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Abstract In the present study, artificial neural network
(ANN) approach was used to predict the stress—strain curve
of near beta titanium alloy as a function of volume frac-
tions of o and B. This approach is to develop the best
possible combination or neural network (NN) to predict the
stress—strain curve. In order to achieve this, three different
NN architectures (feed-forward back-propagation network,
cascade-forward back-propagation network, and layer
recurrent network), three different transfer functions (pu-
relin, Log-Sigmoid, and Tan-Sigmoid), number of hidden
layers (1 and 2), number of neurons in the hidden layer(s),
and different training algorithms were employed. ANN
training modules, the load in terms of strain, and volume
fraction of o are the inputs and the stress as an output.
ANN system was trained using the prepared training set (o,
16 % o, 40 % o, and B stress—strain curves). After training
process, test data were used to check system accuracy. It is
observed that feed-forward back-propagation network is
the fastest, and Log-Sigmoid transfer function is giving the
best results. Finally, layer recurrent NN with a single
hidden layer consists of 11 neurons, and Log-Sigmoid
transfer function using trainlm as training algorithm is
giving good result, and average relative error is
1.27 &+ 1.45 %. In two hidden layers, layer recurrent NN
consists of 7 neurons in each hidden layer with trainrp as
the training algorithm having the transfer function of Log-
Sigmoid which gives better results. As a result, the NN is
founded successful for the prediction of stress—strain curve
of near B titanium alloy.
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1 Introduction

The increasing range of application of titanium alloys is
due to their very good combinations of high strength to
weight ratio, low density, exceptional corrosion-resisting
properties, etc. They are heat treatable and hot or cold
deformable [1, 2] and has gained more and more applica-
tions in many fields [3-5]. Over the past decades, many
new titanium-based materials have been developed for
different ranges of application. When titanium alloys are
subjected to different heat treatments, they will produce
different microstructures (volume fraction of o, grain size
and shape of o). With different percentages of o and
phases, several metastable microstructures can be formed.
Thus, it is formed with the integration of several physical
properties, functional performances, and processing prop-
erties [6]. It is well known [7-9] that the mechanical
properties of titanium alloys depend essentially on the
characteristics of the microstructure. However, because of
different percentages of o and P phases, a lot of funds and
time will be wasted by experiments. In order to reduce
these numerical methods, soft computing techniques are
adopted to get the required properties. In order to achieve
this, some of the investigators used finite element method
(FEM) to get the stress—strain curve based on the stress—
strain curve of the individual phases [10-13].

Recently, with the developments of artificial intelli-
gence, researchers have a great deal of attention to the
solution of nonlinear problems in mechanical properties of
alloys. Sha and Edwards [14] explained the use of artificial
neural networks (ANN) in materials science-based

@ Springer


www.editorialmanager.com/rmet

250

S. Gangi Setti, R. N. Rao

research. Many of the researchers carried the work in the
field of mechanical properties predicted by using ANN
[15-18]. The main aim of this work was to design a model
of ANN for prediction of the stress—strain curve of near
beta titanium alloy as a function of volume fractions of o
and B.

2 Artificial neural network (ANN)

ANN is a mathematical model consisting of a number of
interconnected processing elements organized into layers;
the geometry and functionality of which were likened to
that of the human brain. Typically neural networks (NN)
are adjusted or trained, so that a particular input leads to a
specific target output [19, 20]. The training of NN is based
on a comparison of the output and the target, until the
network output matches the target. In general, many such
input/target pairs are used to train a network. That means
for reliable training and performance of any NN, we need
an appropriate database. Using such a database, we can
train NN to perform complex functions.

Commonly, NN modeling follows these steps: database
collection; analysis and preprocessing of the data; training
of the neural network—this includes the choice of archi-
tecture, training functions, training algorithms, and
parameters of network; test of trained network; using
trained NN for simulation and prediction.

In general, the network has one input layer, one hidden
layer, and one output layer. The input layer consists of
independent variables. In the present study, they are strain
and the volume fraction of in the microstructure. Infor-
mation from the input layer is then processed in the course
of one hidden layer; following which output vector (stress)
is computed in the final (output) layer. A schematic
description of the layers used in the present study is given
in Fig. 1. In developing an ANN model, the available
dataset is divided into two sets; one is to be used for
training of the network, and the remaining is to be used to
verify the utility and capability of the network. For
example, the architecture of ANN becomes 2-[10];-1,

Volume fraction of o |7
",

Strain

Stress ——{ 2 )

LA
Output layer
Hidden layer

Fig. 1 Schematic representation of an artificial neural network
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where 2 corresponds to the input values, 10 the number of
hidden layer neurons and 1 the output (stress). In order to
relieve the training difficulty and balance the importance of
each parameter during the training process, the examina-
tional data were normalized.

It is recommended that the data be normalized between
slightly offset values such as 0.1 and 0.9. One way to scale
input and output variables in interval [0.1, 0.9] is as

P,=0.14 (09—-0.1) X (P—Pmin)/(Pmax—Pmin) (1)

where P, is the normalized value of P; P, and P, are
the maximum and minimum values of P, respectively.
After the neural network was trained, tested, and simulated,
it is necessary for the simulating data to be un-normalized
corresponded with normalization. The unnormalized
method is as

P= (P,—0.1) X (Pmax—Pmin)/(0.9 — 0.1) + P (2)

where P is the unnormalized value of P,,.

3 Methodology
3.1 Experimental data used for training

Initially, the alloy was developed in the vacuum arc
remelting furnace. The chemical composition is shown in
Table 1. Then the ingot was processed thermo-mechani-
cally (forging and rolling); finally solution was treated at
different temperatures in order to get different volume
fractions of o and B. The blanks were cut from the work
piece, then tested in ultimate tensile strength in order to get
the stress—strain curve according to ASTM standard E-99.

In order to train the network, four stress—strain curves
are used, in which three stress—strain curves (5, 84 % [ and
60 % B) of Ti—10 V-4.5Fe-3Al were measured experi-
mentally, and stress—strain curve of o0 was obtained from
Ref [10]. Figure 2 shows the stress—strain curves which are
used in this work.

3.2 Working platform

MATLAB platform was used to train and test the ANN.
Among the various kinds of ANN approaches, the mul-
tilayer perceptron architecture with back-propagation
learning algorithm becomes the most popular in

Table 1 Chemical composition of Ti—-10V—4.5Fe-3Al alloy(wt%)

\ Al Fe O N P C S Ti

9.6-10.0 3.0-32 4-5 0.11 0.009 0.01 0.02 0.001 Bal.
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engineering applications; hence, two back-propagation
(feed-forward back-propagation network and cascade-for-
ward back-propagation network) and layer recurrent net-
works were used in the present work. The architecture of
these three networks is shown in Fig. 3. For the transfer
(or activation) function, different choices are possible
[20]; the step and sign transfer functions are often used
for classification and pattern recognition tasks; the sig-
moid function transforms the input, which can have any
value (also plus or minus infinity), into a value in the
range between O and 1; the linear activation function
provides an output equal to the neuron weighted input: it
is often used for linear approximation problems. One of
the most common choices for the transfer function is the
step function and the sigmoid. Figure 4 shows the transfer
functions and their corresponding equations. The mean
square error (MSE) is considered as a measurement cri-
terion for a training set. Table 2 shows the different
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Fig. 2 Stress-strain curves of Ti-10V—4.5Fe—3Al at different volume
fractions
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Fig. 3 Architecture of neural networks: a cascade-forward back-
propagation network, b feed-forward back-propagation network, and
¢ layer recurrent network
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Fig. 4 Transfer functions: a Tan-Sigmoid transfer function, b Log-
Sigmoid transfer function, and ¢ Purelin transfer function

Table 2 List of parameters used in neural networking

ANN parameters

Network type: feed-forward back-propagation network, cascade-
forward back-propagation network and layer recurrent network

Number of hidden layers: 1 and 2

Number of neurons: 10 (1st hidden layer) and 1 (2nd hidden layer)
Transfer function: tan-Sigmoid, Log-Sigmoid and Purelin
Training algorithm: trainlm

Best performance: MSE

parameters in the simulation. Table 3 shows the neural
networks combinations with different types of neural
network and transfer functions.

4 Results and discussion

During the training period, the MSE decreases with the
number of iterations increasing. After training, the stress—
strain curves of 18 % and 24 % volume fraction of o
curves are calculated and compared with the experimental
results, presented in Table 4. The formula for MSE is as
follows:

n

=3 [y-v) (3)

i=1

MSE

where i is the number of iterations from 1 to n; Y is pre-
dicted value and Y is true value.

Figure 5 shows the average relative errors for different
neural networks. From Fig. 5 it is observed that for Net-
works 1, 3, 7, 9, 10, 12, 17 and 18, the average relative
error is less than 10 %, but for Networks 1, 9, 12, 17 and
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Table 3 List of neural networks (different neural networks and transfer functions)

Network Nos. Network details

Network type

Transfer function
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Cascade-forward back propagation
Feed-forward back propagation
Layer recurrent

Cascade-forward back propagation
Feed-forward back propagation
Layer recurrent

Cascade-forward back propagation
Feed-forward back propagation
Layer recurrent

Cascade-forward back propagation
Feed-forward back propagation
Layer recurrent

Cascade-forward back propagation
Feed-forward back propagation
Layer recurrent

Cascade-forward back propagation
Feed-forward back propagation

Layer recurrent

Tan-Sigmoid
Tan-Sigmoid
Tan-Sigmoid
Purelin
Purelin
Purelin
Log-Sigmoid
Log-Sigmoid
Log-Sigmoid
Tan-Sigmoid
Tan-Sigmoid
Tan-Sigmoid
Purelin
Purelin
Purelin
Log-Sigmoid
Log-Sigmoid
Log-Sigmoid

18, the standard deviation between the data points is within
5 %. Generally, triple layered networks give the best
accuracy as compared with the two layer networks, in the
present investigation, most cases obey the same. Tan-Sig-
moid and Log-Sigmoid transfer functions are giving the
better results as compared with Purelin transfer function in

Table 4 Network training results

Network Nos. Iterations Time/s Best performance

(MSE)
1 236 5 0.0002
2 61 1 0.0007
3 42 23 0.0005
4 16 1 0.0615
5 9 1 0.0545
6 5 0.0602
7 21 1 0.0614
8 72 1 0.0006
9 60 33 0.0005
10 116 4 0.0003
11 44 1 0.0006
12 190 237 0.0004
13 1,000 30 0.0200
14 44 1 0.0004
15 46 71 0.0459
16 52 1 0.0010
17 80 2 0.0004
18 105 131 0.0004
@ Springer

two and three layer neural networks. The average relative
error is calculated by the following equation.

Average relative error

t=1

B [i { (Difference between actual and predicted) x 100}} / ;

(4)

Table 5 contains average relative error and standard devi-
ation (SD) between errors. From above observations
(Table 5), Network 18 is selected as the best network based
on the average relative error. Thus, triple layer—layer
recurrent neural with Logisg transfer function gives the
best result. Network 18 is 2-[10];-[1],-1. The training plot,
performance plot, and regression plot in the training, test-
ing, validation, and combined are shown in Figs. 6, 7, and
8, respectively, for the Network 18, and also the compar-
ison between the experimental calculated curve and ANN

60
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40
30+
20

uf 1] {}H 1t

-10 L 1 1
0 5 10 15 20

Network number

Average relative error / %

Fig. 5 Error variation plot
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Table 5 Errors compared with experimental results

Network Nos. Average relative error/% SD

1 7.4 5.7
2 11.8 8.7
3 9.1 6.7
4 30.3 22.3
5 30.0 22.1
6 30.5 222
7 8.1 7.3
8 13.5 10.4
9 6.7 5.4
10 9.2 7.1
11 134 11.3
12 6.1 4.3
13 16.2 15.5
14 12.5 6.9
15 124 6.4
16 11.9 14.4
17 6.3 4.3
18 5.1 4.0

model predicted curve for the titanium alloy at two volume
fractions of a, i.e., 18 % and 24 %, is shown in Fig. 9.

From Table 6, it is observed that all single hidden layer
(SHL) ANNs with Tan-Sigmoid and Purelin transfer func-
tions give medium and high average relative errors and
standard deviation, respectively, as compared with double
hidden layer (DHL) ANN networks. Layer recurrent NN with
Logsig transfer function gives consistent results as compared
with other combinations (Avg. relative error and SD are low).

Layer recurrent NN with Logsig transfer function was
used for the further analysis. In the training, increased
number of neurons (5-25) in the hidden layer was used to
define the output accurately. The number of hidden layers
is also increased to two hidden layers; in each hidden layer,
the number of neurons is varied. After training the network
successfully, it was tested by using the known data. Sta-
tistical methods were used to compare the results produced
by the network. Table 7 shows the list of parameters.
Table 8 shows the analysis of results.

The networks from 1 to 10 consist of only one hidden
layer, in which the number of hidden neurons varies from 5
to 25. The MSE is very less, i.e., in the range of
0.0002-0.0007 for the networks 1-10 (Fig. 10). The aver-
age relative error for each network is also shown in Fig. 11.
The Network 7 gives the best results (Fig. 11). It is clearly
seen in Table 7 that the time taken for the simulation is
nearly 1,220 s, and the MSE is also 0.0002.

The networks from 11 to 17 consist of two hidden lay-
ers. The number of neurons in the hidden is varied, and the

Rare Met. (2014) 33(3):249-257
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Fig. 7 Performance plot for Network 17

results are shown in Table 8. Networks 13, 14, and 16 are
predicting the stress—strain curve with an average relative
error nearly 3 %. From these networks, network number 16
is selected as the best network for the prediction of the
stress—strain curve. Figures 12 and 13 show the comparison
between the predicted and measured stress—strain curves of
Ti alloy at 18 % and 24 % of o. These plots represent the
comparison between the measured and ANN calculated
curves with the use of Network 7.

Another attempt is that the training algorithm was
changed in the Network 16 (i.e., double layer-layer
recurrent neural network) in order to get the further
improvement in predicting the output result. Table 8 shows
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Fig. 8 Regression plot for Network 17: a training, R = 0.99816; b validation, R = 0.99781; ¢ test, R = 0.99848; d all, R = 0.99813
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Fig. 9 Experimental versus predicted curve a 18 % and b 24 % volume fraction of o

the parameters used in the network models. Table 9 shows
the ANN training results with different training algorithms.

Table 10 represents the list of other parameters used in
neural networks. Figure 14 shows the comparison of
average relative errors with its standard deviation values

@ Springer

for different training algorithms. It is observed from
Fig. 14 that along with trainlm another two training algo-
rithms are giving good results. Those are traincgp and
trainrp. The MSE value is very small for these three
algorithms as compared with others. Figure 15 shows the
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Table 6 Overall comparison 0.07 4
Network type Tan-Sigmoid  Purelin Log-Sigmoid 0.06 1 1
0.05F  One-Layer 1 Two-Layer
SHL DHL SHL DHL SHL DHL |
o 0.04 - : .
Cascade-forward ARE/% 74 9.2 303 162 8.1 11.9 =003k 1
back propagation gy 57 71 223 155 73 144 0.0 |
. B 1
Feed-forward back ARE/% 11.8 134 30.0 125 13.5 6.3 0.01 :
propagation SD 87 113 221 69 104 43 ‘ ]
(Lessstessseal o200 0
Layer recurrent ARE/% 9.1 6.1 305 124 6.7 5.1 0 5 10 15 20
SD 6.7 43 222 64 5.4 4.0 Network number
Fig. 10 Graph between mean square error versus network number
Table 7 Network parameters used for determination of optimum 60
number of neurons § 50 +
=
ANN parameters % 40 r
230}
Network type: layer recurrent network g
Number of hidden layers: 1 and 2 E 20
Number of neurons: 5-25 (1st hidden layer) and 1-7 (2nd hidden %D 10 } 3 { } } { } } ; {
layer) E 0} * 1 L%
Transfer function: Log-Sigmoid -10 P . . . .

01234567 89101112131415161718

Training algorithm: trainlm Neural network number

Best performance: mean square error (MSE)

Fig. 11 Graph between average error versus network number

Table 8 Analysis of results

Nos. Hidden neurons Average relative error/% SD Epochs Time/s MSE

One hidden layer

1 5 4.38 3.49 40 21 0.0006
2 6 3.52 2.59 41 22 0.0005
3 7 9.24 7.26 212 116 0.0003
4 8 11.01 9.89 197 112 0.0003
5 9 8.92 8.25 60 35 0.0008
6 10 6.70 5.40 60 33 0.0005
7 11 1.27 1.45 220 1221 0.0002
8 15 6.10 5.59 55 73 0.0004
9 20 6.10 5.52 74 151 0.0004
10 25 5.52 4.08 174 527 0.0003
Two hidden layers

11 1...1 31.84 22.39 23 27 0.0632
12 1...5 17.37 22.41 53 67 0.0403
13 5.5 3.08 3.38 104 194 0.0004
14 7..5 3.71 4.76 246 346 0.0002
15 5..7 9.62 10.67 215 299 0.0003
16 7.7 2.06 2.10 53 71 0.0004
17 5...10 13.63 12.95 491 690 0.0001

Rare Met. (2014) 33(3):249-257 @ Springer
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Fig. 12 Comparison between calculated and measured stress—strain
curves of titanium alloy at 18 % volume fraction of o
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Fig. 13 Comparison between calculated and measured stress—strain
curves of titanium alloy at 24 % volume fraction of o

comparison of ANN predicted stress—strain curve with its
corresponding experimental and FEM predicted stress—
strain curves at two different volume fractions of o.
Another interesting observation is that trainlm gives the
acceptable results in less time as compared with other two
training algorithms.

Table 9 Training results on NN with different training algorithms

Table 10 Network parameters used for determination of better
training algorithm

ANN parameters

Network type: layer recurrent network

Number of hidden layers: 2

Number of neurons: 7 (1st hidden layer) and 7 (2nd hidden layer)
Transfer function: Log-Sigmoid

Training algorithm: BFGS, Conjugate, Traincfg, Traincgp,
Traingd, Traingdm, Traingda, Traingdx, Trainoss, Trainr, Trainrp,
Trainlm

Best performance: MSE

Average relative error / %

0 2 4 6 8 10 12 14

Fig. 14 Average error versus NN with different training algorithms

From these observations, it is observed that the best
network is a layer recurrent neural network having two
hidden layers consisting of 7 neurons in each, and the
training algorithm is trainrp, and the transfer function is
Log-Sigmoid. Figure 15 shows the comparison between
the predicted and calculated stress—strain curves at two

Nos. Training algorithm Average relative error/% SD Epochs Time/s MSE

1 BFGS QN 14.05 12.57 56 77 0.0151
2 Conjugate 5.21 4.84 108 180 0.0023
3 Traincfg 17.15 11.68 44 64 0.0413
4 Traincgp 3.22 2.50 182 273 0.0008
5 Traingd 28.52 17.07 1,000 685 0.0581
6 Traingdm 26.26 14.74 1,000 691 0.0812
7 Traingda 28.39 20.04 124 84 0.0603
8 Traingdx 18.16 16.60 156 102 0.0264
9 Trainoss 19.55 17.81 34 44 0.0269
10 Trainr 9.91 8.47 100 125 0.0980
11 Trainrp 1.47 1.12 391 283 0.0006
12 Trainlm 2.06 2.10 53 71 0.0004
4 Springer Rare Met. (2014) 33(3):249-257
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Fig. 15 Comparison between experimental and predicted curves at a 18 % and b 24 % volume fraction of o

different volume fractions of o (18 % and 24 %) using
ANN Network 11 from Table 9.

5 Conclusion

The generalization ability is its main quality indicator of a
neural network, and also another ability to predict accurately
the output of unseen test data. Levenberg—Marquardt training
algorithm with feed-forward back-propagation neural network
is one of the fastest computational methods for predicting
stress—strain curve with an acceptable accuracy (average rel-
ative error <(8 =+ 2) %). The Log-Sigmoid transfer function
is giving good results as compared with the Tan-Sigmoid and
purelin. The layer recurrent neural network is accurately pre-
dicted with a trainlm as the training function consists of a SHL
having 7 hidden neurons with a Log-Sigmoid transfer function
(average relative error well within (1 £ 0.5) %). In two hid-
den layer neural network, layer recurrent neural network
consists of 7 neurons in each hidden layer, and the training
algorithm is trainrp with Log-Sigmoid transfer function
(average relative error well within (2 £ 1) %).
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