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Experimental and Numerical
Studies on Spherical Roller
Bearings Using Multivariable
Regression Analysis
Many industries make wide use of rotor bearing systems such as high speed turbines and
generators. However, the vibration of antifriction rotor–bearings is a key factor in reduc-
ing the life of the bearings; thus significantly influencing the performance and working
life of the whole power plant. In earlier research on the vibration characteristics of high
speed rotor–bearing systems, such as in induced draft (ID) fans, an application used in
sugar cane factories, the supporting antifriction bearings were simplified as a particle
on a shaft with radial stiffness and damping coefficient. However, such simplification
neglects the effects of the bearing structure on the vibration performance of the rotor–
bearing system. This paper demonstrates the benefits of a more holistic approach and
establishes a numerical model of the stiffness of the spherical roller bearing through
Buckingham’s p theorem (BPT). On the basis of this model, we argue for the benefits of a
new dimensional analysis (DA) technique for rotor–bearing systems. Our new DA also
considers the influences of the bearing structure parameters on the vibration of rotor–
bearing systems. We demonstrate the effectiveness of our approach by conducting a
comparative BPT study using an ID fan, a rotor–bearing system in use in sugar cane fac-
tories. We first analyzed an ID fan using the simplified model to obtain the defect frequen-
cies and vibration amplitude responses of the ID fan system. Subsequently the same ID
fan rotor was also analyzed using our new multivariable regression analysis (MVRA)
approach to verify the validity of our new and holistic BPT. The results indicate that the
new method we propose in this paper for the calculation of vibration characteristics of a
high speed rotor–bearing (ID fan) is credible and will save time and costs by the accurate
detection of imminent bearing failure. [DOI: 10.1115/1.4026433]

Keywords: multivariable regression analysis, double row spherical roller bearing, ID
fan, BPT, high speed rotor–bearings

1 Introduction

Systems with high speed rotors supported by double row
spherical roller bearings are widely used in many industries [1].
In application, these systems often face many different problems
which influence the efficient working process of the plant, such
as sugar factories, which use ID fans. One of the most common
problems of these systems is vibration. The vibration calculation
of rotor–bearings is a focus in the many engineering fields. In
sugar factory applications, the vibration in ID fans mainly
originates from the wavering of the ID fan hammers and rotor–
bearing system [2,3], with the rotor–bearing system as the cru-
cial source. The most important vibration parameters of the ID
fan rotor include load and speed, unbalanced response, etc. To
obtain these parameters, the stiffness and damping of the sup-
porting rolling element bearing should first be considered in
order to establish the governing equations of the whole system
by using BPT. On this basis, the dynamic characteristics of an
ID fan rotor system can be revealed and the vibration parameters
can be obtained.

Previous researchers who focused on the vibration of radial ball
bearings were Rahnejat and Gohar [4]. They built a deep groove
ball bearing model including an extrapolated equation that

considered the effect of squeeze film. They suggested that the
number of balls, applied load, and radial internal clearance affects
the limit cycle frequency and amplitude of the ball bearing. Even
in the presence of elastohydrodynamic lubricating film between
balls and the raceways, a peak of the ball passage frequency
(BPF) appears in the spectrum [5].

Tomovic et al. [6] studied the vibration response of rigid rotors
in unloaded rolling element bearings. By the application of the
defined model, they performed a parametric analysis of the effect
of internal radial clearance value and the influence of the number
of rolling elements on rigid rotor vibrations in unloaded rolling
element bearings. They concluded that the BPF linearly increases
with the increase of the number of rolling elements. This increase
is more pronounced with lower values of ratio between diameter
of rolling elements and cage pitch diameter. With the increase of
the internal radial clearance, the value of amplitude increases line-
arly. The increase gets much bigger as the total number of rolling
elements decreases.

Patil et al. [7] developed a theoretical model to predict the
effect of localized defect on vibrations associated with ball bear-
ings. The contacts between the ball and the races are considered
as nonlinear springs. The contact force is calculated using the
Hertzian contact deformation theory. The results are presented in
the forms of time and frequency domains. Experiments were car-
ried out on 6305 deep groove ball bearings. They concluded that
the amplitude level of vibrations in case of outer race defects is
more than that for inner race and ball defects. It was also predicted
from the model that the amplitude of vibration increases with the
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increase in the defect size and it is observed through
experimentation.

Kankar et al. [8] investigated the fault diagnosis of ball bear-
ings using machine learning methods. This study focused on
the fault diagnosis of ball bearings using an artificial neural net-
work (ANN) and support vector machine (SVM). The specific
defects are considered as cracks in outer and inner races with
rough surface and corrosion pitting in balls. Kankar et al. [8]
carried out a comparative experimental study of the effective-
ness of ANN and SVM. The results show that the machine
learning algorithms mentioned above can be used for automated
diagnosis of bearing faults. It was concluded that the accuracy
of SVM is better than of ANN. Both the machine learning
methods give less accuracy in correctly predicting the bearing
condition with combined bearing component faults, though
results obtained from SVM are slightly better than ANN. This
demonstrates that the application of defect diagnosis for
condition-based maintenance prevents catastrophic failure and
reduces operating cost.

From the above literatures, it can be seen that in the past
research articles have highlighted the different techniques used
for the detection of faults [9]. The key challenge for fault diagno-
sis is the improvement of the accuracy of diagnostics based on a
given amount of information. While previous research indicates
that much work has been done on ball bearings, identification of
the wider combination of defects in rolling bearing elements has
been limited. Our literature research indicates that only very little
work has been done on spherical roller bearings to date. In
response, this paper presents a new analytical model for calculat-
ing overall vibration, defect frequencies, stiffness, and damping of
the spherical roller bearing, and provides a numerical model for
calculating defects in high speed rotor–bearing systems. An actual
ID fan was analyzed with the new BPT to show that the bearing
structure significantly affects the vibration characteristics of a
rotor–bearing system. The rotor was also analyzed using MVRA
and ANN.

2 Formulation of Dimensional Analysis

2.1 Modeling Spherical Roller Bearings. A real rotor–
bearing system is generally very complicated and difficult to
model. The functional dependence of vibration amplitude on the
parameters can be estimated by performing a DA based on the
BPT. In this work, an analytical model is proposed for estimat-
ing the vibration amplitude in antifriction bearings by using the
concepts of DA and including the parameters below. Knowing
the governing parameters of the physical problem and by using
the concepts of BPT, relationships are obtained between the dif-
ferent parameters involved [10–22]. The first task is to identify a
relevant set of bearing variables. The set should be “complete,”
such that none of the independent variables can be derived from
others, while the dependent variables can be so derived [23].
The independent variables relate to bearing geometry, operating
conditions, and the properties of all materials. In this study the
dependent variables are load and speed. A suitable set of varia-
bles is given in Table 1. A mass–length–time (MLT) units’ ref-
erence set is used. According to the numerical model for
antifriction bearings proposed in this paper, the functional rela-
tionship is the following. The vibration amplitude (A) can be
given by an equation of the form (2). Where F is an unknown
function, assuming that this function is in the form of a product
of powers. The number of dimensionless products in a complete
set is equal to the total number of variables minus the maximum
number of these variables that will not form a dimensionless
product. Therefore, the number of the independent group m is,
according to BPT [16,23], the number of independent dimen-
sionless p products is

36 variablesð Þ � 3 reference dimensionsð Þ ¼ 33p� terms

It may be assumed that the vibration amplitude depends on the
speed, radial load, and density of the material, lubricant viscosity,
stiffness and damping, and temperature. In antifriction bearings,
speed and load have a significant role to play in changing the
vibration amplitude. The dimensions of all these quantities are
reported in the M, L, T, h system as shown in Table 1. All the
above variables considered for the problem are assembled using
BPT in a number of dimensional products (pi) as follows [23].
That is, we have

Fðp1; p2;p3;p4; p5; p6;…;pm�nÞ ¼ 0 (1)

In the lower part of Table 2, according to the procedure, the
formulation of the dimensionless numbers is obtained. In this
regard, as we anticipated above, the BPT does not give any
hint concerning the form of the new equation, or the best
dimensionless set to be developed out of the starting dimen-
sional variables. This will allow a better experimental control,
and simplify the search of the functional form of the dimen-
sionless equation.

Table 1 Parameters for modeling spherical roller bearings

Parameters Symbols SI units Dimensions

Geometric parameters
Bore diameter D m L
Roller diameter db m L
Inner race diameter di m L
Outer race diameter do m L
Pitch diameter dm m L
No. of rollers Z — —
Radial clearance Cr m L
Inner groove diameter dgi m L
Outer groove diameter dgo m L
Initial position of the defect hi — —
Height of defect (size) Hd m L
Length of roller L m L
Bearing width B m L
No. of defects nd — —

Properties of double row spherical roller bearing
Mass of rotor mr kg Mr

Mass of the inner race mi kg Mi

Mass of the outer race mo kg Mo

Mass of the roller mb kg Mb

Spring constant K N/m MT�2

Damping C N S/m MT�1

Properties of lubricant
Lubricant viscosity H N s/m2 ML�1T�1

Impact parameters
Speed of shaft N rpm T�1

Resisting torque (frictional) T N m ML2T�2

Radial load W N MLT�2

Material parameters
Young’s modulus E N/m2 ML�1T�2

Density of bearing material q kg/m3 ML�3

Poisson’s ratio’s � — M0L0T0¼ 1
Coefficient of friction l — M0L0T0¼ 1

Response parameters
Amplitude A mm L
Deflection d mm L
Acceleration a m/s2 LT�2

Stresses S N/m2 ML�1T�2

Cage frequency fc Hz T�1

Roller spinning frequency fb Hz T�1

Inner race defect frequency fid Hz T�1

Outer race defect frequency fod Hz T�1

Roller defect frequency fbd Hz T�1
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The DA is a convenient tool to perform studies and understand
the effects of various important parameters involved. The fact that
no attempt has been observed on applying DA for rolling element
bearings indicates that this forms a gap in the research work relat-
ing to the antifriction bearings

AmplitudeðAÞ ¼ FðD; db; di; do; dm;Z;Cr; dgi; dgo; hi;Hd;

lr;B; nd;Ns;W;K;C; g; Tf ;mr;mi;mo; S; d;E; q;

�; fc; fb; fid; fod; fbd;aÞ (2)

2.2 Reduction Dimensionless Forms. The observation that a
dimensionally homogeneous equation among several variables
can be reduced to an equation among a smaller number of dimen-
sionless variables is principally due to Rayleigh and Buckingham.
For each of the problems, it can be shown that the two P terms
combine to form the high-level dimensionless variables as
follows:

pa ¼
p2

p5

¼ db

D
;

D

dm
¼ db

dm
(3)

pb ¼
p3

p4

¼ di

D
;

D

do
¼ di

do
(4)

pc ¼
p7

p12

¼ Cr

D
;

D

Ir
¼ Cr

Ir
(5)

pd ¼
p11

p13

¼ Hd

D
;

D

B
¼ Hd

B
(6)

pe ¼
p9

p8

¼ dgo

D
;

D

dgi
¼ dgo

dgi
(7)

pf ¼
p19

p22

¼ mrDN2

W
;

W

mbDN2
¼ mr

mb
(8)

pg ¼
p21

p20

¼ moDN2

W
;

W

miDN2
¼ mo

mi
(9)

ph ¼
p15

p16

¼ KD

W
;

W

CND
¼ K

CN
(10)

pi ¼
p17

p18

¼ gD2N

W
;

WD

T
¼ gD3N

T
(11)

pj ¼
p23

p24

¼ SD2

W
;

D

d
¼ SD3

dW
(12)

pk ¼
p30

p31

¼ ED2

W
;

D

qD4N2
¼ E

qD2N2
(13)

pl ¼ ph; pi ¼
K

CN
;

gD3N

T
¼ KgD3

CT
(14)

pm ¼
pk

pj
¼ qD2N2

E
;

dW

SD3
¼ qD2dW

E S D
(15)

pn ¼
p26

p25

¼ fb
fc

(16)

Constant ¼ b ¼ pa;pb;pc; pd;pe; pf ;pg;Z; hi; nd; t;l
� �

(17)

Constant ¼ b

¼ Z; hi; nd; t;lð Þ; db

dm
;

di

do
;
dgo

dgi

� �
;

Cr

L
;
Hd

B

� �
;

mr

mb
;
mo

mi

� �

(18)

Substituting for various dimensionless groups, equations may be
rewritten as in Eqs. (19)–(24):

Table 2 Prediction and design equations for dynamic
response of spherical roller bearings

Sr. Basic p relation

Prediction equations
1 P1

ao

D
2 P2 db

D
3 P3 di

D
4 P4 do

D
5 P5 dm

D
6 P6 Z

7 P7 Cr

D
8 P8 dgi

D

9 P9 dgo

D
10 P10 hi

11 P11 Hd

D
12 P12 L

D
13 P13 B

D

14 P14 nd

Design equations

1 P15 KD

W

2 P16 CND

W

3 P17 gD2N

W

4 P18 T

WD

5 P19 mrDN2

W

6 P20 miDN2

W

7 P21 moDN2

W

8 P22 mbDN2

W

9 P23 SD2

W

10 P24 d
W

11 P25 fc
N

12 P26 fb

N

13 P27 fid
N

14 P28 fod

N

15 P29 fbd

N

16 P30 ED2

W

17 P31 qD4N2

W

18 P32 t

19 P33 l
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ao

D
¼ F b;

1

Z
; nd;

Cr

L
;
Hd

B
;
KgD3

CT
;
qN2dW

E S D
;
fb
fc
;
fid

N
;
fod

N
;
fbd

N

� �
(19)

a ¼ F b;
1

Z
;
a0

D
; nd;

Cr

L
;
Hd

B
;
KgD3

CT
;
qN2dW

E S D
;
fb

fc
;
fid

N
;
fod

N
;
fbd

N

� �
(20)

fb
fc
¼ F b;

1

Z
;
a0

D
; nd;

Cr

L
;
Hd

B
;
KgD3

CN
;
qN2dW

E S D
; a;

fid

N
;
fod

N
;
fbd

N

� �
(21)

fid
Ns
¼ F b;

1

Z
;
a0

D
; nd;

Cr

L
;
Hd

B
;
KgD3

CN
;
qN2dW

E S D
;
fb

fc
; a;

fod

N
;
fbd

N

� �
(22)

fod

Ns
¼ F b;

1

Z
;
a0

D
; nd;

Cr

L
;
Hd

B
;
KgD3

CT
;
qN2dW

E S D
;
fb
fc
;
fid

N
; a;

fbd

N

� �
(23)

fbd

Ns
¼ F b;

1

Z
;
a0

D
; nd;

Cr

L
;
Hd

B
;
KgD3

CT
;
qN2dW

E S D
;
fb
fc
;
fid

N
;
fod

N
; a

� �
(24)

Equations (19)–(24) show the model for predictions and calculat-
ing defects, vibration amplitude, acceleration, cage frequency,
roller spinning frequency, inner race defect frequency, outer race
defect frequency, and roller defect frequency (Figs. 2 and 3).
Finally, a functional relationship is proposed for the amplitude of

vibration in terms of dimensionless parameters. The dependence
is to be investigated through experimental study.

3 Experimental Details

3.1 Experimental Procedure. The experimental setup used
for this study is shown in Fig. 1. It is consists of a shaft supported
on two bearings and driven by a constant speed turbine. The test
bearing, a double roller taper, spherical roller bearing 23,222
CCK/W33/C3-SKF Sweden, is placed on the nondrive end of the
shaft and a double-row self-aligning spherical roller bearing is
placed on the drive end side. The ID fan rotor arrangement is
placed between these two bearings as shown in Fig. 1. A piezo-
electric accelerometer with a sensitivity of 100 mV/g is used to
measure the vibrations. It is mounted on the housing of the test
bearing. The accelerometer is connected to the fast Fourier trans-
form (FFT) analyzer, the output of which is connected to a com-
puter, and displays the time domain signal. The experiments have
been performed on separate test bearings having defects of sizes
1.5 mm, 2 mm, and on an outer race, inner race, and rollers of a
damaged bearing; separately, Figs. 2 and 3 shows different faults.
Then, data are collected for different fault conditions. A variety of
faults are simulated on the rig at 1000 and 4400 rpm. The follow-
ing faults are introduced in the bearing:

• outer race with defect, Fig. 2
• inner race with defect, Fig. 3

Vibration responses for all cases are presented in FFT form.
MVRA is used to find the effects of various localized bearing
component faults on vibration responses and interactions between
faults. In order to perform MVRA to determine the combination
of defects, DOE is used with a total of 27 trial runs. Table 3 shows
parameters used for DOE with their minimum and maximum
levels.

4 Experimental Designs Analysis of Variance

4.1 Analysis of Variance (ANOVA). ANOVA gives a sum-
mary of the main effects and interactions, of regression coeffi-
cients, and p value (Fig. 4). The p value in the ANOVA analysis
helps to determine which effects (factors and interactions) are
statistically significant. p values are often used in hypothesis tests
where you either accept or reject a null hypothesis. The p value
represents the probability of making a type-I error or rejecting the
null hypothesis when it is true. The smaller the p value, the
smaller is the probability that you would be making a mistake by
rejecting the null hypothesis. The cutoff value often used is
0.0500, i.e., reject the null hypothesis when the p value is less

Fig. 3 Outer race and inner race with defects

Fig. 2 Inner race and cage with defects

Fig. 1 Photographic views of ID fan rotor–bearing
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than 0.0500. It is common to declare a result significant if the p
value is less than 0.0500 [17].

4.2 Multivariable Regression Modeling. MVRA refers to
techniques for the modeling and analysis of numerical data con-
sisting of values of a dependent variable and of one or more inde-
pendent variables. The dependent variable in the multivariable
regression equation is modeled as a function of the independent
variables, corresponding parameters, and an error term. The error
term is treated as a random variable and represents unexplained
variation in the dependent variable. Parameters are estimated to
give a “best fit” of the data. Most commonly the best fit is eval-
uated by using the least squares method, but other criteria have
also been used. The linear model under the multivariate setup is

yi ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ � � � þ bpXp þ ei (25)

where y is a dependent variable, X1, X2,…,Xp are independent var-
iables, and n observations on each of the p independent variables
are available. The regression coefficients associated with X1,
X2,…, Xp are b1, b2,…, bp, respectively, and b0 is the involved
intercept term in the model. The random error component ei takes
care of all the random factors affecting y not included in the
model and is assumed to be identically and independently distrib-
uted following a normal distribution with mean and constant var-
iance r2. The MVRA is done in terms of the fitted surface. Once a
regression analysis model is obtained, statistical analysis techni-

ques, such as ANOVA, can be used to check the fitness of the
model. Regression equations are found out using software for sta-
tistical analysis called MINITAB 16. The regression equation helps
to get the relation between different response variables (amplitude
and frequency) and the input parameters (speed, load, and diame-
ter). The software required the input conditions and the observa-
tions of the experiments and developed the regression equations
for each desired output. Based on the experimental runs, following
regression equations are obtained.

These 12 factors are selected with three levels. The upper and
lower levels of each factor are defined in Table 3. The reference
value for healthy and defective bearings are taken as 0 and 1, 2
respectively, where value 0 indicates absence of defect and values
1 and 2 indicate that defect is present in bearing components.
DOE considers factors with two levels and eight trial runs, as
listed in Table 3.

5 Discussions of the Results

The equations of motion (19) has been solved by the DA
method to obtain the displacement and vibration amplitude, and
defect frequencies of the antifriction bearings. For the trials 1–27
(as shown in Table 3), the response plots have been shown in the
form of frequency spectra obtained from the experimental data
based mathematical model and experimental analysis, as shown in
Figs. 5–13, respectively. Figure 5 shows the response plots for the
minimum level of localized defects of bearing components with
the ID fan rotor speed at 1000 rpm. For this trial, peak amplitude
of vibration excitation appears at multiples of frequency spectra.
The mathematical model equation (19) confirms the multiple
peaks of excitation of FFT and shows the periodicity of the sys-
tem. In the presence of defects on the outer race at 2500 rpm of ID
fan rotor speed, the peak amplitude of vibration appears in the
spectrum at roller passage frequency and its multiples, as shown
in Fig. 12. The broad band frequency spectrum that appears
around the peak of excitation shows that the system loses its peri-
odicity, which can also be confirmed by Eq. (19). Figure 13 shows
the response with a defect on the inner race with 2500 rpm of ID
fan rotor speed. For this trial, the peak amplitude of vibration
responses appears at wave passage frequencies and this shows the
onset of a damaged condition. The experiment then increased the
ID fan rotor speed to 5000 rpm, i.e., at maximum load level. We
found that when the system operates with healthy bearings at a
rotor speed of 5000 rpm, the second order subharmonic nature is
observed with peak amplitude of vibration and appears at a certain
harmonics in the frequency spectrum, as shown in Figs. 10 and
11.

The MINITAB statistical package was used to analyze the experi-
mental data and response parameters. The significant terms in the
model were found by ANOVA at 5% level of significance (95%
confidence level). The regression coefficients are obtained using
the coded units. Table 4 shows the regression coefficients and p
value.

Table 5 shows that for trials 1–27 the peak amplitude of vibra-
tion appears in the spectrum for horizontal acceleration responses

Fig. 5 Response plot for rotor speed 1000 rpm (H)

Table 3 Levels of the variables of the experimental design

Levels

Design variable Design parameter Level 1 Level 2 Level 3

A Inner race defect Ri 0 1 2
B Outer race defect Ro 0 1 2
C Roller defect Rr 0 1 2
D Speed Ns 1000 2500 5000
E Defect size dB 0 1 2
F Load W 0 1 2
G Number of rollers Z 8 13 17
H Number of defects dN 0 1 2
I Radial clearance Cr 0 0.02 0.08
J Stiffness K 0 2.5� 108 4.0� 108

K Damping C 100 200 300
L Unbalance Ub 100 200 300

Fig. 4 Main effect of plots (vibration amplitude)
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and for vertical acceleration responses. Through the experiments,
the polynomials f(x) are approximated by the design parameters/
variables. The final functions of the multivariable regression anal-
ysis model are listed below. The second-degree polynomial for
horizontal acceleration responses are

Vibration acceleration

¼ 1:57þ13:5 outer race with defectþ1:32inner race with defect

þ0:11 roller with defectþ0:00106speedþ1:30 defect size

þ0:141 load�0:041 number of rollersþ0:32 number of defects

þ10:3 radial clearance�0:0041 dampingþ0:0060 unbalance

(26)

The performance prediction of vibration amplitude in horizon-
tal and vertical acceleration responses has been shown in Fig. 14.
The actual and predicted values of responses in both directions are
very close and verify the fitness of polynomials for the responses
obtained. In order to verify whether the obtained polynomials are

valuable or not, we performed variance analysis and F-ratio tests
on them. Table 6 shows the ANOVA tables for horizontal dis-
placement. The model F value of 51.16 implies that the model is
significant. The p values less than 0.0500 indicate that model
terms are significant. In this case, A, B, D, E, and H are significant
model terms. The values greater than 0.1000 indicates the model
terms are not significant. ANOVA for vertical displacement is
shown in Table 3. F value of 51.160 implies that the model is sig-
nificant. In this case, A, B, D, E, and H are significant model
terms.

The ANOVA tests of both polynomials show that they are valu-
able for the corresponding problems [17]. They can be used to an-
alyze the relation between factors and their corresponding
responses. After testing the polynomials using ANOVA, MVRA
of horizontal and vertical acceleration responses are developed.
The response surface in Fig. 17 shows the interaction effect of an
outer race defect and an inner race defect on horizontal responses.
The presence of a defect in inner and outer races increases the
amplitude of vibration.

The response surfaces in Figs. 15 and 16 show the interaction
effects of roller defects with outer race and inner race defects on
horizontal responses, respectively. With outer race defects the am-
plitude of vibration increases, but decreases with inner race
defects in the presence of roller defects. Roller defects have very

Fig. 6 Response plot for rotor speed 2500 rpm (H)

Fig. 7 Response plot for rotor speed 5000 rpm (H)

Fig. 8 Response plot for rotor speed 5000 rpm (outer race
defect)

Fig. 9 Response plot for rotor speed 5000 rpm (inner race
defect)

Fig. 10 Response plot for rotor speed 2500 rpm (outer race
defect)

Fig. 11 Response plot for rotor speed 2500 rpm (inner race
defect)
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little effect on the horizontal amplitude of vibration. Rotor speed
has considerable effect on the horizontal amplitude of vibration.
In the presence of outer race defects in bearings, the horizontal
amplitude of vibration increases more at a rotor speed of
5000 rpm compared to a rotor speed of 1000 rpm, as shown in
Fig. 15. With inner race bearing defects and at a rotor speed of
5000 rpm, the catastrophic stage of bearing failure started and due
to “self-peening” of the bearing, the amplitude of vibration
decreased, as shown in Fig. 15.

6 Artificial Neural Networks

6.1 Modeling of Bearings. In recent times, the application of
artificial intelligence techniques is increasing tremendously in
almost all engineering areas. Modeling and optimization are nec-
essary for the understanding and control of any process. Precise
control is a prerequisite to achieve improved quality and produc-
tivity. Artificial neural network plays an important role in predict-
ing the linear and nonlinear problems in different fields of
engineering. Many attempts have been made of the multilayer
Perceptron [18,19].

A multilayer Perceptron trained with the backpropagation algo-
rithm may be viewed as a practical way of performing a linear
input–output mapping of a general nature (Fig. 17). Backpropaga-
tion neural networks are usually referred to as a feed forwarded,
multilayered network with a number of hidden layers trained with
a gradient descent technique. This algorithm is based on the error
correction learning rule. Basically, the error backpropagation pro-
cess consists of two passes through the different layers of the net-
work: a forward pass and a backward pass. In the forward pass, an
activity pattern (input vector) is applied to the sensory nodes of
the network, and its effect propagates through the network layer
by layer. Finally, a set of outputs is produced as the actual
response of the network. During the backward pass, all synaptic
weights are adjusted in accordance with the error correction rule.
Specifically, the actual response of the network is subtracted from
the desired (target) response to produce an error signal. The syn-
aptic weights are adjusted so as to make the actual response of the
network move closer to the desired network.

6.2 Simulation Procedure. The objective of the simulation
was to first have the system learn the appropriate mappings

between input and output variables by observing the training sam-
ples. The trained system was then used to determine the input con-
ditions that maximize vibration amplitude (A) subject to certain
constraints. The three layer backpropagation with four inputs, two
outputs, and nine hidden nodes was employed for the neural net-
work. The network was trained using 54 samples that span the
allowable ranges of input variables. The inputs were defects (nd),
load (W), number of rollers (Z), speed (NS), and outputs were am-
plitude (A) and frequencies (fbd). A random generator was used to
initialize the values of the learning parameter. In order to decide
the structure of the neural network, the rate of error convergence
was checked by changing the number of hidden layers and also by
adjusting the learning rate and momentum rate. As a result, a neu-
ral network with nine neurons in the hidden layer was adopted for
storing knowledge in the form of weights between neurons. A cru-
cial problem in backpropagation is its generalization ability. There
is no certainty that the network successfully trained on the given
samples provides desired input/output associations for the
untrained pattern as well. As the number of neurons increases the
approximation for weight increases and as a result we get an over-
fitted network model where a lesser number of neurons in the hid-
den layer are not capable of giving the desired result, therefore it
is necessary for any neural network that the number of neurons in
the hidden layer should be appropriate. It is seen that for 85% of
the cases the single neuron is enough and for the other 15% of the
cases two neurons are needed to train any neural network to get a
good result.

6.3 Validation of Model. The measurements are collected at
different points, all in machine bearing housings, to detect various
types of defects as shown in Fig. 1. Also, vibrations are measured
along axial, horizontal, and vertical directions. Vibration signals
are collected by means of a closed, proprietary vibration analyzer
equipped with a sensor in the frequency domain and vibration sig-
nal techniques were applied within the system. There are a num-
ber of factors that contribute to the complexity of the bearing

Table 4 Bearing parameters

Parameters Values

Outer race diameter 200 mm
Inner race diameter 110 mm
Roller diameter 15 mm
Number of rollers 19/19
Contact angle 0 deg
Radial clearance 7 lm
Defect on inner race roller crack 2 mm
Defect on outer race 2 mm
Mass 9.85 kg
Width 69.8 mm

Fig. 12 Response plot for rotor speed 5000 rpm (roller defect)

Fig. 13 Response plot for rotor speed 2500 rpm (inner race
defect)

Fig. 14 The performance prediction: Horizontal acceleration
response
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signature that could not be simulated but must be taken into con-
sideration. Only with real data is it possible to work under real
environment conditions. We will show and analyze some real
examples to illustrate how the theory appears in practice. First of
all, variations of the bearing geometry and assembly make it
impossible to precisely determine bearing characteristics frequen-
cies. The fault severity progress can alter the bearing geometry,
contributing to the increase of complexity of the diagnosis pro-
cess. Operating speed and loads of the shaft greatly affect the way
and the amount a machine vibrates causing bearing basic frequen-
cies to deviate from the calculated value.

For the developed setup and the data from the ANN process
carried out on the setup, a DA of the process was developed. Con-
sidering the different parameters having an effect on the ampli-
tude of vibrations, an equation was developed from regression
analysis with origin software. To validate the model, further
experiments were carried out and the observed values of experi-
ment were plotted with the values estimated from the equation

obtained from regression analysis. The relative curve we get
through experimental and theoretical are almost showing the same
behavior as shown in Fig. 18. This model can be utilized for an
ANN process, where the amplitude and frequencies obtained are a
function of the listed parameters. It is clear from the results that
the neural network model is better than the regression model
because its results are quite nearer to actual results, whereas the
regression model is performing better only if the R2 value is high,
near to 100%. ANN modeling consumes less time with a higher
degree of accuracy. Hence, it can be concluded that ANN is
highly effective for predicting defects and vibration amplitudes.

Overall, the defect on the inner race causes quite a chaotic sys-
tem response characterized by a lot of frequency spikes in the
abroad band and significantly increased displacement and force
response magnitudes. This is consistent with observations
obtained from the study of the experimental data based models,
which reveal that the surface defects on the moving race (inner
race) tends to cause more complicated dynamic behaviors with

Table 5 Orthogonal array L27 of Taguchi method for vibration amplitude without damping

Ex.
No. 1 2 3 4 5 6 7 8 9 10 11 12

Response amplitude
peak (g)

1 0 0 0 1000 0 0 8 0 0.00 0 0 0 0.971
2 0 0 0 1000 1 10 13 1 0.02 2.5� 108 100 100 3.651
3 0 0 0 1000 2 25 17 2 0.08 4.0� 108 200 200 4.086
4 0 1 1 2500 0 0 8 1 0.02 2.5� 108 200 200 4.789
5 0 1 1 2500 1 10 13 2 0.08 4.0� 108 0 0 3.076
6 0 1 1 2500 2 25 17 0 0.00 0 100 100 4.560
7 0 2 2 5000 0 0 8 2 0.08 4.0� 108 100 100 5.010
8 0 2 2 5000 1 10 13 0 0.00 0 200 200 4.566
9 0 2 2 5000 2 25 17 1 0.02 2.5� 108 0 0 20.198
10 1 0 1 5000 0 10 17 0 0.02 4.0� 108 0 100 29.094
11 1 0 1 5000 1 25 8 1 0.08 0 100 200 41.229
12 1 0 1 5000 2 0 13 2 0.00 2.5� 108 200 0 27.871
13 1 1 2 1000 0 10 17 1 0.08 0 200 0 26.560
14 1 1 2 1000 1 25 8 2 0.00 2.5� 108 0 100 25.230
15 1 1 2 1000 2 0 13 0 0.02 4.0� 108 100 200 27.230
16 1 2 0 2500 0 10 17 2 0.00 2.5� 108 100 200 33.526
17 1 2 0 2500 1 25 8 0 0.02 4.0� 108 200 0 31.210
18 1 2 0 2500 2 0 13 1 0.08 0 0 100 28.130
19 2 0 2 2500 0 25 13 0 0.08 2.5� 108 0 200 30.282
20 2 0 2 2500 1 0 17 1 0.00 4.0� 108 100 0 27.508
21 2 0 2 2500 2 10 8 2 0.02 0 200 100 35.674
22 2 1 0 5000 0 25 13 1 0.00 4.0� 108 200 100 30.970
23 2 1 0 5000 1 0 17 2 0.02 0 0 200 33.651
24 2 1 0 5000 2 10 8 0 0.08 2.5� 108 100 0 34.086
25 2 2 1 1000 0 25 13 2 0.02 0 100 0 32.748
26 2 2 1 1000 1 0 17 0 0.08 2.5� 108 200 100 33.076
27 2 2 1 1000 2 10 8 1 0.00 4.0� 108 0 200 35.604

Table 6 Regression coefficients and p value

Source DF Seq SS Adj SS Adj MS F value p value

B 2 3981.09 3981.09 1990.5 51.16 0.005
A 2 67.27 67.27 33.64 0.86 0.036
C 2 8.82 8.82 4.41 0.11 0.898
D 2 84.42 84.42 42.21 1.08 0.040
E 2 31.11 31.11 15.56 0.40 0.014
F 2 58.04 58.04 29.02 0.75 0.573
G 2 44.62 44.62 22.31 0.57 0.636
H 2 33.50 33.50 16.75 0.43 0.099
I 2 41.90 41.90 20.95 0.54 0.650
J 2 21.62 21.62 10.81 0.28 0.783
K 2 6.73 6.73 3.37 0.09 0.920
L 2 21.34 21.34 10.67 0.27 0.085
Error 2 77.82 77.82 38.91
Total 26 4478.29 Fig. 15 Response surfaces showing interaction of amplitude

with parameters A and D
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the enriched resonant frequency pool. The distinct characteristic
frequencies are the cage passing frequency with respect to the
inner race, observed in the horizontal and vertical displacement
responses, respectively. These phenomena can potentially be
applied to distinguish the moving race defect from the moving
race surface waviness.

The size of the point defect is similar as the inner race point
defect in Fig. 3. For vertical displacement and force, the point
defect on the outer race increases the response magnitude by one
order without significantly altering the amplitude frequency pat-
tern. And the most dominant frequencies are the roller passing
frequency and its super harmonics. To investigate the influence of
the defect on the roller surface, it is assumed that we have a defect
on the roller. As shown by Eq. (21), the defect on the roller illus-
trates more dramatic impacts on the axial displacement, while
only showing effects on the vertical and horizontal displacement.
For the horizontal displacement, the shaft frequency disappears as

a dominant frequency. Similar as the defects on the inner and
outer races, the defect on the roller surfaces causes increased ver-
tical force responses in a broad band. The vibration signature of
Fig. 4 shows the existence of multiples of the rolling bearing cage
characteristic frequency indicating that the bearing condition is
critical.

7 Conclusions

In the present investigation, a numerical model of a high-speed
rotor–bearing system has been developed using DA to obtain
vibration responses due to localized defects. The results have been
validated under various bearing localized defect conditions with
experiments performed in a sugar factory and laboratory. The
present work used DOE and MVRA procedures to conduct several
trials for investigating the effects of simultaneous localized
defects with three levels of ID fan–rotor speeds, and analyzed the
combined effects of the various localized parameters. All trials
were designed to be able to consider the two-way interactions
between various factors as well as main effects of individual fac-
tors. From the obtained responses, the following conclusions are
drawn:

• Through model analysis, the BPT using DA or experimental
data based model (EDBM) for vibration amplitude of double
row spherical roller bearings are established and introduced
into the vibration analysis. Considering structure stiffness,
damping of the bearing, material properties, and geo-
metrical parameters, a new state relationship between vari-
ous parameters of bearings are established. On this basis, a
new theory for spherical roller bearings using BPT (DA) is
created.

• Vibration amplitudes significantly increase in the presence of
load, defects, and speed in comparison to healthy bearings.

• Outer race radial vibration yields high amplitude of vibra-
tions in comparison to inner race and rollers with external
defects.

• Figure 17 shows the comparison between the experimental
values and the predicted values by MVRA as well as the
ANN model. The percentage error found in the ANN model
range from �1.71% to 4.48% while the same obtained
through regression equations ranges from �10.87% to 12%.
It is found that the artificial neural network provides better
predictions than regression analysis. ANN modeling con-
sumes less time with a higher degree of accuracy. Hence, it
can be concluded that ANN is highly effective for predicting
vibration amplitude and defect frequencies of the antifriction
bearings.

• The results obtained are agreeing with physical reasoning and
expectations. The dependence of the amplitude of vibration
on these parameters is tallying with the function of nondi-
mensional parameters given in Eq. (19).
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Nomenclature

BPT ¼ Buckingham’s p theorem
DA ¼ dimensional analysis (experimental data

based model)
ID ¼ induced draft

MVRA ¼ multivariable regression analysis

Fig. 16 Response surfaces showing interaction of amplitude
with parameters A and B

Fig. 17 Structure of the neural network

Fig. 18 Number of rollers versus amplitude
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Technical Specifications (Fig. 6)

anvil wrap angle ¼ 160 deg
effective width ¼ 1700 mm

number of hammers ¼ 102
swing diameter ¼ 2000 mm

weight of hammer ¼ 20 kg

Operating Parameter

lifting of equipment ¼ minimum 15 ton capacity crane required
for loading, unloading, and erection of ID
fan
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