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Abstract In the present study, artificial neural network

(ANN) approach was used to predict the stress–strain curve

of near beta titanium alloy as a function of volume frac-

tions of a and b. This approach is to develop the best

possible combination or neural network (NN) to predict the

stress–strain curve. In order to achieve this, three different

NN architectures (feed-forward back-propagation network,

cascade-forward back-propagation network, and layer

recurrent network), three different transfer functions (pu-

relin, Log-Sigmoid, and Tan-Sigmoid), number of hidden

layers (1 and 2), number of neurons in the hidden layer(s),

and different training algorithms were employed. ANN

training modules, the load in terms of strain, and volume

fraction of a are the inputs and the stress as an output.

ANN system was trained using the prepared training set (a,

16 % a, 40 % a, and b stress–strain curves). After training

process, test data were used to check system accuracy. It is

observed that feed-forward back-propagation network is

the fastest, and Log-Sigmoid transfer function is giving the

best results. Finally, layer recurrent NN with a single

hidden layer consists of 11 neurons, and Log-Sigmoid

transfer function using trainlm as training algorithm is

giving good result, and average relative error is

1.27 ± 1.45 %. In two hidden layers, layer recurrent NN

consists of 7 neurons in each hidden layer with trainrp as

the training algorithm having the transfer function of Log-

Sigmoid which gives better results. As a result, the NN is

founded successful for the prediction of stress–strain curve

of near b titanium alloy.

Keywords Artificial neural network (ANN); Stress–

strain curve; Titanium alloys

1 Introduction

The increasing range of application of titanium alloys is

due to their very good combinations of high strength to

weight ratio, low density, exceptional corrosion-resisting

properties, etc. They are heat treatable and hot or cold

deformable [1, 2] and has gained more and more applica-

tions in many fields [3–5]. Over the past decades, many

new titanium-based materials have been developed for

different ranges of application. When titanium alloys are

subjected to different heat treatments, they will produce

different microstructures (volume fraction of a, grain size

and shape of a). With different percentages of a and b
phases, several metastable microstructures can be formed.

Thus, it is formed with the integration of several physical

properties, functional performances, and processing prop-

erties [6]. It is well known [7–9] that the mechanical

properties of titanium alloys depend essentially on the

characteristics of the microstructure. However, because of

different percentages of a and b phases, a lot of funds and

time will be wasted by experiments. In order to reduce

these numerical methods, soft computing techniques are

adopted to get the required properties. In order to achieve

this, some of the investigators used finite element method

(FEM) to get the stress–strain curve based on the stress–

strain curve of the individual phases [10–13].

Recently, with the developments of artificial intelli-

gence, researchers have a great deal of attention to the

solution of nonlinear problems in mechanical properties of

alloys. Sha and Edwards [14] explained the use of artificial

neural networks (ANN) in materials science-based
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research. Many of the researchers carried the work in the

field of mechanical properties predicted by using ANN

[15–18]. The main aim of this work was to design a model

of ANN for prediction of the stress–strain curve of near

beta titanium alloy as a function of volume fractions of a
and b.

2 Artificial neural network (ANN)

ANN is a mathematical model consisting of a number of

interconnected processing elements organized into layers;

the geometry and functionality of which were likened to

that of the human brain. Typically neural networks (NN)

are adjusted or trained, so that a particular input leads to a

specific target output [19, 20]. The training of NN is based

on a comparison of the output and the target, until the

network output matches the target. In general, many such

input/target pairs are used to train a network. That means

for reliable training and performance of any NN, we need

an appropriate database. Using such a database, we can

train NN to perform complex functions.

Commonly, NN modeling follows these steps: database

collection; analysis and preprocessing of the data; training

of the neural network—this includes the choice of archi-

tecture, training functions, training algorithms, and

parameters of network; test of trained network; using

trained NN for simulation and prediction.

In general, the network has one input layer, one hidden

layer, and one output layer. The input layer consists of

independent variables. In the present study, they are strain

and the volume fraction of in the microstructure. Infor-

mation from the input layer is then processed in the course

of one hidden layer; following which output vector (stress)

is computed in the final (output) layer. A schematic

description of the layers used in the present study is given

in Fig. 1. In developing an ANN model, the available

dataset is divided into two sets; one is to be used for

training of the network, and the remaining is to be used to

verify the utility and capability of the network. For

example, the architecture of ANN becomes 2-[10]1-1,

where 2 corresponds to the input values, 10 the number of

hidden layer neurons and 1 the output (stress). In order to

relieve the training difficulty and balance the importance of

each parameter during the training process, the examina-

tional data were normalized.

It is recommended that the data be normalized between

slightly offset values such as 0.1 and 0.9. One way to scale

input and output variables in interval [0.1, 0.9] is as

Pn ¼ 0:1þ 0:9� 0:1ð Þ � P�Pminð Þ= Pmax�Pminð Þ ð1Þ

where Pn is the normalized value of P; Pmax and Pmin are

the maximum and minimum values of P, respectively.

After the neural network was trained, tested, and simulated,

it is necessary for the simulating data to be un-normalized

corresponded with normalization. The unnormalized

method is as

P ¼ Pn� 0:1ð Þ � Pmax�Pminð Þ= 0:9� 0:1ð Þ þ Pmin ð2Þ

where P is the unnormalized value of Pn.

3 Methodology

3.1 Experimental data used for training

Initially, the alloy was developed in the vacuum arc

remelting furnace. The chemical composition is shown in

Table 1. Then the ingot was processed thermo-mechani-

cally (forging and rolling); finally solution was treated at

different temperatures in order to get different volume

fractions of a and b. The blanks were cut from the work

piece, then tested in ultimate tensile strength in order to get

the stress–strain curve according to ASTM standard E-99.

In order to train the network, four stress–strain curves

are used, in which three stress–strain curves (b, 84 % b and

60 % b) of Ti–10 V–4.5Fe–3Al were measured experi-

mentally, and stress–strain curve of a was obtained from

Ref [10]. Figure 2 shows the stress–strain curves which are

used in this work.

3.2 Working platform

MATLAB platform was used to train and test the ANN.

Among the various kinds of ANN approaches, the mul-

tilayer perceptron architecture with back-propagation

learning algorithm becomes the most popular in

Fig. 1 Schematic representation of an artificial neural network

Table 1 Chemical composition of Ti–10V–4.5Fe–3Al alloy(wt%)

V Al Fe O N P C S Ti

9.6–10.0 3.0–3.2 4–5 0.11 0.009 0.01 0.02 0.001 Bal.
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engineering applications; hence, two back-propagation

(feed-forward back-propagation network and cascade-for-

ward back-propagation network) and layer recurrent net-

works were used in the present work. The architecture of

these three networks is shown in Fig. 3. For the transfer

(or activation) function, different choices are possible

[20]; the step and sign transfer functions are often used

for classification and pattern recognition tasks; the sig-

moid function transforms the input, which can have any

value (also plus or minus infinity), into a value in the

range between 0 and 1; the linear activation function

provides an output equal to the neuron weighted input: it

is often used for linear approximation problems. One of

the most common choices for the transfer function is the

step function and the sigmoid. Figure 4 shows the transfer

functions and their corresponding equations. The mean

square error (MSE) is considered as a measurement cri-

terion for a training set. Table 2 shows the different

parameters in the simulation. Table 3 shows the neural

networks combinations with different types of neural

network and transfer functions.

4 Results and discussion

During the training period, the MSE decreases with the

number of iterations increasing. After training, the stress–

strain curves of 18 % and 24 % volume fraction of a
curves are calculated and compared with the experimental

results, presented in Table 4. The formula for MSE is as

follows:

MSE ¼
Xn

i¼1

Ŷ � Y
� �2 ð3Þ

where i is the number of iterations from 1 to n; Y is pre-

dicted value and Ŷ is true value.

Figure 5 shows the average relative errors for different

neural networks. From Fig. 5 it is observed that for Net-

works 1, 3, 7, 9, 10, 12, 17 and 18, the average relative

error is less than 10 %, but for Networks 1, 9, 12, 17 and

Fig. 3 Architecture of neural networks: a cascade-forward back-

propagation network, b feed-forward back-propagation network, and

c layer recurrent network

Fig. 4 Transfer functions: a Tan-Sigmoid transfer function, b Log-

Sigmoid transfer function, and c Purelin transfer function

Table 2 List of parameters used in neural networking

ANN parameters

Network type: feed-forward back-propagation network, cascade-

forward back-propagation network and layer recurrent network

Number of hidden layers: 1 and 2

Number of neurons: 10 (1st hidden layer) and 1 (2nd hidden layer)

Transfer function: tan-Sigmoid, Log-Sigmoid and Purelin

Training algorithm: trainlm

Best performance: MSE

Fig. 2 Stress-strain curves of Ti–10V–4.5Fe–3Al at different volume

fractions
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18, the standard deviation between the data points is within

5 %. Generally, triple layered networks give the best

accuracy as compared with the two layer networks, in the

present investigation, most cases obey the same. Tan-Sig-

moid and Log-Sigmoid transfer functions are giving the

better results as compared with Purelin transfer function in

two and three layer neural networks. The average relative

error is calculated by the following equation.

Average relative error

¼
Xn

t¼1

ðDifference between actual and predictedÞ � 100

Actual

� �" #,
n

ð4Þ

Table 5 contains average relative error and standard devi-

ation (SD) between errors. From above observations

(Table 5), Network 18 is selected as the best network based

on the average relative error. Thus, triple layer–layer

recurrent neural with Logisg transfer function gives the

best result. Network 18 is 2-[10]1-[1]2-1. The training plot,

performance plot, and regression plot in the training, test-

ing, validation, and combined are shown in Figs. 6, 7, and

8, respectively, for the Network 18, and also the compar-

ison between the experimental calculated curve and ANN

Fig. 5 Error variation plot

Table 3 List of neural networks (different neural networks and transfer functions)

Network Nos. Network details Network type Transfer function

1 2-[10]1-1 Cascade-forward back propagation Tan-Sigmoid

2 2-[10]1-1 Feed-forward back propagation Tan-Sigmoid

3 2-[10]1-1 Layer recurrent Tan-Sigmoid

4 2-[10]1-1 Cascade-forward back propagation Purelin

5 2-[10]1-1 Feed-forward back propagation Purelin

6 2-[10]1-1 Layer recurrent Purelin

7 2-[10]1-1 Cascade-forward back propagation Log-Sigmoid

8 2-[10]1-1 Feed-forward back propagation Log-Sigmoid

9 2-[10]1-1 Layer recurrent Log-Sigmoid

10 2-[10]1-[1]2-1 Cascade-forward back propagation Tan-Sigmoid

11 2-[10]1-[1]2-1 Feed-forward back propagation Tan-Sigmoid

12 2-[10]1-[1]2-1 Layer recurrent Tan-Sigmoid

13 2-[10]1-[1]2-1 Cascade-forward back propagation Purelin

14 2-[10]1-[1]2-1 Feed-forward back propagation Purelin

15 2-[10]1-[1]2-1 Layer recurrent Purelin

16 2-[10]1-[1]2-1 Cascade-forward back propagation Log-Sigmoid

17 2-[10]1-[1]2-1 Feed-forward back propagation Log-Sigmoid

18 2-[10]1-[1]2-1 Layer recurrent Log-Sigmoid

Table 4 Network training results

Network Nos. Iterations Time/s Best performance

(MSE)

1 236 5 0.0002

2 61 1 0.0007

3 42 23 0.0005

4 16 1 0.0615

5 9 1 0.0545

6 8 5 0.0602

7 21 1 0.0614

8 72 1 0.0006

9 60 33 0.0005

10 116 4 0.0003

11 44 1 0.0006

12 190 237 0.0004

13 1,000 30 0.0200

14 44 1 0.0004

15 46 71 0.0459

16 52 1 0.0010

17 80 2 0.0004

18 105 131 0.0004
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model predicted curve for the titanium alloy at two volume

fractions of a, i.e., 18 % and 24 %, is shown in Fig. 9.

From Table 6, it is observed that all single hidden layer

(SHL) ANNs with Tan-Sigmoid and Purelin transfer func-

tions give medium and high average relative errors and

standard deviation, respectively, as compared with double

hidden layer (DHL) ANN networks. Layer recurrent NN with

Logsig transfer function gives consistent results as compared

with other combinations (Avg. relative error and SD are low).

Layer recurrent NN with Logsig transfer function was

used for the further analysis. In the training, increased

number of neurons (5–25) in the hidden layer was used to

define the output accurately. The number of hidden layers

is also increased to two hidden layers; in each hidden layer,

the number of neurons is varied. After training the network

successfully, it was tested by using the known data. Sta-

tistical methods were used to compare the results produced

by the network. Table 7 shows the list of parameters.

Table 8 shows the analysis of results.

The networks from 1 to 10 consist of only one hidden

layer, in which the number of hidden neurons varies from 5

to 25. The MSE is very less, i.e., in the range of

0.0002–0.0007 for the networks 1–10 (Fig. 10). The aver-

age relative error for each network is also shown in Fig. 11.

The Network 7 gives the best results (Fig. 11). It is clearly

seen in Table 7 that the time taken for the simulation is

nearly 1,220 s, and the MSE is also 0.0002.

The networks from 11 to 17 consist of two hidden lay-

ers. The number of neurons in the hidden is varied, and the

results are shown in Table 8. Networks 13, 14, and 16 are

predicting the stress–strain curve with an average relative

error nearly 3 %. From these networks, network number 16

is selected as the best network for the prediction of the

stress–strain curve. Figures 12 and 13 show the comparison

between the predicted and measured stress–strain curves of

Ti alloy at 18 % and 24 % of a. These plots represent the

comparison between the measured and ANN calculated

curves with the use of Network 7.

Another attempt is that the training algorithm was

changed in the Network 16 (i.e., double layer–layer

recurrent neural network) in order to get the further

improvement in predicting the output result. Table 8 shows

Fig. 6 NN training tool for Network 17

Fig. 7 Performance plot for Network 17

Table 5 Errors compared with experimental results

Network Nos. Average relative error/% SD

1 7.4 5.7

2 11.8 8.7

3 9.1 6.7

4 30.3 22.3

5 30.0 22.1

6 30.5 22.2

7 8.1 7.3

8 13.5 10.4

9 6.7 5.4

10 9.2 7.1

11 13.4 11.3

12 6.1 4.3

13 16.2 15.5

14 12.5 6.9

15 12.4 6.4

16 11.9 14.4

17 6.3 4.3

18 5.1 4.0
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the parameters used in the network models. Table 9 shows

the ANN training results with different training algorithms.

Table 10 represents the list of other parameters used in

neural networks. Figure 14 shows the comparison of

average relative errors with its standard deviation values

for different training algorithms. It is observed from

Fig. 14 that along with trainlm another two training algo-

rithms are giving good results. Those are traincgp and

trainrp. The MSE value is very small for these three

algorithms as compared with others. Figure 15 shows the

Fig. 8 Regression plot for Network 17: a training, R = 0.99816; b validation, R = 0.99781; c test, R = 0.99848; d all, R = 0.99813

Fig. 9 Experimental versus predicted curve a 18 % and b 24 % volume fraction of a
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Fig. 10 Graph between mean square error versus network number

Fig. 11 Graph between average error versus network number

Table 6 Overall comparison

Network type Tan-Sigmoid Purelin Log-Sigmoid

SHL DHL SHL DHL SHL DHL

Cascade-forward

back propagation

ARE/% 7.4 9.2 30.3 16.2 8.1 11.9

SD 5.7 7.1 22.3 15.5 7.3 14.4

Feed-forward back

propagation

ARE/% 11.8 13.4 30.0 12.5 13.5 6.3

SD 8.7 11.3 22.1 6.9 10.4 4.3

Layer recurrent ARE/% 9.1 6.1 30.5 12.4 6.7 5.1

SD 6.7 4.3 22.2 6.4 5.4 4.0

Table 7 Network parameters used for determination of optimum

number of neurons

ANN parameters

Network type: layer recurrent network

Number of hidden layers: 1 and 2

Number of neurons: 5–25 (1st hidden layer) and 1–7 (2nd hidden

layer)

Transfer function: Log-Sigmoid

Training algorithm: trainlm

Best performance: mean square error (MSE)

Table 8 Analysis of results

Nos. Hidden neurons Average relative error/% SD Epochs Time/s MSE

One hidden layer

1 5 4.38 3.49 40 21 0.0006

2 6 3.52 2.59 41 22 0.0005

3 7 9.24 7.26 212 116 0.0003

4 8 11.01 9.89 197 112 0.0003

5 9 8.92 8.25 60 35 0.0008

6 10 6.70 5.40 60 33 0.0005

7 11 1.27 1.45 220 1221 0.0002

8 15 6.10 5.59 55 73 0.0004

9 20 6.10 5.52 74 151 0.0004

10 25 5.52 4.08 174 527 0.0003

Two hidden layers

11 1…1 31.84 22.39 23 27 0.0632

12 1…5 17.37 22.41 53 67 0.0403

13 5…5 3.08 3.38 104 194 0.0004

14 7…5 3.71 4.76 246 346 0.0002

15 5…7 9.62 10.67 215 299 0.0003

16 7…7 2.06 2.10 53 71 0.0004

17 5…10 13.63 12.95 491 690 0.0001
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comparison of ANN predicted stress–strain curve with its

corresponding experimental and FEM predicted stress–

strain curves at two different volume fractions of a.

Another interesting observation is that trainlm gives the

acceptable results in less time as compared with other two

training algorithms.

From these observations, it is observed that the best

network is a layer recurrent neural network having two

hidden layers consisting of 7 neurons in each, and the

training algorithm is trainrp, and the transfer function is

Log-Sigmoid. Figure 15 shows the comparison between

the predicted and calculated stress–strain curves at two

Fig. 13 Comparison between calculated and measured stress–strain

curves of titanium alloy at 24 % volume fraction of a
Fig. 14 Average error versus NN with different training algorithms

Table 9 Training results on NN with different training algorithms

Nos. Training algorithm Average relative error/% SD Epochs Time/s MSE

1 BFGS QN 14.05 12.57 56 77 0.0151

2 Conjugate 5.21 4.84 108 180 0.0023

3 Traincfg 17.15 11.68 44 64 0.0413

4 Traincgp 3.22 2.50 182 273 0.0008

5 Traingd 28.52 17.07 1,000 685 0.0581

6 Traingdm 26.26 14.74 1,000 691 0.0812

7 Traingda 28.39 20.04 124 84 0.0603

8 Traingdx 18.16 16.60 156 102 0.0264

9 Trainoss 19.55 17.81 34 44 0.0269

10 Trainr 9.91 8.47 100 125 0.0980

11 Trainrp 1.47 1.12 391 283 0.0006

12 Trainlm 2.06 2.10 53 71 0.0004

Table 10 Network parameters used for determination of better

training algorithm

ANN parameters

Network type: layer recurrent network

Number of hidden layers: 2

Number of neurons: 7 (1st hidden layer) and 7 (2nd hidden layer)

Transfer function: Log-Sigmoid

Training algorithm: BFGS, Conjugate, Traincfg, Traincgp,

Traingd, Traingdm, Traingda, Traingdx, Trainoss, Trainr, Trainrp,

Trainlm

Best performance: MSE

Fig. 12 Comparison between calculated and measured stress–strain

curves of titanium alloy at 18 % volume fraction of a

256 S. Gangi Setti, R. N. Rao

123 Rare Met. (2014) 33(3):249–257



different volume fractions of a (18 % and 24 %) using

ANN Network 11 from Table 9.

5 Conclusion

The generalization ability is its main quality indicator of a

neural network, and also another ability to predict accurately

the output of unseen test data. Levenberg–Marquardt training

algorithm with feed-forward back-propagation neural network

is one of the fastest computational methods for predicting

stress–strain curve with an acceptable accuracy (average rel-

ative error\(8 ± 2) %). The Log-Sigmoid transfer function

is giving good results as compared with the Tan-Sigmoid and

purelin. The layer recurrent neural network is accurately pre-

dicted with a trainlm as the training function consists of a SHL

having 7 hidden neurons with a Log-Sigmoid transfer function

(average relative error well within (1 ± 0.5) %). In two hid-

den layer neural network, layer recurrent neural network

consists of 7 neurons in each hidden layer, and the training

algorithm is trainrp with Log-Sigmoid transfer function

(average relative error well within (2 ± 1) %).
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