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Abstract A promising combustion strategy that com-
bines the advantages of both SI and CI combustion modes
is the homogeneous charge compression ignition (HCCI)
combustion mode. A volumetric combustion of a lean mix-
ture of charge is the advantage of HCCI combustion, lead-
ing to low NO, emissions and soot. In this work, HCCI
combustion mode is analyzed to study the effect of swirl
motion of intake charge on performance and emissions of
the engine using a Three-Zone Extended Coherent Flame
Combustion Model (ECFM-3Z, Compression Ignition).
The present study revealed that ECFM-3Z of STAR-CD
predicts well the in-cylinder pressures, temperatures, cyl-
inder wall heat transfer losses, piston work and emissions
such as CO, CO, and NO, of the CI engine in the HCCI
mode. The ECFM-3Z model has a predicted variation in
turbulent kinetic energy and velocity magnitudes inside the
cylinder during combustion, facilitating better understand-
ing of the combustion process. The simulation results show
that the there is a reduction in in-cylinder peak pressures
and temperatures, as the swirl increases and CO emissions
increase because of reduced temperatures, and CO, and
NO, emissions decrease because of the reduced in-cylinder
temperatures. It is found that there is a trade-off between
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the emissions and piston work. Higher turbulent energy
and velocity magnitude levels are obtained with increase in
swirl, indicating efficient combustion without a demanding
combustion chamber design.

Keywords HCCI engine - ECFM-3Z - Swirl motion -
Emissions and performance

1 Introduction

IC Engines have become indispensible prime movers over
the past one-and-a-half century. Though the performance
of conventional SI and CI engines is satisfactory, SI engine
suffers from poor part load efficiency and high CO emis-
sions. The CI engine yields high particulate and NO, emis-
sions. These effects may be attributed to their conventional
combustion process. Of late, a hybrid combustion process
called homogeneous charge compression ignition (HCCI)
equipped with advanced low-temperature combustion tech-
nology has been gaining attention from researchers. In
principle, HCCI involves the volumetric auto-combustion
of a premixed fuel, air and diluents at low to moderate tem-
peratures and at high compression ratios. The other associ-
ated advantages with HCCI mode of combustion have been
well documented and presented as a potentially promising
combustion mode for internal combustion engines [1, 2].
The different combustion models which are well devel-
oped for predicting engine processes are transient interactive
flamelets (TIF) model, digital analysis of reaction system-—
transient interactive flamelets model (DARS-TIF), G-equa-
tion model, extended coherent flame combustion model—3
zones [3, 4] and the equilibrium-limited ECFM (ECFM-
CLEH) [5, 6]. Each model has its own limitations and is
suitable for a specific set of problems. Generally speaking;
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Table 1 Combustion model capabilities

Table 2 Engine specifications

Model Applicability

G-Equation Partially premixed SI and CI
DARS-TIF Compression ignition

ECFM Non-homogeneous premixed SI
ECFM-3Z Premixed and non-premixed SI and CI

ECFM-3Z and ECFM-CLEH can be used for all types of
combustion regimes, whereas ECFM-3Z is mostly suitable
for homogeneous turbulent premixed combustion with spark
ignition and compression ignition. The applicability of vari-
ous combustion models is shown in Table 1. Owing to its
wide applicability, in the present work ECFM-3Z has been
used to study the effect of swirl motion of intake charge on
emissions and performance of the HCCI engine.

Induction-induced swirl has a predominant effect on
mixture formation and rapid spreading of the flame front in
the conventional combustion process of a CI engine. This
has been well documented in the literature. However, it is
observed that no work has been done on the effect of swirl
in the HCCI mode. The present study is concerned with
the analysis of engine-pertinent performance parameters
by varying the swirl intensity and its effect on the emis-
sions and performance of a CI engine in the HCCI mode.
For this purpose, four swirl ratios between 1 and 4, both
inclusive, were chosen. The analysis is aimed at studying
parameters such as in-cylinder pressures, temperatures and
cylinder wall heat transfer losses; emissions including CO,
CO, and NO,; and piston work, turbulent kinetic energy
and velocity magnitude. The present study emphasizes on
maximizing the piston work and minimizing the NO, emis-
sions, and accordingly the respective optimum swirl ratios
are arrived at for the chosen engine configuration.

2 Methodology

A single-cylinder direct injection, reentrant piston bowl CI
engine with specifications given in Table 2 is considered
for the analysis. A CFD package STAR-CD is used for the
analysis to study the heat release rates, in-cylinder pressures
and temperatures, and CO and NO emissions were modeled
in CI engine HCCI mode. The engine specifications consid-
ered for the analysis are shown in Table 2. The analysis was
done from the second cycle after the engine was started.

3 CFD model setup

The piston bowl shape and 3D mesh of the piston bowl sec-
tor are shown in Fig. 1. The computational mesh consists
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Engine specifications

Displacement volume 1,600 cm?

Bore 12.065 cm

Stroke 14 cm

Connecting rod length 26 cm

Compression ratio 21:1

Fuel n-Dodecane
Operating conditions

Engine speed 1,000 rpm

Equivalence ratio 0.26

Inlet temperature air (7;,) 353K

Inlet air pressure (P,,) 0.1 MPa

Cylinder wall temperature (7, 450 K

EGR 0%

Cylinderhead

Cylinderaxis Cylinderwall

Cylinderside face

Fig. 1 Schematic representation of 3D piston bowl shape at TDC

of 0.312 x 10° cells. The entire mesh consists of a cylinder
and 1/6th of a piston bowl created in Hypermesh—a mesh
generation utility—and is imported into STAR-CD for
solutions. A spline was developed based on the imported
model; a 2D template was cut by the spline to cut the 3D
mesh with 60 radial cells, 160 axial cells, 5 top dead center
layers and 40 axial block cells.

The energy efficiency of the engine is analyzed by the
gross indicated work per cycle (W) calculated from the cyl-
inder pressure and piston displacement using Eq. (1):

0

maB) .
3 /p(@) {2 sin (0)

01

asin (20)

W(Nm) = ———d0,
(Nm) V2 = aZsin%(9) M

where a, [ and B are the crank radius, connecting rod length
and cylinder bore, respectively, and 6, and 6, are the begin-
ning and the end of the valve-closing period.

The indicated power per cylinder (P) is related to the

indicated work per cycle using Eq. (2):
P(kW) = WV
= 60.000nz" @

where ny = 2 is the number of crank revolutions for each
power stroke per cylinder and N is the engine speed (rpm).
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The indicated specific fuel consumption (ISFC) is shown in
Eq. (3):

30mgyelN

ISFC(g/kWh) = >

3)

In Eq. (1), the power and ISFC analyses can be viewed
as being only qualitative rather than quantitative in this
study.

4 Modeling strategy

The STAR-CD used in the present study has integrated sev-
eral sub-models such as turbulence, fuel spray and atomi-
zation, wall function, ignition, combustion, NO, and soot
models for various types of combustion modes in CI as
well as SI engine computations. As the initial values of k
and ¢ are not known a priori, the turbulence initialization is
done using the /-L model. For this purpose, the local turbu-
lence intensity, /, and length scale, L, are related as:

koo = 3/21°V2, )
(e00 = C/*K2L*/L). 6))

This practice will ensure that £ and & and the turbu-
lent viscosity ., will all scale correctly with V_,, which
is desirable from both the physical realism and numerical
stability point of view. Moreover, the turbulent intensity is
defined using the same velocity vector magnitude as stag-
nation quantities.

The combustion is modeled using ECFM-3Z. As far as
fluid properties are concerned, ideal gas law and temper-
ature-dependent constant pressure specific heat (C,) are
chosen.

4.1 Swirl creation

In this section, swirl motion is created by changing the
velocities of the intake charge in the U and V directions.
The U and V components of the velocity are calculated
with the code using the formulae shown:

U = —(x—xcsys) (Swirl. RPM.277) /60 (6)

V = —(y—ycsys) (Swirl. RPM.277) /60 (7)

where U and V are the velocity components of the intake
charge in the X and Y directions. RPM represents the speed
of the engine. x, xcgys, ¥, Ycsys represents the global and
local coordinates of x and y, respectively. The z coordinates
of the global and local coordinates were matched during
modeling and after meshing, to eliminate the errors in swirl
creation.

4.2 Spray injection and atomization model

In conventional CI mode, spray and atomization are mod-
eled using Huh’s model [7, 8]. Huh’s model considers the
two most important mechanisms in spray atomization: gas
inertia and the internal turbulence stresses generated in the
nozzle. The agitation of jet takes place because of turbu-
lence generated in the nozzle when it exits the hole. Sur-
face wave growth takes place once the agitation of the jet
reaches a certain limit leading to droplet formation.

The secondary breakup of the droplets is modeled by
considering the Reitz—Diwakar model [9, 10]. The Reitz—
Diwakar model incorporates the droplet breakup due to
non-uniform pressure surrounding the droplet (bag break-
up) and the other is because of continuous phase (stripping
breakup). The occurrence of these regimes is dependent on
the magnitude of the droplet incidence Weber number (W,,)
and the dimensionless droplet diameter d* as shown in
Eq. (8):

DyV3
Wey = M’ 8)
o

where ‘n’ is the unit normal to the wall, ‘V,’ is the normal
component of droplet velocity relative to the wall and ‘o’ is
the surface tension coefficient.

For HCCI combustion mode, the premixed reaction
mechanism is adopted for the homogeneous fuel air mix-
ture formation.

4.3 Autoignition model

Ignition delay is computed to establish the ignition occur-
rence time, instead of the pre-ignition kinetics.

The autoignition delay t,; calculated based on semi-
empirical correlations is shown in Eq. (9):

tg = 1.051x 107 8[F]°03[0,] 7022 p0-13e3914/ T 47 /0Ny, (9)

where CN is the cetane number (max = 60). An ignition
progress variable function defined to track the development
of the reactions prior to autoignition is shown in Eq. (10):

(dYigi)/(d1) = YreF (za). (10)

For HCCI combustion mode, a double delay autoigni-
tion model is used, as the autoignition in HCCI mode is
controlled by the effect of cool flames. In the cool flame
regime, the rise in temperature is less and the reaction rates
are slowed down. After the second delay, the reaction rates
increase leading to main autoignition.

Double-delay autoignition considers two delay times
and two ignition progress variables. The delay times are not
empirical correlations, but are obtained from precomputed
tables, which can also provide the information about the
maximum fuel burned at each autoignition step.
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Fig. 2 Schematic representation of three zones of the ECFM-3Z
model
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4.4 Combustion model

A three-zone extended coherent flame combustion model
(EFCM-3Z) is used for the analysis. A premixed charge
with autoignition was considered for the start of combus-
tion. In the HCCI engine, the air fuel mixture enters the
cylinder as in SI engines, and combustion occurs by com-
pression ignition as in CI engines. Figure 2 depicts the
schematic representation of the three zones of the ECFM-
37 model. This model is capable of simulating complex
mechanisms such as turbulent mixing, flame propagation,
diffusion combustion and pollutant emission that character-
ize modern IC engines.

For the combustion analysis of CI engine in conven-
tional mode, turbulent mixing, flame propagation, diffusion
combustion models and post-flame emission models were
used. For HCCI mode mixing model, post-flame emissions
model and double-delay autoignition models were used.

For wall-bounded flows, most turbulence is generated in
the near-wall region. It is therefore necessary to resolve the
details of the near-wall flow, which in turn requires a fine
mesh in that region. For this, the Angelberger wall function
model is used [11].

The mixed zone is the result of turbulent + molecular
mixing between gases in the other two zones, where com-
bustion takes place.

The other two zones are characterized by the fuel in
the unmixed fuel zone and the species in the unmixed
air + EGR zone.

The equations governing the mass fractions of the
unmixed fuel (Yy,,,) are shown as:

9pYs u
Tum + V- (ouYfym) — V- [<D+ Sicit VYtum

. w .
Igmm qum(1 - qumﬁ m> +weVap. (11)
d Pu Wf
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4.5 NO, model

The high temperatures during the combustion process
facilitate the formation of nitrous oxides consisting of NO,
and NO due to the reaction between atmospheric nitro-
gen and oxygen. NO, emissions are highly affected by the
temperature. The higher the combustion temperatures, the
higher will be the formation of NO,. There are two pos-
sible sources of nitrous oxide formation in engines, namely,
thermal and prompt NO,. In diesel engines, however, more
than 90 % of the NO emission stem from the thermal NO
formation process. The current approach to modeling NO
production is with the extended Zel’dovich mechanism
[12]. The extended Zel’dovich mechanism consists of the
following equations as described by Bowman [12]:

O + N, &» NO + N (12)
N + O, < NO + O (13)
N + OH < NO + H. (14)

With the partial equilibrium of Eq. (14) for the hydrogen
radicals,

O 4+ OH <« 0O+ H. (15)

The extended Zeldovich mechanism can be written as a
single rate equation for NO, as originally put forth by Hey-
wood [13] and shown in Eq. (14):

_ 2
%[NO] = 2k1f[0][N2]{ {1 — [NOP/Kz[02]12ds} ,
)

P+ k16 INOY (4 on] + ke [OH]
(16)

where K|, = (k,i/k;,)(ky/k,,) and the subscripts 1, 2 and
3 refer to Egs. (12), (13) and (14), respectively. O, OH,
O, and N, are assumed to be in local thermodynamic
equilibrium.

4.6 Soot modeling

Soot formation is the most common process that can be
observed during the combustion of fuel-rich hydrocarbons.
Fuel pyrolysis and oxidation, formations of polycyclic and
aromatic hydrocarbons, and the inception of first particles
are the complex reactions that are involved in the formation
of soot. A laminar flamelet model where the scalar quanti-
ties are related to scalar dissipation rates and mixture frac-
tions, developed by Karlson et al. [14], is used to model the
soot. Karlson developed a correlation between the rate of
soot formation with premixed counterflow flames and local
conditions in diffusion flames. In this method, an additional
transport equation for the soot mass fraction is solved.
Integration of mass fraction space with probability density
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function is made to get the soot volume fraction source
term from the flamelet library. To save computer memory
and CPU time, the flamelet library of sources is constructed
using a multiparameter fitting procedure, resulting in a
proper simple algebraic set of parameters. The transport
equation for soot mass fraction is shown in Eq. (17):

0 ( Y

D 0% + - (pus,)
B vyt ouy) =
ar T g P = e \ Prs

% ) + psWy, (17)
where Ys is the soot fraction. The Prandtl number for soot

is assumed to be 1.3 and the soot density p, = 1,860 kg/m®.

a 1
@u,i=ai//;v(a§;i (ff())P(f)?)dfdf( (18)
0 0

i = 5 r,0x, Where x” is the scalar dissipation rate. In the
above equation, s, stands for surface growth, fr for frag-
mentation, ox for oxidation and «; are the scaling factors
corresponding to each of these effects. They enable the user
to scale the rates up or down for sensitivity studies or cali-
bration purposes.

4.7 EGR modeling

Exhaust gas recirculation is mainly used to reduce NO,
emissions and improve autoignition. There are two EGR
models as stated below.

(a) Variable composition—this model considers the com-
ponents present in the EGR mixture. In this model,
up to six EGR scalars are defined, namely EGR_O2,
EGR_CO2, EGR_CO, EGR_H20, EGR_H2 and
EGR_N2. These scalars are then solved by transport
equations. The EGR_O2 scalar does not take part in
the reaction.

(b) Fixed composition—the EGR composition is defined
by entering values for each component’s mass fraction
in the O2, CO2, H20, N2, CO and H2 boxes. The sum
of the supplied values must be equal to 1.0.

In the present analysis, the variable composition model
is used. In this model it is considered as the mass of the re-
circulating exhaust gas (m,,,) divided by the total mass that
enters the cylinder (m;).

egr

Thus,
egr = @, (19)
mj
where
mp = Mair + Megr + Mmy. (20)

For the individual species,
Megr(f) = €ZI. ME(f) (21)

1409
Megr(0,) = €8I.ME(0,) (22)
Megr(CO,) = €8I.ME(CO,) (23)
Megr(N,) = €8I ME(N,) (24)
Megr(H,0) = €&I. MEH,0)>» (25)

where “m;” is the mass of the fuel.

Subsequently, the mass fractions can be determined by
dividing the mass of each individual exhaust gas by the
total mass of all exhaust gases.

5 Initial and boundary conditions

The simulation is started with an absolute pressure of
1.02 bar, 0 % EGR, temperature 353 K and equivalence
ratio 0.26 are taken as initial values. Fixed boundary wall
temperatures are taken with combustion dome regions of
450 K, piston crown regions of 450 K and cylinder wall
regions of 400 K. The Angelberger wall function mode [15]
is considered. In the ‘two-layer’ and low Reynolds number
approaches, no-slip conditions are applied directly and the
boundary layers are computed by solving the mass, momen-
tum and turbulence equations (the latter in their ‘low Reyn-
olds number’ form) within them. The hybrid wall boundary
condition which is a combination of two-layered and low
Reynolds number wall boundary conditions is considered in
this analysis. This hybrid wall boundary condition removes
the burden of having to ensure a small enough near-wall value
for y* (by creating a sufficiently fine mesh next to the wall).
The y* independency of the hybrid wall condition is achieved
using either an asymptotic expression valid for 0.1 < y™ < 100
or by blending low Reynolds and high Reynolds number
expressions for shear stress, thermal energy and chemical
species wall fluxes. This treatment provides valid boundary
conditions for momentum, turbulence, energy and species
variables for a wide range of near-wall mesh densities.

Standard wall functions are used to calculate the vari-
ables at the near-wall cells and the corresponding quantities
on the wall. The initial conditions were specified at IVC,
consisting of a quiescent flow field at pressure and temper-
ature for full load condition.

6 Validation of ECFM-3Z, compression ignition model

STAR-CD is a well-known commercial CFD package
adopted by many renowned researchers and well-established
research organizations in the field of automotive IC engines.
The results obtained through this package are validated with
the experimental results of many authors, such as Pasupathy

@ Springer
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Fig. 3 Validation of the ECFM-3Z compression ignition model with the experimental results of external mixture formation of the HCCI engine

Venkateswaran et al. [16], Zellat Marc et al. [17] and Bakh-
shan et al. [18]. A comparison of the CI engine in HCCI was
done in this paper considering the extended coherent flame
combustion three zones compression model for combus-
tion analysis. The present paper deals with the simulation
of the CI engine in the HCCI mode, using a fuel vaporizer
to achieve excellent HCCI combustion in a single-cylinder
air-cooled direct injection diesel engine. No modifications
were made to the combustion system. Ganesh et al. [19]
conducted experiments with diesel vapor induction without
EGR and with 0, 10 and 20 % EGR. Validation of the present
model with the experimental results of Ganesh et al. [19]
was done by considering all the engine specifications.

In their study, vaporized diesel fuel was allowed
to mix with air to form a homogeneous mixture and
inducted into the cylinder during the intake stroke. To
control the early ignition of diesel vapor—air mixture,
cooled (30 °C) exhaust gas recirculation (EGR) tech-
nique was adopted. Figure 3 represents validation of sim-
ulated results with the experimental results of Ganesh et
al. [19]. It is observed that the simulated results are in

@ Springer

good agreement with the experimental results. The com-
parison of the plots between simulation and experimental
results are shown in Fig. 3. In the figures, EDVI repre-
sents the experimental diesel vapor injection and SDVI
represents simulated diesel vapor induction at the respec-
tive EGR concentrations.

7 Results and discussion

In the present paper, the effect of swirl motion on the perfor-
mance of HCCI engine with diesel as fuel was studied with
swirl ratios ranging from 1 to 4. Analysis of the effect of
swirl ratio on a single-cylinder HCCI engine was simulated,
using a three-zone extended coherent flame (ECFM-3Z)
CFD model. The results are plotted and discussed below.

7.1 In-cylinder pressures

The variation of in-cylinder pressures with swirl ratios
is plotted in Fig. 4. It can be seen that there is a marginal
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decrease in the pressure with increase in swirl intensity.
However, the increase in turbulence owing to increased
swirl resulted in increased wall heat transfer [20].The effect
is illustrated in Fig. 5.

7.2 In-cylinder temperatures

A major amount of turbulence resulted in increased heat
loss to the cylinder walls without contributing to the piston
wall, but there was a drop in the in-cylinder pressures and
temperatures. Figure 6 shows the variation of in-cylinder
temperatures with swirl ratio. The increased turbulence
in the combustion chamber with swirl ratio facilitates the
formation of a well homogeneous mixture, which leads to
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Fig.7 CO emissions vs. crank angle

ideal volumetric combustion causing low-temperature com-
bustion. Increased wall heat transfer losses are the second-
ary reason for the reduced peak temperatures.

7.3 CO and CO, emissions

In-cylinder temperatures play a major role in the formation
of emissions. Higher in-cylinder temperatures facilitate the
conversion of CO to CO, and lower temperatures reduce
the formation of NO,. A clear reduction from 1,206.44 K
at swirl ratio 1 to 1,177.26 K at swirl ratio 4 can be seen in
Fig. 6. An increase in CO emission with increase in swirl
ratio can be observed in Fig. 7. The reduced in-cylinder
temperatures and increased wall heat transfer losses with
higher swirl ratio do not allow the oxidation reaction of
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CO, thus detaining the conversion of CO to CO, and result-
ing in increased CO emissions with swirl ratio [21]. CO,
emissions variation with crank angle for different swirl
ratios can be seen in Fig. 8. A reduction in CO, emissions
with increase in swirl ratio can be seen in Fig. 8, as the oxi-
dation of CO was not well facilitated because of the rea-
sons mentioned above.

7.4 NO, emissions

The formation of NO, is highly dependent on the in-cylin-
der temperatures, oxygen concentration and residence time
for the reaction to take place. As the in-cylinder tempera-
tures do not increase with swirl intensity, significant reduc-
tion in NO, emissions with increase in swirl is obtained
[22] as shown in Fig. 9. The reduction in NO, emission is
attributed to the detaining of oxidation of the atmospheric
N, to react with the available O,, to form NO, due to lower
cycle temperatures.

7.5 Piston work

Piston work of an IC engine represents the load-bearing
capability of the engine. Figure 10 represents the piston
work vs crank angle of the HCCI engine under different
swirl ratios. The initial decrement in piston work repre-
sents the suction and compression strokes (work done on
the piston) and the later increase in piston work represents
the work done by the piston. A marginal reduction in piston
work with increase in swirl ratio can be seen in Fig. 10. It is
observed that the improvement in the piston work between
the any two consecutive swirl ratios is marginal. However,
a maximum variation of 13.3 % at 800 CAD is obtained
between swirl ratios 1 and 4. This can be attributed to the
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reduced in-cylinder pressures during the later part of com-
bustion. Thus, reduced pressures reduces the power output.

7.6 Turbulent kinetic energy

Turbulent kinetic energy is an important parameter to deter-
mine the burn time and flame speed at a particular region
[23]. The turbulence controls the flow dissipation rate,
flame propagation rate and heat transfer and it is quantified
by turbulent kinetic energy within the cylinder. The regions
with low turbulent kinetic energy represents the relatively
long time for the flame front to disappear. Turbulent kinetic
energy depends on the kinematic viscosity. The kinetic
energy of the incoming flow contributes to the turbulent
kinetic energy within the cylinder. Figure 11 shows the
variation of turbulent kinetic energy with swirl at different
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crank angles. It is evident from Fig. 11 that the turbulent
kinetic energy increases with increase in swirl at all the
crank angles. The increase in turbulent kinetic energy is a
clear indication of the improved combustion and faster burn
time leading toward a perfect volumetric combustion; the
important characteristic of HCCI combustion [24]. Also,
literature reveals that piston bowl shape is also an impor-
tant criterion that affects the turbulent kinetic energy. By
adopting an altogether different piston bowl geometry, one
may achieve higher turbulence. However, adopting higher
swirl ratios is cost-effective than using different bowls.

7.7 Velocity magnitude

Velocity magnitude of the combustion chamber gives us a
clear idea about the efficient combustion in the combus-
tion chamber. Velocity magnitude of the combustion cham-
ber gives a better idea to locate the regions where incom-
plete combustion occurs and needs to be improved [25].
The poor velocity regions in combustion volume represent
the poor mixing of the fuel and air, leading to incomplete
combustion [26]. This shows the need for better combus-
tion chamber designs to create proper turbulence for better
mixture formation. Figure 12 shows the velocity magni-
tude variation at different crank angles for different swirl
ratios. It is clear from Fig. 12 that the velocity magnitude
increases with swirl ratio, leading to better combustion.
The results revealed that better velocity magnitudes rep-
resenting better combustion can be achieved by increasing
the swirl ratio, without modifying the combustion chamber
shape.

8 Conclusions

Prediction of engine performance under four swirl ratios
has been done using extended coherent flame combus-
tion analysis considering three zones. The present study
revealed that ECFM-3Z of STAR-CD well predicted the
performance and emissions of the CI engine in the HCCI
mode. It was found that swirl ratio is a major factor in
achieving the HCCI mode of combustion with significant
reduction in harmful NO, emissions. (volumetric combus-
tion). Marginal reductions in in-cylinder peak pressures
were observed with increase in swirl ratio.

This resulted in a reduction in piston work. The reduc-
tions in in-cylinder pressures and temperatures are attrib-
uted to the increased turbulence within the combustion
chamber, resulting in increased wall heat transfer with
swirl ratio. It is observed that with the reduction in peak
cycle temperatures CO has not been oxidized to CO,, and
thus CO emissions have increased with swirl ratio. Signifi-
cant reduction in NO, emission is observed due to reduced

in-cylinder temperatures. The reduction in NO, emissions
was achieved by scarifying a little amount of piston work.
Increase in swirl ratio resulted in low-temperature combus-
tion, an important characteristic of the HCCI mode com-
bustion. Increased turbulent kinetic energy and velocity
magnitude levels within the combustion are achieved with
swirl ratio and this could lead to faster burn times. Finally,
it can be concluded that higher swirl ratios would achieve
volumetric HCCI combustion with better turbulent kinetic
energy and velocity magnitude levels, without modifying
the combustion chamber geometry.
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