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Abstract— A fitted modified upwind finite difference method is 

presented for solving singularly perturbed boundary value problems 

with delay δ   and advance η  parameters that are sufficiently small. 

The second order singularly perturbed differential difference equation 

is replaced by an asymptotically equivalent singularly perturbed 

boundary value problem. A fitting factor is introduced in a modified 

finite difference scheme and is obtained from the theory of singular 

perturbations. Thomas Algorithm is used to solve the system and its 

stability is investigated. The method is demonstrated by 

implementing several model examples by taking various values for 

the delay parameterδ , advance parameter η and the perturbation 
parameterε .  

 

Keywords— Advance parameter, Boundary layer, Delay parameter, 

Differential difference equations, Fitted finite difference method, 

Singular perturbations. 

 

I. INTRODUCTION 

Boundary value problems involving differential-difference 

equations arise in studying variational problems of control 

theory where the problem is complicated by the effect of time 

delays (here, the terms ‘‘delay’’ and ‘‘advance’’). This occurs 

in signal transmission [1] and in depolarization in the Stein 

model [2], which is a continuous-time, continuous-state space 

Markov process whose sample paths have discontinuities of 

the first kind [3]. The time between nerve impulses is the time 

of first passage to a level at or above a threshold value; and 

determining the moments of this random variable involves 

differential-difference equations. This biological problem 

motivates the investigation of boundary-value problems for 

differential-difference equations with small shifts. 

Furthermore, the applications of differential-difference 

equations permeate all branches of contemporary sciences 

such as physics, engineering, economics, and biology [4] 

certainly merits its own volume. 

As a result, many researchers tried to develop and present 

numerical schemes for solving such problems. For example, 

reference [5], [6] gave an asymptotic approach for a class of 

boundary-value problems for linear second-order differential-

difference equations with small shifts. Reference [7] presented 

ε-uniform Ritz-Galerkin finite element method for solving 
singularly perturbed delay differential equations with small 

shifts. Furthermore, reference [8] constructed an ε-uniform 
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numerical scheme comprising of a standard upwind finite 

difference operator on a fitted piecewise uniform mesh for a 

class of singularly perturbed boundary value problems of 

differential-difference equations with small shifts.  

 The objective of this paper is, therefore, to present a fitted 

modified upwind finite difference method for solving 

singularly perturbed differential difference equations with the 

delay and the advance parameters (sometimes referred to as 

“negative shift “and “positive shift”, respectively as in [5], [6] 

) having the boundary layer at one end (left or right). It is 

based on the concept that the singularly perturbed differential 

difference equation is replaced by an asymptotically equivalent 

second order singularly perturbed two point boundary value 

problem. Then a fitting factor is introduced in a modified 

upwind finite difference scheme and is obtained from the 

theory of singular perturbations. Thomas Algorithm is used to 

solve the system and the stability of the algorithm is also 

considered. The method is demonstrated by implementing 

several model examples by taking various values for the delay 

parameterδ , advance η and the perturbation parameterε .  
 

II. DESCRIPTION OF THE METHOD 

A.  LEFT END BOUNDARY LAYER 

PROBLEMS 

Consider singularly perturbed differential equation with small 

delay as well as advance of the form: 

( ) ( ) ( )
( ) ( ) )(

)()()()(

xfxyx

xyxxyxxyxaxy

=++

+−+′+′′

ηβ
ωδαε

 (1) 

)1,0(∈∀x  and subject to the interval and boundary 

conditions  

( ) 0-on       , )(       ≤≤= xxxy δφ           (2)       

( ) ηγ +≤≤= 11         ,)( xonxxy           (3) 

Where 

( ) ( ) ( ) ( ) ( ) ( ) ( )xandxxfxxxxa γφωβα      ,   ,    ,   ,   ,  ,  

are bounded and continuously differentiable functions on (0, 

1), 10 <<< ε   is the singular perturbation parameter; and 

( )εδ o=<0  and ( )εη o=<0  are the delay and the 

advance parameters respectively.   

By using Taylor series expansion in the neighborhood of the 

point x, we have 

   ( ) )()( xyxyxy ′−≈− δδ              (4) 

     ( ) )()( xyxyxy ′+≈+ ηη              (5) 
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Using equations (4) and (5) in (1) we get an asymptotically 

equivalent singularly perturbed boundary value problem of the 

form: 

( ) ( ) ( ) )()()( xfxyxqxyxpxy =+′+′′ε            (6) 

( )  0)0(       0φφ ==y
             (7)

 

( )  1)1(       1γγ ==y
                 (8)

 

where    ( ) ( ) ( )δαηβ xxxaxp −+= )(
            

(9) 

and      ( ) ( ) ( )xxxxq ωβα ++= )(             (10) 

The transition from (1) to (6) is admitted, because of 

the condition that 10 <<< δ  and  10 <<<η  are 

sufficiently small. This replacement is significant from the 

computational point of view.  Further details on the validity of 

this transition can be found in [9]. Thus, the solution of (6) 

will provide a good approximation to the solution of (1). 

Further, we assume that ( ) ( ) ( ) 0)( ≤++= xxxxq ωβα , 

( ) ( ) ( ) 0)( >≥−+= Mxxxaxp δαηβ  throughout the 

interval [0, 1], where M is some constant.  Under these 

assumptions, (5) has a unique solution ( )xy  which in general, 

exhibits a boundary layer of width O(ε) on the left side    
( 0=x ) of the underlying interval. 

From the theory of singular perturbations in [10] it is 

known that the solution of (5) - (6) is of the form: 

)())0((
)(

)0(
)()( 0

)(

)()(

000 εφ
ε

Oey
xp

p
xyxy

x

dx
xp

xqxp

+
∫

−+=








−−

 

                                            (11) 

where )(0 xy is the solution of the reduced problem: 

)()()()()( 00 xfxyxqxyxp =+′ , 10 )0( γ=y .   (12) 

By taking the Taylor’s series expansion for ( )xp  and ( )xq  

about the point ‘0’ and restricting to their first terms, (11) 

becomes: 

)())0(()()(
)0(

)0()0(

000 εφ ε
Oeyxyxy

x
p

qp

+−+=








−−

  (13) 

Now we divide the interval [0, 1] into N equal parts with 

constant mesh length h.  Let 1  ...,  ,  ,  ,0 210 == Nxxxx  

be the mesh points.  Then we 

have Niihxi   ...,  ,2  ,1 ,0   , == . From (13) we have: 

)())0(()0()(lim
)0(

)0()0(

000
0

2

εφ
ρ

ε

Oeyyihy
i

p

qp

h
+−+=










 −
−

→

                           (14) 

where 
ε

=ρ
h
.  

Furthermore, by Taylor’s series expansion: 

)(
2

21 hOy
h

h

yy
y i

ii

i +′′−
−

=′ +
           (15) 

Thus, the modified upwind scheme corresponding to (6)-(8) is: 

)(

2

2

2

1

2

11

hOfyq

h

yy
p

h

yyy
p

h

iii

ii

i

iii

i

+=+








 −
+







 +−







 − +−+ε
  (16) 

100      , γφ == Nyy             (17) 

Where 

iiiiiiii yxyfxfqxqpxp ==== )(    ,)(     ,)(    ,)( . 

Introducing a fitting factor )(ρσ  into (16) we get  

)(

2

2
)(

2

1

2

11

hOfyq

h

yy
p

h

yyy
p

h

iii

ii

i

iii

i

+=+






 −
+




 +−







 − +−+ερσ
  

                       (18) 

With 100    , γφ == Nyy   which is to be determined in such 

a way that  the solution of (18)  with the boundary conditions 

converges uniformly to the solution of (6) - (8) which is in turn 

a good approximation to the solution of (1) - (3).  Multiplying 

(18) by h and taking the limit as 0→h ; we get  

( ) ( )[ ] 02
2

lim)( 111
0

=−++−







− +−+→ iiiiii

i

h
yypyyy

p
ερσ

                       (19) 

Provided   iii yxqxf )()( −  is bounded. By substituting (14) 

in (19) and simplifying, we get the constant fitting factor 

( )
( ) 




















−














 −









−
=

1
0

0)0(
exp

1

)0(2

)0(2

2

ρ
ερ

ρ
σ

p

qpp

p
   

                          (20) 

Now, from (18) we have: 

 

 

 

 

 

 (21)    

 

  

 

1  ...,  ,2  ,1 −= Ni   where the fitting factor  σ is given by 

(20). Equation (21) can be written as the three term recurrence 

relation of form: 

iiiiiii HyGyFyE =+− +− 11   ; 1  ...,  ,2  ,1 −= Ni    

                       (22) 

where  

( )






 −= ii xp
h

h
E

22
ε

σ
                                         (23) 

( )

( )

( ) ( )ii

i

i

ii

i

i

ii

xfy
h

xp
xp

h

h

yxq
h

xp
xp

h

h

yxp
h

h

=







+







 −+









−+







 −−








 −

+

−

12

2

12

)(

2

)(
)(

2

2

2

ε
σ

ε
σ

ε
σ
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( ) )(
)(

2

2
2 i

i

ii xq
h

xp
xp

h

h
F −+







 −= ε
σ

                 (24)                  

( )
h

xp
xp

h

h
G i

ii

)(

22
+







 −= ε
σ

                                     (25) 

)( ii xfH =                                                                    (26) 

This gives us the tridiagonal system which can be solved easily 

by Thomas Algorithm described in the next section.   

B.   THOMAS ALGORITHM 

 

 A brief description for solving the tri-diagonal system using 

Thomas algorithm is presented as follows:  Consider the 

scheme: 

iiiiiii HyGyFyE =+− +− 11   ; 1  ...,  ,2  ,1 −= Ni   (27) 

subject to the boundary conditions 

     00 )0( φ== yy ;                            (28) 

     1)1( γ== yy N .                          (29) 

We set  iiii TyWy += +1  , 1  ,2  ...,  ,2  ,1 −−= NNi      

                        (30) 

where )( ii xWW = and )( ii xTT = which are to be 

determined. From (30), we have: 

111 −−− += iiii TyWy                (31) 

By substituting (31) in (27) and comparing with (30) we get 

the recurrence relations: 










−
=

−1iii

i
i

WEF

G
W

              (32) 










−

−
=

−

−

1

1

iii

iii

i
WEF

HTE
T .                (33) 

To solve these recurrence relations 

for 1  ...,  ,2  ,1 −= Ni , we need the initial conditions for 

0W and 
0T .   For this we take

01000 TyWy +== φ . We 

choose 00 =W  so that the value of
00 φ=T .  With these 

initial values, we compute 
iW and iT for 

1  ...,  ,2  ,1 −= Ni
 
from (32) and (33) in forward process, 

and then obtain iy in the backward process from (29) and 

(30).  

 

C.  STABILITY ANALYSIS 

 

We will now show that the algorithm is 

computationally stable.  By stability, we mean that the effect of 

an error made in one stage of the calculation is not propagated 

into larger errors at later stages of the calculations.  Let us now 

examine the recurrence relation given by (32).  Suppose that a 

small error 
1−ie  has been made in the calculation of

1−iW ; 

then, we have 111 −−− += iii eWW  a, where  1−iW    the exact 

value at )1( −i step and calculating  










−
=

−1iii

i

i
WEF

G
W .                 (34) 

From (32) and (34), we have  










−
−









+−
=

−−− 111 )( iii

i

iiii

i

i
WEF

G

eWEF

G
e  

1

2

−







= i

i

ii e
G

EW
 

                         (35) 

under the assumption that the error is small initially.  

 From the assumptions made earlier 

that ( ) ( ) ( ) 0)( >−+= δαηβ xxxaxp  and 

( ) ( ) ( ) 0)( ≤++= xxxxq ωβα  , we have  

iii GEF +≥ ;  1  ...,  ,2  ,1 −= Ni  .  

Form (32),  we have  

1

1

1
F

G
W = <1, since 11 GF >   

122

2

2
WEF

G
W

−
= <

22

2

EF

G

−
, since 11 <W , 

         < 1
222

2 =
−+ EGE

G
, since 

222 GEF +≥  

Successively, it follows that  
1

2

−= i

i

i
ii e

G

E
We   

 <   1−ie
,
 since 

ii GE ≤ . 

Therefore, the recurrence relation (32) is stable.  Similarly we 

can prove that the recurrence relation (33) is also stable.  

Finally the convergence of the Thomas Algorithm is ensured 

by the condition 1<iW , 1  ...,  ,2  ,1 −= Ni . 

D.  NUMERICAL EXAMPLES WITH LEFT 

END BOUNDARY LAYER 

 

To demonstrate the applicability of the method we 

have applied it to three boundary value problems of the type 

given by equations (1)-(3) with left-end boundary layer.  The 

approximate solution is compared with exact solution. 

 The exact solution of such boundary value problems having 

constant coefficients (i.e. ( )     , axa =  ( ) , αα =x  

( )    ,ββ =x ( ) , ωω =x  ( )    ,fxf =  ( )  φφ =x  

and ( ) γγ =x    are constants) is given by:  

( ) ( ) ( )
c

f
xmcxmcxy ++= 2211 expexp ,         (36) 

where  

( )( )
( ) ( )( )cmm

cfmcf
c

21

2
1

expexp

exp

−

−++−
=

φγ
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( )( )
( ) ( )( )cmm

cfmcf
c

21

1
2

expexp

exp

−

+−+−
=

φγ
 

( ) ( )
ε

εβηαδβηαδ
2

4
2

1

caa
m

−+−++−−
=

 

 

( ) ( )
ε

εβηαδβηαδ
2

4
2

2

caa
m

−+−−+−−
=  

ωβα ++=c
                 

(37) 
Example 1:  Consider the model boundary value problem 

given by equations (1)-(3) with 

( ) ( ) ( ) ( )
( ) ( ) ( ) .1  ,1  ,0 

 ,3  ,0  ,2  ,1

===

−====

xxxf

xxxxa

γφ
ωβα

  

The exact solution of the problem is given by (36)-(37). 

The numerical results are given in tables 1, 2 for ε=0.01 and 
0.005 respectively.   

                        

Example 2. Consider the model boundary value problem 

given by equations (1)-(3) with 

( ) ( ) ( ) ( )
( ) ( ) ( ) .1  ,1  ,0

  ,3  ,2  ,0  ,1

===

−====

xxxf

xxxxa

γφ
ωβα

  

The exact solution of the problem is given by (36)-(37). 

The numerical results are given in tables 3, 4 for ε=0.01 and 
0.005 respectively.  

    

Example 3. Consider the model boundary value problem 

given by equations (1)-(3) with 

( ) ( ) ( ) ( )
( ) ( ) ( ) .1  ,1  ,0  

,5  ,1  ,2  ,1

===

−==−==

xxxf

xxxxa

γφ
ωβα

  

The exact solution of the problem is given by (36)-(37). 

The numerical results are given in tables 5, 6 for ε=0.01 and 
0.005 respectively.     

 

E.  RIGHT-END BOUNDARY LAYER 

PROBLEMS 

We now consider (6)-(8) and assume that 

( ) ( ) ( ) 0)( <≤−+= Mxxxaxp δαηβ  throughout the 

interval [0, 1], where M is constant. This assumption merely 

implies that the boundary layer will be in the neighborhood of 

x = 1. 

Thus, from the theory of singular perturbations the solution of 

(6) - (8) is of the form:  

)())1((
)(

)1(
)()(

1

)(

)()(

010 εγ
ε

Oey
xp

p
xyxy x

dx
xp

xqxp

+
∫

−+=








−

                        (38) 

where )(0 xy is the solution of  the reduced problem  

)()()()()( 00 xfxyxqxyxp =+′ ,  00 )0( φ=y .     (39) 

By taking the Taylor’s series expansion for ( )xp  and ( )xq  

about the point ‘1’ and restricting to their first terms, (38) 

becomes 

)())1(()()(
)1(

)1(

)1()1(

010 εγ ε
Oeyxyxy

x
p

qp

+−+=
−








−

 (40) 

Now we divide the interval [0, 1] into N equal parts with 

constant mesh length h.  Let 1  ...,  ,  ,  ,0 210 == Nxxxx  

be the mesh points.  Then we 

have Niihxi   ...,  ,2  ,1 ,0   , == . From (40) we have  
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 −

→
    

                       (41) 

where 
ε

=ρ
h
. Applying the same procedure as in section 2.1 

and using (41) we can get the tri-diagonal system (22)-(26) 

with a fitting factor as  
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which can be solved by Thomas Algorithm described in 

section (B). 

 

F.   NUMERICAL EXAMPLES WITH RIGHT 

END BOUNDARY LAYER 

 

Here we considered four boundary value problems of the type 

given by equations (1)-(3) with right-end boundary layer. The 

approximate solution is compared with the exact solution. The 

exact solution of such boundary value problems having 

constant coefficients (i.e. ( )     , axa =  ( ) , αα =x  

( )    ,ββ =x ( ) , ωω =x  ( )    ,fxf =  ( )  φφ =x  

and ( ) γγ =x    are constants) is given by equation (36)-(37).  

Example 4:  Consider the model boundary value problem 

given by equations (1)-(3) with 

( ) ( ) ( ) ( )
( ) ( ) ( ) .1  ,1  ,0

  ,1  ,0  ,2  ,1

−===

==−=−=

xxxf

xxxxa

γφ
ωβα

  

The exact solution of the problem is given by (36)-(37). The 

numerical results are given in tables 7, 8 for ε=0.01 and 0.005 
respectively. 
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Example 5:  Consider the model boundary value problem 

given by equations (1)-(3) with 

( ) ( ) ( ) ( )
( ) ( ) ( ) .1  ,1  ,0

  ,1  ,2  ,0  ,1

−===

=−==−=

xxxf

xxxxa

γφ
ωβα

  

The exact solution of the problem is given by (36)-(37). The 

numerical results are given in tables 9, 10 for ε=0.01 and 
0.005 respectively.   

Example 6:  Consider the model boundary value problem 

given by equations (1)-(3) with 

( ) ( ) ( ) ( )
( ) ( ) ( ) .1  ,1  ,0 

 ,1  ,2  ,2  ,1

−===

=−=−=−=

xxxf

xxxxa

γφ
ωβα

  

The exact solution of the problem is given by (36)-(37). The 

numerical results are given in tables 11, 12 for ε=0.01 and 
0.005 respectively 

Example 7:  Consider the model boundary value problem 

given by equations (1)-(3) with 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) .1  ,1 

 ,1  ,  ,)exp(1

  ,  ,)exp(1

2

2

−==

==−−−=

−=+−=

xx

xfxxxx

xxxxa

γφ
ωβ

α

  

The exact solution of the problem is not known.  The 

numerical results are given in tables 13, 14 for ε=0.01 and 
0.005 respectively 

III.   DISCUSSIONS AND CONCLUSIONS 

 

We have presented a fitted-modified upwind finite 

difference method to solve singularly perturbed differential 

difference equations with the delay and advance parameters. 

To demonstrate the efficiency of the method, we considered 

three examples with left end boundary layer and four with right 

end boundary layer for different values of  δ, η and ε . The 
approximate solution is compared with the exact solution. 

From the results presented in tables; we observed that the 

present method approximates the exact solution very well.  

 

 

 

 

 

Table 1: Numerical Results of Example 1 for ε=0.01, N=100 
 

x 

δδδδ=0.001, ηηηη=0.005 δδδδ=0.005=ηηηη δδδδ=0.009, ηηηη= 0.005 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.4606003 0.4620298 0.4593767 0.4608593 0.4581702 0.4597025 

0.04 0.3967817 0.3969578 0.3942694 0.3944706 0.3917536 0.3919752 

0.06 0.3951908 0.3950116 0.3923633 0.3921947 0.3895214 0.3893581 

0.08 0.4018598 0.4016091 0.3989754 0.3987311 0.3960733 0.3958297 

0.10 0.4097450 0.4094820 0.4068559 0.4065984 0.4039479 0.4036901 

0.20 0.4524234 0.4521629 0.4495846 0.4493290 0.4467248 0.4464683 

0.40 0.5516438 0.5514057 0.5490459 0.5488116 0.5464243 0.5461891 

0.60 0.6726243 0.6724306 0.6705107 0.6703200 0.6683748 0.6681828 

0.80 0.8201368 0.8200186 0.8188472 0.8187307 0.8175418 0.8174245 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
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Table 2: Numerical Results of Example 1 for ε=0.005, η=0.0005, N=100 
 

x 

δδδδ=0.0001, ηηηη=0.0005 δδδδ=0.0005=ηηηη δδδδ=0.0009, ηηηη= 0.0005 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.3887189 0.3883907 0.3884719 0.3881406 0.3882209 0.3878904 

0.04 0.3854013 0.3848477 0.3851155 0.3845578 0.3848257 0.3842677 

0.06 0.3929417 0.3923809 0.3926550 0.3920900 0.3923642 0.3917988 

0.08 0.4008259 0.4002658 0.4005396 0.3999753 0.4002493 0.3996845 

0.10 0.4088717 0.4083128 0.4085861 0.4080229 0.4082963 0.4077327 

0.20 0.4515897 0.4510409 0.4513093 0.4507563 0.4510248 0.4504713 

0.40 0.5508814 0.5503792 0.5506247 0.5501186 0.5503643 0.5498578 

0.60 0.6720043 0.6715958 0.6717955 0.6713839 0.6715837 0.6711716 

0.80 0.8197587 0.8195094 0.8196315 0.8193802 0.8195021 0.8192506 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 

 

 

 

Table 3: Numerical Results of Example 2 for ε=0.01, N=100 
 

x 

δδδδ=0.005, ηηηη=0.001 δδδδ=0.005=ηηηη δδδδ=0.005, ηηηη= 0.009 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.4612147 0.4626200 0.4624456 0.4638100 0.4636980 0.4650123 

0.04 0.3980323 0.3981982 0.4005193 0.4006724 0.4030082 0.4031376 

0.06 0.3965950 0.3964127 0.3993813 0.3992000 0.4021595 0.4019676 

0.08 0.4032912 0.4030393 0.4061293 0.4058825 0.4089564 0.4087026 

0.10 0.4111782 0.4109147 0.4140196 0.4137619 0.4168488 0.4165850 

0.20 0.4538308 0.4535700 0.4566194 0.4563647 0.4593939 0.4591334 

0.40 0.5529305 0.5526921 0.5554766 0.5552441 0.5580059 0.5577688 

0.60 0.6736697 0.6734761 0.6757361 0.6755477 0.6777859 0.6775938 

0.80 0.8207739 0.8206559 0.8220317 0.8219170 0.8232776 0.8231609 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
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Table 4: Numerical Results of Example 2 for ε=0.005, N=100 
 

x 

δδδδ=0.0005, ηηηη=0.0001 δδδδ=0.0005=ηηηη δδδδ=0.0005, ηηηη= 0.0009 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.3888459 0.3885157 0.3890998 0.3887657 0.3893480 0.3890156 

0.04 0.3855476 0.3849926 0.3858402 0.3852821 0.3861268 0.3855714 

0.06 0.3930885 0.3925262 0.3933820 0.3928168 0.3936695 0.3931071 

0.08 0.4009725 0.4004109 0.4012656 0.4007010 0.4015525 0.4009909 

0.10 0.4090181 0.4084576 0.4093105 0.4087471 0.4095968 0.4090364 

0.20 0.4517334 0.4511832 0.4520206 0.4514674 0.4523015 0.4517514 

0.40 0.5510128 0.5505093 0.5512754 0.5507694 0.5515324 0.5510292 

0.60 0.6721113 0.6717017 0.6723247 0.6719133 0.6725337 0.6721245 

0.80 0.8198239 0.8195741 0.8199540 0.8197031 0.8200815 0.8198320 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 

 

Table 5: Numerical Results of Example 3 for ε=0.01,    N=100  
 

x 

δδδδ=0.001, ηηηη=0.005 δδδδ=0.005=ηηηη δδδδ=0.009, ηηηη= 0.005 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.1094809 0.1227591 0.1081350 0.1211090 0.1068117 0.1194889 

0.04 0.0156566 0.0186041 0.0155188 0.0183522 0.0153938 0.0181171 

0.06 0.0062106 0.0066617 0.0063555 0.0067770 0.0065071 0.0069001 

0.08 0.0057535 0.0057689 0.0059596 0.0059658 0.0061710 0.0061684 

0.10 0.0063126 0.0062567 0.0065448 0.0064836 0.0067823 0.0067158 

0.20 0.0110616 0.0109575 0.0114247 0.0113141 0.0117945 0.0116773 

0.40 0.0341085 0.0338675 0.0349449 0.0346909 0.0357898 0.0355229 

0.60 0.1051741 0.1046780 0.1068863 0.1063678 0.1086025 0.1080617 

0.80 0.3243055 0.3235398 0.3269347 0.3261408 0.3295490 0.3287274 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
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Table 6: Numerical Results of Example 3 for ε=0.005,    N=100  
 

 

x 

δδδδ=0.0001, ηηηη=0.0005 δδδδ=0.0005=ηηηη δδδδ=0.0009, ηηηη= 0.0005 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.02 0.0178655 0.0195213 0.0178369 0.0194850 0.0178084 0.0194490 

0.04 0.0041111 0.0039867 0.0041262 0.0040009 0.0041414 0.0040150 

0.06 0.0043845 0.0041877 0.0044024 0.0042050 0.0044205 0.0042223 

0.08 0.0049182 0.0047005 0.0049379 0.0047195 0.0049578 0.0047387 

0.10 0.0055205 0.0052813 0.0055422 0.0053023 0.0055640 0.0053233 

0.20 0.0098372 0.0094574 0.0098715 0.0094907 0.0099061 0.0095241 

0.40 0.0312358 0.0303269 0.0313175 0.0304071 0.0313998 0.0304873 

0.60 0.0991824 0.0972491 0.0993555 0.0974203 0.0995293 0.0975916 

0.80 0.3149324 0.3118478 0.3152070 0.3121222 0.3154826 0.3123965 

1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 

 

 

 

Table 7: Numerical Results of Example 4 for ε=0.01, N=100  
 

x 

δδδδ=0.001, ηηηη=0.005 δδδδ=0.005=ηηηη δδδδ=0.009, ηηηη= 0.005 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.8201371 0.8200187 0.8188482 0.8187308 0.8175434 0.8174245 

0.40 0.6726251 0.6724306 0.6705123 0.6703200 0.6683772 0.6681829 

0.60 0.5516449 0.5514057 0.5490478 0.5488117 0.5464274 0.5461891 

0.80 0.4524246 0.4521630 0.4495868 0.4493290 0.4467281 0.4464684 

0.90 0.4096702 0.4093998 0.4067760 0.4065081 0.4038625 0.4035918 

0.92 0.4012797 0.4009919 0.3983587 0.3980641 0.3954176 0.3951149 

0.94 0.3907402 0.3903787 0.3876992 0.3872665 0.3846339 0.3841594 

0.96 0.3626873 0.3621779 0.3590897 0.3580557 0.3554546 0.3541659 

0.98 0.1994671 0.2009362 0.1941174 0.1917881 0.1887210 0.1847184 

1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 
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Table 8: Numerical Results of Example 4 for ε=0.005, N=100  
 

x 

δδδδ=0.0001, ηηηη=0.0005 δδδδ=0.0005=ηηηη δδδδ=0.0009, ηηηη= 0.0005 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.8197590 0.8195095 0.8196320 0.8193802 0.8195019 0.8192506 

0.40 0.6720049 0.6715958 0.6717966 0.6713839 0.6715834 0.6711717 

0.60 0.5508822 0.5503792 0.5506259 0.5501186 0.5503638 0.5498578 

0.80 0.4515907 0.4510410 0.4513105 0.4507563 0.4510241 0.4504714 

0.90 0.4088726 0.4083128 0.4085873 0.4080229 0.4082956 0.4077327 

0.92 0.4008266 0.4002657 0.4005406 0.3999752 0.4002483 0.3996845 

0.94 0.3929316 0.3923772 0.3926452 0.3920862 0.3923523 0.3917950 

0.96 0.3847817 0.3846442 0.3844923 0.3843529 0.3841966 0.3840614 

0.98 0.3534923 0.3770636 0.3531339 0.3767721 0.3527690 0.3764803 

1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 

 

 

 

 

Table 9: Numerical Results of Example 5 for ε=0.01, N=100  
 

x 

δ=0.005, η=0.001 δδδδ=0.005=ηηηη δδδδ=0.005, ηηηη= 0.009 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.8207732 0.8206559 0.8220346 0.8219171 0.8232757 0.8231609 

0.40 0.6736687 0.6734761 0.6757410 0.6755477 0.6777827 0.6775939 

0.60 0.5529291 0.5526921 0.5554826 0.5552442 0.5580020 0.5577688 

0.80 0.4538293 0.4535700 0.4566260 0.4563647 0.4593894 0.4591334 

0.90 0.4111035 0.4108346 0.4139587 0.4136878 0.4167818 0.4165221 

0.92 0.4027260 0.4024331 0.4056069 0.4053128 0.4084550 0.4082114 

0.94 0.3922449 0.3918253 0.3952396 0.3948204 0.3981973 0.3981311 

0.96 0.3644656 0.3634869 0.3679978 0.3670035 0.3714807 0.3731723 

0.98 0.2021188 0.1999686 0.2073903 0.2049766 0.2126045 0.2309708 

1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 
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Table 10: Numerical Results of Example 5 for ε=0.005, N=100  
 

x 

δ=0.0005, η=0.0001 δδδδ=0.0005=ηηηη δδδδ=0.0005, ηηηη= 0.0009 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.8198244 0.8195741 0.8199533 0.8197032 0.8207421 0.8206241 

0.40 0.6721120 0.6717017 0.6723235 0.6719133 0.6736173 0.6734240 

0.60 0.5510136 0.5505093 0.5512739 0.5507694 0.5528658 0.5526280 

0.80 0.4517343 0.4511832 0.4520189 0.4514674 0.4537601 0.4534999 

0.90 0.4090191 0.4084576 0.4093089 0.4087471 0.4110329 0.4107640 

0.92 0.4009733 0.4004109 0.4012638 0.4007010 0.4026548 0.4023689 

0.94 0.3930786 0.3925226 0.3933697 0.3928132 0.3921708 0.3918114 

0.96 0.3849301 0.3847897 0.3852240 0.3850807 0.3643779 0.3638624 

0.98 0.3536752 0.3772092 0.3540379 0.3775004 0.2019874 0.2033520 

1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 

 

 

 

 

 

 

Table 11: Numerical Results of Example 6 for ε=0.01,    N=100  
 

 

x 

δδδδ=0.005, ηηηη=0.001 δδδδ=0.005=ηηηη δδδδ=0.005, ηηηη= 0.009 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.5562779 0.5557454 0.5587557 0.5582183 0.5612090 0.5606658 

0.40 0.3094450 0.3088530 0.3122078 0.3116077 0.3149554 0.3143461 

0.60 0.1721374 0.1716436 0.1744479 0.1739451 0.1767556 0.1762431 

0.80 0.0957562 0.0953902 0.0974737 0.0970993 0.0991968 0.0988135 

0.90 0.0713902 0.0710767 0.0728351 0.0724996 0.0742875 0.0739417 

0.92 0.0671167 0.0667839 0.0685213 0.0680689 0.0699333 0.0694517 

0.94 0.0615982 0.0611406 0.0630215 0.0616699 0.0644498 0.0628982 

0.96 0.0442006 0.0435159 0.0459409 0.0382505 0.0476774 0.0382895 

0.98 -0.0720914 -0.0679831 -0.0690684 -0.1199952 -0.0660603 -0.1315051 

1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 
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Table 12: Numerical Results of Example 6 for ε=0.005,    N=100  
 

x 

δδδδ=0.0005, ηηηη=0.0001 δδδδ=0.0005=ηηηη δδδδ=0.0005, ηηηη= 0.0009 

Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. Numerical  Sol. Exact Sol. 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.5548313 0.5533746 0.5550852 0.5536292 0.5553393 0.5538834 

0.40 0.3078378 0.3062235 0.3081196 0.3065052 0.3084018 0.3067868 

0.60 0.1707981 0.1694563 0.1710326 0.1696902 0.1712677 0.1699241 

0.80 0.0947641 0.0937728 0.0949377 0.0939454 0.0951117 0.0941181 

0.90 0.0705869 0.0697568 0.0707324 0.0699013 0.0708783 0.0700458 

0.92 0.0665488 0.0657489 0.0666889 0.0658881 0.0668295 0.0660274 

0.94 0.0627372 0.0619713 0.0628723 0.0621053 0.0630077 0.0622395 

0.96 0.0588723 0.0584107 0.0590040 0.0585397 0.0591361 0.0586689 

0.98 0.0385971 0.0550547 0.0387736 0.0551789 0.0389502 0.0553031 

1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 

 

 

 

 

Table 13: Numerical Results of Example 7 for ε=0.01,    N=100  
 

 

x δδδδ=0.00, ηηηη=0.00 δδδδ=0.005, ηηηη=0.001 δδδδ=0.005=ηηηη δδδδ=0.005, ηηηη= 0.009 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.8832572 0.8832309 0.8832549 0.8832780 

0.40 0.7518808 0.7517785 0.7518653 0.7519513 

0.60 0.6265452 0.6263362 0.6265016 0.6266667 

0.80 0.5204743 0.5201598 0.5203944 0.5206292 

0.90 0.4766997 0.4763406 0.4766020 0.4768638 

0.92 0.4687217 0.4683546 0.4686207 0.4688871 

0.94 0.4610007 0.4606259 0.4608964 0.4611673 

0.96 0.4533263 0.4529480 0.4532202 0.4534931 

0.98 0.4268595 0.4266440 0.4268158 0.4269973 

1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 
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Table 14: Numerical Results of Example 6 for ε=0.005,    N=100  
 

x δδδδ=0.00, ηηηη=0.00 δδδδ=0.0005, ηηηη=0.0001 δδδδ=0.0005=ηηηη δδδδ=0.0005, ηηηη= 0.0009 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 

0.20 0.8834323 0.8834295 0.8834320 0.8834342 

0.40 0.7520655 0.7520551 0.7520639 0.7520724 

0.60 0.6266463 0.6266254 0.6266420 0.6266583 

0.80 0.5204805 0.5204489 0.5204723 0.5204955 

0.90 0.4766710 0.4766349 0.4766611 0.4766871 

0.92 0.4686872 0.4686504 0.4686770 0.4687034 

0.94 0.4609482 0.4609106 0.4609376 0.4609645 

0.96 0.4527357 0.4526978 0.4527250 0.4527518 

0.98 0.4115886 0.4115608 0.4115804 0.4115995 

1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 
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