation (6) along with
equation (7) is given by

Ts
′ = T0

′ + (T ′(x, r0)− T0
′)
ln(r/ri)
ln(r0/ri)

(8)

On the other hand, equation (6) is coupled with the energy
equation in the fluid region based on the condition that
the temperature and the heat flux are continuous at the
solid-fluid interface, namely

Ts
′ = T ′(x, r0),

−ks
∂Ts

′

∂r
= −kf

∂T ′(x, r0)

∂r
(9)

on r = r0

Using equations (8) and (9), the temperature distribution
Tw

′ at the interface is given by

Tw
′ = T ′(x, r0)

= r0
kf
ks
ln
(
r0
ri

)
∂T ′(x, r0)

∂r
+ T0

′ (10)

at r = r0
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In the process of the non-dimensionalisation of

equations (1) to (3), a length scale of
(

η
µ

) 1
2

is observed. In
order to simplify the formulation of the current problem the

value of
(

η
µ

) 1
2

is set to the outer radii, r0, of the hollow
cylinder.

By introducing the following non-dimensional quantities

X = Gr−1 x

r0
, R =

r

r0
, U = Gr−1ur0

ν
, (11)

V =
vr0
ν

, t =
νt′

r20
,

T =
T ′ − T∞

′

T0
′ − T∞

′ , Gr =
gβr30

(
T0

′ − T∞
′)

ν2
,

P r =
ν

α
, P =

kf
ks
ln
(
r0
ri

)
(the symbols are explained in the nomenclature) in
equations (1) to (3), they reduced to the following form:

∂U

∂X
+

∂V

∂R
+

V

R
= 0 (12)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂R

= T +
∂U

∂R

(
1

R
− 1

R3

)
+

∂2U

∂R2

(
1 +

1

R2

)
(13)

− 2

R

∂3U

∂R3
− ∂4U

∂R4

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂R
=

1

Pr

(
∂2T

∂R2
+

1

R

∂T

∂R

)
(14)

The corresponding initial and boundary conditions in
non-dimensional quantities are given by

t = 0: U = 0, V = 0, T = 0 for all X and R
t > 0: U = 0, V = 0,

T − 1 = P ∂T
∂R at R = 1

U = 0, V = 0, T = 0 at X = 0
U → 0, V → 0, T → 0 as R → ∞

(15)

Similarly, equation (5) can be changed into the following
non-dimensional form

∂U

∂R
=

1

Gr2
∂V

∂X
at R = 1 and as R → ∞ (16)

3 Numerical solution of the problem

In order to solve the unsteady coupled non-linear governing
equations (12) to (14) an implicit finite difference scheme
of Crank-Nicolson type has been employed. The finite
difference equations corresponding to equations (12) to (14)
are as follows:

Uk+1
i,j − Uk+1

i−1,j + Uk
i,j − Uk

i−1,j

∆X

+
V k+1
i,j+1 − V k+1

i,j−1 + V k
i,j+1 − V k

i,j−1

2∆R
(17)

+
V k+1
i,j + V k

i,j

[1 + (j − 1)∆R]
= 0

Uk+1
i,j − Uk

i,j

∆t
+

Uk
i,j

2∆X

(
Uk+1
i,j − Uk+1

i−1,j + Uk
i,j − Uk

i−1,j

)
+

V k
i,j

4∆R

(
Uk+1
i,j+1 − Uk+1

i,j−1 + Uk
i,j+1 − Uk

i,j−1

)
=

T k+1
i,j + T k

i,j

2
+

(
Uk+1
i,j+1 − Uk+1

i,j−1 + Uk
i,j+1 − Uk

i,j−1

4[1 + (j − 1)∆R]∆R

)

+


Uk+1
i,j−1 − 2Uk+1

i,j + Uk+1
i,j+1

+Uk
i,j−1 − 2Uk

i,j + Uk
i,j+1

2(∆R)2

 (18)

−


Uk+1
i,j+2 − 4Uk+1

i,j+1 + 6Uk+1
i,j − 4Uk+1

i,j−1 + Uk+1
i,j−2

+ Uk
i,j+2 − 4Uk

i,j+1 + 6Uk
i,j − 4Uk

i,j−1 + Uk
i,j−2

2(∆R)4



−


Uk+1
i,j+2 − 2Uk+1

i,j+1 + 2Uk+1
i,j−1 − Uk+1

i,j−2 + Uk
i,j+2

− 2Uk
i,j+1 + 2Uk

i,j−1 − Uk
i,j−2

2[1 + (j − 1)∆R](∆R)3



+


Uk+1
i,j−1 − 2Uk+1

i,j + Uk+1
i,j+1 + Uk

i,j−1

− 2Uk
i,j + Uk

i,j+1

2[1 + (j − 1)∆R]2(∆R)2
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−

(
Uk+1
i,j+1 − Uk+1

i,j−1 + Uk
i,j+1 − Uk

i,j−1

4[1 + (j − 1)∆R]3∆R

)

T k+1
i,j − T k

i,j

∆t
+

Uk
i,j

2∆X

(
T k+1
i,j − T k+1

i−1,j + T k
i,j − T k

i−1,j

)
+

V k
i,j

4∆R

(
T k+1
i,j+1 − T k+1

i,j−1 + T k
i,j+1 − T k

i,j−1

)

=


T k+1
i,j−1 − 2T k+1

i,j + T k+1
i,j+1

+T k
i,j−1 − 2T k

i,j + T k
i,j+1

2Pr(∆R)2

 (19)

+

(
T k+1
i,j+1 − T k+1

i,j−1 + T k
i,j+1 − T k

i,j−1

4Pr[1 + (j − 1)∆R]∆R

)

To solve these equations, the region of integration is
considered as a rectangle composed of the lines indicating
Xmin = 0, Xmax = 1, Rmin = 1 and Rmax = 20,
where Rmax corresponds to R = ∞ which lies very far
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from the momentum and energy boundary layers. In the
above equations (17) to (19) the subscripts i and j
designate the grid points along the X and R coordinates,
respectively, where X = i∆X and R = 1 + (j − 1)∆R
and the superscript k implies the time step along the time t,
where t = k∆t, with ∆X , ∆R and ∆t denoting the mesh
size in the X , R coordinates and along time t, respectively.
In order to obtain an economical and reliable grid system
for the computations, a grid independency test has been
performed. The steady-state velocity and temperature values
obtained with the grid system of 100× 500 differ in the
second decimal place from those with the grid system
of 50× 250, and differ in the fifth decimal place from
those with the grid system of 200× 1, 000. Hence, the grid
system of 100× 500 has been selected for all subsequent
analyses, with the mesh sizes in X and R directions taken
as 0.01 and 0.03, respectively. Also, the time step size
dependency has been tested from which ∆t = 0.01 yielded
a reliable result.

From the initial conditions given in equation (15), the
values of velocity U , V and temperature T are known
at time t = 0, then the values of T , U and V at the
next time step can be calculated by equations (12) to (14)
using the boundary conditions given in equations (15)
and (16). Generally, when the above variables are known
at t = k∆t, the variables at t = (k + 1)∆t are calculated
as follows. The finite difference equations (18) and (19)
at every internal nodal point on a particular i-level
constitute a tridiagonal and pentadiagonal system of
equations. Such a system of equations is solved by the
pentadiagonal algorithm (Rosenberg, 1969) and Thomas
algorithm (Carnahan et al., 1969). At first, the temperature
T is calculated from equation (19) at every j nodal point
on a particular i-level at the (k + 1)th time step. By
making use of these known values of T , the velocity U
at the (k + 1)th time step is calculated from equation (18)
in a similar manner. Thus, the values of T and U are
known at a particular i-level. Then, the velocity V is
calculated from equation (17) explicitly. This process is
repeated for the consecutive i-levels with many times of
sweeping until the convergence; thus the values of T , U
and V are known at all grid points in the rectangular
region at the (k + 1)th time step. This iterative procedure is
repeated for many time steps until the steady-state solution
is reached. The steady-state solution is assumed to have
been reached when the absolute difference between the
values of velocity as well as temperature at two consecutive
time steps is less than 10−5 at all grid points. The truncation
error in the employed finite difference approximation is
O(∆t2 +∆R2 +∆X) and tends to zero as ∆X , ∆R and
∆t → 0. Hence the system is compatible. Also, this finite
difference scheme is unconditionally stable and therefore,
stability and compatibility ensure the convergence.

4 Results and discussion

For the validation, the steady-state velocity and temperature
profiles in the case of Newtonian fluids are compared with
the existing numerical results of Lee et al. (1988) for
Pr = 0.7 and P = 0.0, as there are no experimental or
analytical studies available. The current results are found to
be in good agreement with the previous results as shown in
Figure 1.

Figure 1 Comparison of the velocity and temperature profiles
for Newtonian fluids
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The simulated results are presented to outline
the general physics involved in the effects
of different Pr (= 0.71, 1.0, 2.0 and 3.0) and
P (= 0.1, 0.5, 1.0 and 2.0) on the transient velocity and
temperature profiles. The simulated transient behaviour
of the dimensionless velocity, temperature, average
skin-friction coefficient and heat transfer rate are discussed
in detail in the succeeding subsections.

4.1 Velocity

The simulated transient velocities (U ) at point
(X , R) = (1, 3.47) for different values of Pr and
conjugate-conduction parameter P against t is shown
graphically in Figure 2. Figure 2(a) shows the variation of
Pr with fixed P = 0.5 and Figure 2(b) for the variation
of P with fixed Pr = 0.71. From Figures 2(a) and
2(b) it is observed that the velocities increase with time
monotonically from zero and reach temporal maxima, then
decrease and at last reach the asymptotic steady-state. For
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example, in Figure 2(a) when Pr = 0.71, the velocity
increases with time monotonically from zero and reaches
the temporal maximum, then slightly decreases with time
and becomes asymptotically steady. It is observed that
at the very early time (i.e., t << 1), the heat transfer
is dominated by conduction. Shortly later, there exists a
period when the heat transfer rate is influenced by the
effect of convection with increasing upward velocities
along the time. When this transient period is almost ending
and just before the steady-state is about to be reached,
there exist overshoots of the velocities. From Figures 3(a)
and 3(b) it can be observed that velocity profiles reach
their maximum value approximately at point (X , R) =
(1, 3.47). Similarly, the velocities at other locations also
exhibit somewhat similar transient behaviour. As noted
in Figure 2(a), the magnitude of this overshoot of the
velocities decreases as Pr is increased, since with the
increasing Pr the velocity diffusion is increased [refer
equation (13)]. Hence, there is a less resistance to the fluid
flow in the region of the temporal maximum of velocity.
The time needed to reach the temporal maximum of the
velocity increases as Pr increases. It is also noticed that
for small values of Pr the temporal maximum is reached
at early times. For all values of P , Figure 2(b reveals
that it has the same trend as the variation of velocity with
respect to Pr as shown in Figure 2(a), but the temporal
maximum is attained at an early state. In association with
the transient characteristics of the velocity, similar trends
of the temperature fluctuation can be observed and will be
described in Figure 4.

Figure 3 shows the simulated steady-state velocity
profiles against the R at X = 1.0 for different values of
Pr and P . Figure 3(a) shows the variation of Pr with
fixed P = 0.5 and Figure 3(b) for the variation of P with
fixed Pr = 0.71. From these figures it is observed that
the velocity profiles start with the value zero at the wall,
reach their maxima and then monotonically decrease to zero
along the radial coordinate. Also it is observed that in the
vicinity of the wall the magnitude of the axial velocity is
rapidly increasing as R increases from Rmin (=1). Time
required to reach the steady-state increases as Pr and P
increases. From Figure 3(a) it is observed that the velocity
decreases with increasing values of Pr because the thermal
convection is confined to a region which is near the wall for
higher values of Pr [refer to Figure 5(a)]. Thus the radial
position for the peak axial velocity moves toward the wall
as Pr is increased. From Figure 3(b) it is observed that the
effect of lower wall conductance (ks) or higher convective
cooling effect due to greater kf increases the value of P
and decreases the velocity in the vicinity of the hot wall,
i.e., in the region 1 ≤ R ≤ 7.59. While the opposite trend
is observed in the edge of the boundary layer region, i.e.,
increasing values of P leads to the higher values of velocity
therein because of an enhanced thermal transport due to
higher thermal conductivity of the fluid.

Figure 2 The simulated transient velocity at (1, 3.47)
for (a) variation of Pr and (b) variation of P
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4.2 Temperature

The simulated transient temperatures (T ) for different
values of Pr and P with respect to t is shown at the point
(1, 1.15) in Figure 4. Figure 4(a) shows the variation of
Pr with fixed P = 0.5 and Figure 4(b) for the variation
of P with fixed Pr = 0.71. From Figures 4(a) and 4(b) it
is observed that these profiles increase with time, reach a
temporal maxima, decrease and again after a slight increase
attain the steady-state asymptotically. The temperatures
at other locations also exhibit somewhat similar transient
behaviour. During the initial period, the nature of the
transient temperature profiles is particularly noticeable.
From Figure 4(a) it is observed that for small value of
Pr (= 0.71), the transient temperature profiles initially
coincide and then deviate from each other after some time.
Also, the time required to reach the temporal maximum of
the temperature increases with increasing values of Pr. It
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can be noticed that for small values of Pr the temporal
maximum is attained at an early times. Here, it is observed
that the maximum temperature value decreases with the
increasing Pr. Figure 4(b) shows that it has the same trend
as the variation of temperature with respect to Pr as shown
in Figure 4(a), but the temporal maximum is reached at an
early state for all values of P . From Figures 4(a) and 4(b)
it is noticed that during the initial time, the variation of
temperature with P is observed to be larger than that with
Pr. This result implies that the temperature field is more
strongly affected by the conjugate-conduction parameter,
since an increased value of P corresponds to a lower wall
conductance ks and promotes greater surface temperature
variations as shown in Figure 4(b).

Figure 3 The simulated steady-state velocity profile at
X = 1.0 for (a) variation of Pr and (b) variation of P
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Figure 4 The simulated transient temperature at (1, 1.15)
for (a) variation of Pr and (b) variation of P
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The simulated steady-state temperature profiles for different
values of Pr and P at X = 1.0 against the R are shown
in Figure 5. Figure 5(a) depicts the variation of Pr with
fixed P = 0.5 and Figure 5b for the variation of P with
fixed Pr = 0.71. From these figures it is observed that
the temperature profiles start with the hot wall temperature
and then monotonically decrease to zero along the radial
coordinate. As mentioned before, as Pr is increased the
thickness of the thermal boundary layer is decreased with an
increased temperature gradient near the wall, which moves
the radial position for the peak axial velocity toward the
wall. Also, the time needed for the temperature to reach
the steady-state increases as Pr and P increases. From
Figure 5(a) it is observed that the steady temperature value
decreases with increasing values of Pr for fixed P . Larger
Pr values give rise to thinner thermal boundary layer, since
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a larger Pr value means that the thermal diffusion from
the wall is not prevailing while the velocity diffusion is
noticeable even away from the wall. Figure 5(b) reveals
that it has the same trend as the variation of velocity with
respect to P as shown in Figure 3(b), i.e., in the vicinity of
the hot wall the steady temperature value decreases as the
conjugate-conduction parameter P increases. This is due to
the reason that the temperature at the solid-fluid interface
is reduced since the temperature at the inner surface of
the cylinder is kept constant. As a result the temperature
profiles as well as the velocity profiles shifts downwards in
the fluid.

Figure 5 The simulated steady-state temperature profile at
X = 1.0 for (a) variation of Pr and (b) variation of P
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4.3 Average skin-friction coefficient and heat transfer
rate

Knowing the unsteady behaviour of velocity and
temperature profiles, it is worth to study the average
skin-friction coefficient and the average heat transfer
rate (Nusselt number). The friction coefficient is an
important parameter in the heat transfer studies since it is
directly related to the heat transfer coefficient. Increased
skin-friction is generally a disadvantage in technical
applications, while the increased heat transfer can be
exploited in some applications such as heat exchangers, but
should be avoided in others such as gas turbine applications,
for instance. For the present problem these skin-friction
coefficient and heat transfer rate are derived and given in
the following equations:

The wall shear stress at the wall can be expressed as
τw =

(
µ∂u

∂r

)
r=r0

. Considering µ2Gr
ρr20

to be the characteristic
shear stress, then the non-dimensional local skin-friction
coefficient can be written as

Cf =

(
∂U

∂R

)
R=1

(20)

The integration of the equation (20) from X = 0
to X = 1 gives the following average skin-friction
coefficient.

Cf =

∫ 1

0

(
∂U

∂R

)
R=1

dX (21)

The local Nusselt number is given by Nux = ˙qwr0
kf (T0

′−T∞′) ,

where the heat transfer, ˙qw = −kf

(
∂T ′

∂r

)
r=r0

. In
non-dimensional form it can be written as

NuX = −
(
∂T

∂R

)
R=1

(22)

The integration of the above equation (22) with
respect to X from 0 to 1 yields the following average
Nusselt number.

Nu = −
∫ 1

0

(
∂T

∂R

)
R=1

dX (23)

The derivatives involved in equations (21) and (23) are
evaluated by using a five-point approximation formula
and then the integrals are evaluated by using the
Newton-Cotes closed integration formula. The simulated
average non-dimensional skin-friction and heat transfer
coefficients have been plotted against the time in
Figures 6 and 7 for different values of Pr and P .
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Figure 6 The simulated average skin-friction for
(a) variation of Pr and (b) variation of P
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The effects of Pr and P on the simulated average
skin-friction coefficient are shown in Figures 6(a) and 6(b),
respectively. From Figures 6(a) and 6(b) it is observed
that for all values of Pr and P the average skin-friction
coefficients increase at first with time, attain the peak
values and, after slight decrease, reach asymptotically
steady-state. Because the buoyancy-induced flow velocity
is relatively low at the initial transient period, as seen in
Figure 2, the wall shear stress remain small, as shown
in Figure 6. However, the wall shear stress increases as
the time proceeds, yielding an increase in the skin-friction
coefficient. It is also observed from Figure 6(a) that for
increasing values of Pr the average skin-friction coefficient
decreases. This result lies in the same line with the velocity
profiles plotted in Figure 3(a). From Figure 6(b) it is
observed that the average skin-friction coefficient decreases
as P increases. It is related to the fact that the increased

value of P decreases the velocity of the fluid within the
boundary layer, as mentioned in Figure 3(b). It is also
noticed that from Figures 6(a) and 6(b), during the initial
period, the effect of P on the dimensionless skin-friction
coefficient is considerable, though this effect is not so
stronger as the influence of Pr on the same variable. This
result means that the average skin-friction coefficient is
more strongly affected by P compared to Pr.

Figure 7 The simulated average Nusselt number
for (a) variation of Pr and (b) variation of P
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Table 1 The times needed for different variables to reach the temporal maxima and the steady-state and the maximum velocities with
different Pr and P values for (a) couple stress fluid and (b) Newtonian fluid

Pr P Temporal maximum (t) of Steady-state Maximum velocity (U)
U T time (t) at X = 1.0

(a)
0.71 0.1 7.05 6.99 13.34 0.3384
0.71 0.5 8.09 8.11 14.06 0.3045
0.71 1.0 9.14 9.24 14.78 0.2750
0.71 2.0 10.85 10.99 15.79 0.2374
1.0 0.5 8.99 9.14 14.85 0.2679
2.0 0.5 11.45 11.88 15.19 0.2039
3.0 0.5 13.39 14.12 16.79 0.1724

(b)
0.71 0.1 4.96 4.69 13.99 0.4709
0.71 0.5 6.05 5.78 14.88 0.4015
0.71 1.0 7.09 6.84 15.69 0.3494
0.71 2.0 8.69 8.39 16.78 0.2894
1.0 0.5 6.28 6.08 14.56 0.3786
2.0 0.5 7.07 6.89 14.00 0.3243
3.0 0.5 7.69 7.56 13.96 0.2898

In Figures 7(a) and 7(b) the effects of Pr and P on the
simulated average heat transfer rate are shown, respectively.
From Figures 7(a) and 7(b) it is observed that for short
period of time after t = 0, the average Nusselt numbers
are almost the same for all values of Pr and P . This
shows that initially heat conduction is dominating compared
with heat convection. Figure 7a reveals that an increase
in the value of Pr leads to a increase in the values of
the average heat transfer rate. Increasing Pr speeds up the
spatial decay of the temperature near the heated surface
together with increased flow velocity near the wall, yielding
an increase in the rate of heat transfer. From Figure 7(b)
it is observed that with the increasing values of P , i.e.,
with lower wall conductance (ks), initially, t ≤ 5.59, the
average heat transfer rate is almost same with increasing
trend. Later it decreases with increasing values of P and
attains the steady-state.

4.4 Comparison between the couple stress fluids and
Newtonian fluids

Table 1 explains the variation of couple stress fluid flow
from Newtonian fluid flow in terms of the time for the
flow variables U and T to reach the temporal maximum
and the steady-state with different Pr and P values, where
Table 1(a) tabulates the values for couple stress fluid and
Table 1(b) for Newtonian fluid. Table 1(a) shows that
the times required for all the flow variables to reach the
temporal maxima and steady-state increase with increasing
values of Pr and P . Also, from Tables 1(a) and 1(b),
we can see that with all values of Pr and P the times
for all the flow variables to reach the temporal maxima
for the couple stress fluid are larger than those for the
Newtonian fluid. It is also noticed that with increasing
values of P , the times required for all the flow variables to
reach the steady-state for the couple stress fluid are rather
smaller than those for the Newtonian fluid, which means

that the transient periods after the temporal maxima are
quite longer for the Newtonian fluid compared to those
for the couple stress fluid. While the opposite trend is
observed for Pr. Also, for all values of Pr and P it is
observed that maximum velocity occurs at X = 1.0 of
a couple stress fluid is decreased compared with that of
Newtonian fluid.

Table 2 Simulated average skin-friction coefficient (Cf ) and
Nusselt number (Nu) in steady-state with different Pr
and P values for (a) couple stress fluid and (b)
Newtonian fluid.

Pr P Cf Nu

(a)

0.71 0.1 0.1884 0.7134
0.71 0.5 0.1608 0.6989
0.71 1.0 0.1382 0.6846
0.71 2.0 0.1110 0.6629
1.0 0.5 0.1464 0.7359
2.0 0.5 0.1198 0.8144
3.0 0.5 0.1055 0.8625

(b)

0.71 0.1 1.3108 1.0878
0.71 0.5 1.0484 1.0494
0.71 1.0 0.8659 1.0113
0.71 2.0 0.6716 0.9587
1.0 0.5 1.0034 1.0933
2.0 0.5 0.8935 1.2109
3.0 0.5 0.8209 1.2979

Table 2 demonstrates the comparison between couple stress
fluid to Newtonian fluid in terms of average skin-friction
coefficient and average heat transfer rate with different
values of Pr and P , where Table 2(a) shows the values
for couple stress fluid and Table 2(b) for Newtonian fluid.
From Tables 2(a) and 2(b), it is observed that the average
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values of skin-friction coefficient and Nusselt number of a
couple stress fluid is smaller than that of the Newtonian
fluid for all values of Pr and P . In summary, Table 2
reveals that the characteristics of skin-friction and heat
transfer of a couple stress fluid differ from those of the
Newtonian fluids.

5 Conclusions

The CHT on unsteady natural convection boundary layer
flow of a couple stress, viscous, incompressible fluid
over a vertical slender hollow cylinder has been carried
out numerically. The governing equations are derived and
normalised based on the length dependent effect introduced
by the couple stress fluid flow where the biharmonic
operator is involved. A Crank-Nicolson type of implicit
method is used to solve the system of coupled governing
equations together with the tridiagonal and pentadiagonal
algorithms. The computations are carried out for different
values of Prandtl number Pr (= 0.71, 1.0, 2.0 and 3.0) and
conjugate-conduction parameter P (= 0.1, 0.5, 1.0 and 2.0).

From the present study, it is observed that the time
elapsed for the velocity and temperature profiles to reach
the temporal maximum increases with increasing values
of Pr and P . Time required to reach the steady-state
increases as Pr and P increases. It is observed that the
velocity, temperature and average skin-friction coefficient
of the fluid decreases with increasing values of Pr. In the
vicinity of the hot wall, the velocity and temperature of the
fluid decreases as P increases. It is also noticed that the
steady-state values of average heat transfer rate decreases
with increasing P and decreasing Pr.

Acknowledgements

The authors are thankful to the reviewers for their valuable
suggestions and comments to improve the quality of the
manuscript.

References
Bottemanne, F.A. (1972) ‘Experimental results of pure and

simultaneous heat and mass transfer by free convection about
a vertical cylinder for Pr = 0.71 and Sc = 0.63’, Appl.
Scientific Research, Vol. 25, pp.372–382.

Carnahan, B., Luther, H.A. and Wilkes, J.O. (1969) Applied
Numerical Methods, John Wiley Sons, New York.

Chang, C. (2006) ‘Buoyancy and wall conduction effects on
forced convection of micropolar fluid flow along a vertical
slender hollow circular cylinder’, Int. J. Heat Mass Trans.,
Vol. 49, No. 25, pp.4932–4942.

Chang-Jian, C., Yau, H. and Chen, J. (2010) ‘Nonlinear
dynamic analysis of a hybrid squeeze-film damper-mounted
rigid rotor lubricated with couple stress fluid and active
control’, Applied Mathematical Modelling, Vol. 34, No. 9,
pp.2493–2507.

Char, M.I., Chen, C.K. and Cleaver, J.W. (1990) ‘Conjugate
forced convection heat transfer from a continuous moving
flat sheet’, Int. J. Heat Fluid Flow, Vol. 11, No. 3,
pp.257–261.

Chu, H.M., Li, W.L. and Hu, S.Y. (2006) ‘Effects of couple
stresses on pure squeeze EHL motion of circular contacts’,
J. Mech., Vol. 22, No. 1, pp.77–84.

Eringen, A.C. (1966) ‘Theory of micropolar fluids’, J. Math.
Mech., Vol. 16, pp.1–18.

Fujii, T. and Uehara, H. (1970) ‘Laminar natural convective heat
transfer from the outer surface of a vertical cylinder’, Int. J.
Heat Mass Trans., Vol. 13, No. 3, pp.607–615.

Gdalevich, L.B. and Fertman, V.E. (1977) ‘Conjugate problems
of natural convection’, Inzh-Fiz. Zh., Vol. 33, No. 3,
pp.539–547.

Kaya, A. (2011) ‘Effects of buoyancy and conjugate heat
transfer on non-Darcy mixed convection about a vertical
slender hollow cylinder embedded in a porous medium with
high porosity’, Int. J. Heat Mass Trans., Vol. 54, No. 4,
pp.818–825.

Lee, H.R., Chen, T.S. and Armaly, B.F. (1988) Natural
convection along slender vertical cylinders with variable
surface temperature, ASME J. Heat Trans., Vol. 110, No. 1,
pp.103–108.

Lin, J. (1998) ‘Squeeze film characteristics of finite journal
bearings: couple stress fluid model’, Tribology International,
Vol. 31, No. 4, pp.201–207.

Minkowycz, W.J. and Sparrow, E.M. (1974) ‘Local nonsimilar
solutions for natural convection on a vertical cylinder’,
ASME J. Heat Trans., Vol. 96, No. 2, pp.178–183.

Miyamoto, M., Sumikawa, J., Akiyoshi, T. and Nakamura, T.
(1980) ‘Effects of axial heat conduction in a vertical flat
plate on free convection heat transfer’, Int. J. Heat Mass
Trans., Vol. 23, No. 11, pp.1545–1553.

Naduvinamani, N.B. and Patil, S.B. (2009) ‘Numerical solution of
finite modified Reynolds equation for couple stress squeeze
film lubrication of porous journal bearings’, Computers and
Structures, Vol. 87, pp.1287–1295.

Pop, I. and Na, T.Y. (2000) ‘Conjugate free convection over
a vertical slender hollow cylinder embedded in a porous
medium’, Heat Mass Trans., Vol. 36, No. 5, pp.375–379.

Rani, H.P. and Kim, C.N. (2008) ‘Transient free convection
flow over an isothermal vertical cylinder with temperature
dependent viscosity’, Korean J. Chem. Eng., Vol. 25, No. 1,
pp.34–40.

Rani, H.P., Reddy, G.J. and Kim, C.N. (2011) ‘Numerical analysis
of couple stress fluid past an infinite vertical cylinder’,
Engineering Applications of Computational Fluid Mechanics,
Vol. 5, No. 2, pp.159–169.

Sparrow, E.M. and Gregg, J.L. (1956) ‘Laminar free convection
heat transfer from the outer surface of a vertical circular
cylinder’, ASME J. Heat Trans., Vol. 78, pp.1823–1829.

Srivastava, L.M. (1986) ‘Peristaltic transport of a couple stress
fluid’, Rheol Acta, Vol. 25, No. 6, pp.638–641.

Srivastava, V.P. (2003) ‘Flow of a couple stress fluid representing
blood through stenotic vessels with a peripheral layer’,
Indian Journal of Pure and Applied Mathematics, Vol. 34,
No. 12, pp.1727–1740.

Stokes, V.K. (1966) ‘Couple stress in fluids’, Physics Fluids,
Vol. 9, No. 9, pp.1709–1715.



The effect of the conjugate-conduction parameter and Prandtl number 327

Stokes, V.K. (1984) Theories of Fluids with Microstructure,
Springer-Verlag, New York, Tokyo.

Umavathi, J.C. and Malashetty, M.S. (1999) ‘Oberbeck
convection flow of a couple stress fluid through a vertical
porous stratum’, Int. J. Non-Linear Mech., Vol. 34, No. 6,
pp.1037–1045.

Von Rosenberg, D.U. (1969) Rosenberg, Methods for the
Numerical Solution of Partial Differential Equations,
American Elsevier Publishing Company, New York.

Nomenclature

Cf Dimensionless average skin-friction coefficient
Cf Dimensionless local skin-friction coefficient
g Acceleration due to gravity
Gr Grashof number
kf , ks Thermal conductivity of the fluid and the

solid cylinder, respectively
l Length of the cylinder
Nu Dimensionless average Nusselt number
NuX Dimensionless local Nusselt number
P Conjugate-conduction parameter
Pr Prandtl number
r Radial coordinate
ri, r0 Inner and outer radii of the hollow cylinder,

respectively
R Dimensionless radial coordinate
t′ Time
t Dimensionless time
T0

′ Temperature at the inside surface of the cylinder
Ts

′ Solid temperature
T ′ Temperature of the fluid
T Dimensionless temperature of the fluid
u, v Velocity components in x, r directions, respectively
U, V Dimensionless velocity components in X ,

R directions, respectively
x Axial coordinate
X Dimensionless axial coordinate

Greek letters

α Thermal diffusivity
β Volumetric coefficient of thermal expansion
η Material constant
ρ Density
µ Viscosity of the fluid
ν Kinematic viscosity

Subscripts

w Conditions on the wall
∞ Free stream conditions

Superscript

k Time step level
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