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a b s t r a c t

The creeping motion of a porous approximate sphere with an impermeable core at the instant it passes
the center of a spherical container is discussed. The flow in the spherical container is governed by the
Stokes equation. The flow inside the porous approximate sphere is governed by Brinkman’s equation. The
boundary conditions used at the interface are stress jump condition for tangential stresses, continuity
of the normal stresses and velocity components. The drag experienced by the porous approximate
spherical particle is obtained. The wall correction factor is calculated. The variations of drag coefficient
and wall correction factor are studied with respect to permeability, separation parameters, deformation
parameters and stress jump coefficient.

© 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Several researchers have studied the flow of fluids past
porous particles, as they are of great importance in industrial
and engineering applications, such as flow through porous beds
(fixed or fluidized), sedimentation of fine particulate suspensions,
modeling of polymer macromolecule coils in a solvent, catalytic
reactions where porous pellets are used, floc settling processes,
the flow of oil in oil fields or reservoirs during oil recovery, etc.
Porous particles have different geometrical shapes, which differ
significantly from spherical. The simplest geometry allowing one
to study the effect shape of the permeable particles on their
settling velocity and drag resistance is approximate sphere (whose
shape deviates slightly from that of a sphere). These applications
contain particles in assemblagewhichmaybe considered to consist
of a number of identical unit cells, each of which contains a
particle surrounded by a fluid envelope containing a volume of
fluid sufficient to make the fractional void volume in the cell
identical to that in the entire assemblage. Furthermore, the outside
surface of each cell is assumed to be frictionless. Thus, the entire
disturbance due to each particle is confined to the cell of fluid
with which it is associated. The unit cell model is the most
efficient in the study of concentrateddispersed systems andporous
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media. This class of problems is important because it provides
some information on wall effects. Wall effects for a sphere at
the instant it passes the center of the spherical container have
been studied by many investigators and these were summarized
by Happel and Brenner [1] and Kim and Karrila [2]. On the
other hand, only a few studies of wall effects for approximate
spheres moving through Newtonian fluids have been attempted.
Cunningham [3] and Williams [4], independently, considered the
motion of a solid sphere in a spherical container. They presented
solutions for the case of an inner solid sphere. Haberman and
Sayre [5] studiedwall effects for rigid and Newtonian fluid spheres
in slow motion with a moving fluid. All the above authors used
no-slip condition on the surface of the inner sphere. Ramkissoon
and Rahaman [6] studied the motion of solid spherical particle
in a spheroidal container using a slip at the surface of the inner
particle. They evaluated the expression for drag on the inner
sphere and examined thewall effects. They concluded that thewall
effects increase as the container becomes more spheroidal. The
flow problems of the motion of a porous particles in a container
have been modeled by using Stokes’ version of the Navier–Stokes
equation for the flow inside the container and Darcy’s law or
Brinkman’s equation [7] to describe the flow within the porous
particles. The boundary condition for the flow field across a porous-
liquid interface has drawn the attention of many researchers.
Several types of boundary conditions at the interface of the free
fluid and porous region to link the different flow regimes were
suggested in literature. One type amongst them is continuity
of the velocity, pressure and tangential stresses at the porous-
liquid interface. Using this condition, Keh and Chou [8] presented
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Nomenclature

a radius of solid core
b radius of porous sphere
c radius of a spherical container
ra radius of an approximate solid sphere
rb radius of the porous approximate sphere
k permeability
k1 dimensionless parameter (

√
k/b)

U Uniform velocity
r radial spherical coordinate
u, v components of fluid velocity in spherical coordi-

nates
An, Bn, Cn,Dn constants in Eq. (4.1) for the external flow field
En, Fn,Gn,Hn constants in Eq. (4.2) for the flow field inside

the porous approximate shell
E2 Stokesian stream function operator
Pn Legendre function of the first kind
D drag force acting on the porous particle
D∞ drag force acting on the porous particle in an

unbounded medium

Greek letters

µ viscosity of the fluid
σ stress jump coefficient
ϑn Gegenbauer function
α Permeability parameter (b/

√
k)

η dimensionless parameter, defined as (a/b)
λ dimensionless parameter, defined as (b/c)
θ, φ angular spherical coordinates
ψ Stokes stream function of the fluid flow
β = β2 = β4 deformation parameter of the solid core
γ = γ2 = γ4 deformation parameter of the porous approxi-

mate shell

Superscripts

1 fluid inside the spherical container
2 fluid inside the porous approximate shell

an analytical study for the quasi-steady translation and steady
rotation of a spherically symmetric composite particle composed
of a solid core and a surrounding porous shell located at the center
of a spherical cavity filled with an incompressible Newtonian
fluid. They evaluated the hydrodynamic drag force and torque
exerted by the fluid on the porous particle. They found that the
normalized wall-corrected translational and rotational mobilities
of the particle decrease monotonically with a decrease in the
permeability of its porous shell. The quasi-steady translation and
steady rotation of a spherically symmetric porous shell located
at the center of a spherical cavity filled with an incompressible
Newtonian fluid are investigated analytically by Keh and Lu [9].
They observed that the boundary effects of the cavity wall
on the creeping motions of a composite sphere can be quite
significant in appropriate situations. The motion of a porous
sphere in a spherical container using Brinkman’s model in the
porous region was studied by Srinivacharya [10]. He calculated the
drag force experienced by the porous spherical particle and wall
correction factor and studied their variation with permeability.
Srinivasacharya [11] has discussed the creeping flow of a viscous
fluid past and through a porous approximate sphere neglecting
inertia terms, and deduced the result for an oblate spheroid in an
unbounded medium. The solution of the problem of symmetrical
creeping flow of an incompressible viscous fluid past a swarm
of porous approximately spheroidal particles with Kuwabara
boundary condition (i.e. the vanishing of vorticity on the boundary)
is investigated by Deo and Gupta [12]. They found the dependence
of the drag coefficient on permeability for a porous oblate spheroid
in anunboundedmediumand for a solid oblate spheroid in a cell on
the solid volume fraction. The flow problem of an incompressible
axisymmetrical quasisteady translation and steady rotation of a
porous spheroid in a concentric spheroidal container are studied
analytically by Saad [13]. He discussed the dependence of the
normalized wall corrected translational and rotational mobilities
on permeability for a porous spheroid in an unbounded medium
and for a solid spheroid in a cell on the particle volume fraction for
various values of the deformation parameter.

Recently, by applying volume average techniques, Ochoa-Tapia
and Whitaker [14,15] have investigated the boundary conditions
at the porous-liquid interface and have shown that the equations
require a discontinuity in the shearing stress but continuity in
velocity components and normal stress. They derived the stress
jump boundary condition

ϵ−1 ∂u
p

∂y
−
∂ul

∂y
=

σ
√
k
up

where up, ul are tangential velocity components in porous
region and liquid region respectively. ϵ is the porosity, k is the
permeability of the homogeneous portion of the porous region
and σ is the stress jump coefficient. If σ ≠ 0, there is a
discontinuity in the shear stress at the porous-liquid interface.
This jump condition is constructed to join Darcy’s law with the
Brinkman correction to Stokes equations. Experimentally it has
been verified that the jump coefficient σ varies in the range −1
to 1 [14–17]. Kuznetsov [16,17] used this stress jump boundary
condition at the interface between a porous medium and a clear
fluid to discuss flow in channels partially filled with a porous
medium. Bhattacharyya and Raja Sekhar [18,19] have used stress
jump boundary condition while discussing the Stokes flow of a
viscous fluid inside a sphere with internal singularities, enclosed
by a porous spherical shell and in discussing arbitrary viscous flow
past a porous sphere with an impermeable core. They concluded
that the fluid velocity at a porous-liquid interface varies with the
stress jump coefficient and it plays an important role in describing
the flow field associated with porous medium. Srivastava and
Srivastava [20] studied the Stokes flow through a porous sphere
with a solid core using the stress jump condition at the fluid-
porous interface and matched Stokes’ and Oseen’s solutions far
away from the sphere. They concluded that drag on a porous
sphere decreases with increasing permeability of the medium.
Yadav et al. [21] studied slow viscous flow through a swarm
of porous spherical particles using the stress jump condition at
the fluid-porous interface and four known boundary conditions
(Happel’s, Kuwabara’s, Kvashnin’s and Cunningham’s (Mehta-
Morse’s condition)) on the hypothetical surface are considered and
compared. They concluded that the jump condition for tangential
stresses at the interface between porous medium and clear liquid
gives a good possibility to take into account the influence of
slipping on the hydrodynamic permeability of membranes having
globular structure in comparison.

In this paper, we considered the creeping motion of a porous
approximate sphere with an impermeable core in a spherical
container. The flow examined is axially symmetric in nature. The
flow in the spherical container is governed by the Stokes equations.
The flow within the porous region is governed by Brinkman’s
equation. As boundary conditions, continuity of the velocity,
pressure and the slip condition at the interface proposed by Octoa-
Tapia are employed. The stream function and the pressure for
both the flows inside porous particle and within the spherical
container are calculated. The drag experienced by the porous
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Fig. 1. The physical situation and the coordinate system.

approximate sphere is evaluated numerically for different values
of permeability, stress jump coefficient, separation parameters and
deformation parameters. The wall correction factor is calculated
and its variation is studied numerically.

2. Formulation of the problem

Consider a porous approximate spherical particle of radius r =

b[1 +


∞

m=2 γm ϑm(ζ )] ≡ rb [1] with impermeable core of radius
r = a[1 +


∞

m=2 βm ϑm(ζ )] ≡ ra(ra < rb) passing the center of a
spherical vessel of radius c(rb < c) containing an incompressible
Newtonian viscous fluid. Here βm and γm are small, ϑn(ζ ), (ζ =

cos θ ) is the Gegenbauer function of the first kind of order n and
degree − 1/2. If all the βm and γm are zero, the approximate
spherical shell reduces to spherical shell of external and internal
radii b and a respectively. The liquid region (c ≤ r ≤ rb) and
the porous region (rb ≤ r ≤ ra) are denoted by regions I and II
respectively. This is equivalent to the inner particle at rest while
the outer spherical container moves with a constant velocity U
in the negative Z-direction. We assume that the flow within the
spherical container is governed by Stokes’ equation and flow inside
the porous approximate spherical shell is governed by Brinkman’s
model.

The equations of motion for the region within the spherical
container (region I) are

∇ · q⃗(1) = 0, (2.1a)

∇p(1) + µ∇ × ∇ × q⃗(1) = 0 (2.1b)

where q⃗(1) is the volumetric average of the velocity, µ is the
coefficient of viscosity and p(1) is the average of the pressure.

For the region inside the porous approximate spherical shell
(region II), the equations of motion are

∇ · q⃗(2) = 0, (2.2a)

∇p(2) +
µ

k
q⃗(2) + µ∇ × ∇ × q⃗(2) = 0 (2.2b)

where q⃗(2) is the volumetric average of the velocity, µ is the
coefficient of viscosity, p(2) is the average of the pressure and k is
the permeability of the porous medium.
Let (r, θ, φ) denote a spherical polar co-ordinate system with
the origin at the center of the sphere of radius a. Since the flow of
the fluid is in themeridian plane and the flow is axially symmetric,
all the physical quantities are independent of φ. Hence, we assume
that the velocity vectors q⃗(1) and q⃗(2) in the form

q⃗(i) = u(i)(r, θ)e⃗r + v(i)(r, θ)e⃗θ , i = 1, 2 (2.3)

where (e⃗r , e⃗θ , e⃗φ) unit base vectors (see Fig. 1).
In view of the incompressibility condition ∇ · q⃗(i) = 0, i = 1, 2,

we introduce the stream function ψ (i)(r, θ), i = 1, 2, through

u(i) = −
1

r2 sin θ
∂ψ (i)

∂θ
; v(i) =

1
r sin θ

∂ψ (i)

∂r
, i = 1, 2. (2.4)

Eliminating pressure from (2.1) and (2.2), and substituting (2.4)
in the resulting equations, we get the following dimensionless
equations for ψ (i), i = 1, 2:

E4ψ (1)
= 0, (2.5)

E2(E2
− α2)ψ (2)

= 0 (2.6)

where α2
= b2/k and E2

=
∂2

∂r2
+

(1−ζ 2)
r2

∂2

∂ζ 2
is the Stokesian stream

function operator.

3. Boundary conditions

To determine the flow velocity and pressure outside and inside
the porous approximate shell, we use the following boundary
conditions:
(i) The normal velocity component is continuous at the porous

boundary, i.e.,

u(1)(r, θ) = u(2)(r, θ) on r = rb. (3.1)

(ii) The tangential velocity component is continuous at the porous
boundary, i.e.,

v(1)(r, θ) = v(2)(r, θ) on r = rb. (3.2)

(iii) Continuity of the pressure distributions at the porous
boundary, i.e.,

p(1)(r, θ) = p(2)(r, θ) on r = rb. (3.3)

(iv) Ochoa-Tapia’s stress jump boundary condition for tangential
stress, i.e.,

∂v(2)

∂r
−
∂v(1)

∂r
=

σ
√
k
v(2) on r = rb (3.4)

where σ is the stress jump coefficient.
(v) On the impermeable core, i.e.,

u(2)(r, θ) = 0 and v(2)(r, θ) = 0 on r = ra. (3.5)

(vi) On the spherical container, the condition of impenetrability
leads to

u(1)(r, θ) = −U cos θ and v(1)(r, θ) = U sin θ
on r = c (3.6)

and the condition that velocity and pressure must have no
singularities anywhere in the flow field.

4. Solution of the problem

For the region I, the solution of (2.5) which is regular at infinity
is

ψ (1)
=

∞
n=2


An rn + Bn r−n+1

+ Cn rn+2
+ Dn r−n+3

×ϑn(ζ ). (4.1)
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For the region II, the solution of (2.6) is given by

ψ (2)
=

∞
n=2


En rn + Fn r−n+1

+ Gn
√
r Kn−1/2(α r)

+Hn
√
r In−1/2(α r)


ϑn(ζ ) (4.2)

where In−1/2(αr) and Kn−1/2(αr) denotes the modified Bessel
functions of the first kind and second kind of order n − 1/2
respectively.

Using the Eqs. (4.1) and (4.2), the expressions for the pressure
in the both flow regions are

p(1) = −

∞
n=2


Cn


4 n + 2
n − 1


rn−1

− Dn


6 − 4 n

n


r−n


× Pn−1(ζ ), (4.3)

p(2) = α2
∞
n=2


En

rn−1

n − 1
− Fn

r−n

n


Pn−1(ζ ) (4.4)

where Pn(ζ ) is Legendre function of the first kind.

5. Determination of arbitrary constants

The boundary conditions from Eqs. (3.1) to (3.6) in terms of the
stream function in dimensionless form are

ψ (1)(r, θ) = ψ (2)(r, θ), ψ (1)
r (r, θ) = ψ (2)

r (r, θ),
ψ (2)

rr − ψ (1)
rr = α σ ψ (2)

r , p(1)(r, θ) = p(2)(r, θ),


on r = 1 + γm ϑm(ζ ) (5.1)

ψ (2)(r, θ) = 0, ψ (2)
r (r, θ) = 0,

on r = η [1 + βm ϑm(ζ )] (5.2)

ψ (1)(r, θ) =
1
2
r2 sin2 θ, ψ (1)

r (r, θ) = r sin2 θ

on r = 1/λ (5.3)

where η = a/b and λ = b/c.
We first develop the solution corresponding to the boundaries

r = 1 + γm ϑm(ζ ), r = η[1 + βm ϑm(ζ )] and r = 1/λ. Assume
that the coefficientsγm andβm are sufficiently small so that squares
and higher powers of γm and βm can be neglected [1] i.e., ry ≈

1 + yγmϑm(ζ ) and ry ≈ ηy[1 + yβmϑm(ζ )] where y is positive
or negative. Comparison of the Eqs. (4.1) and (4.2) with those
obtained in case of flow of an incompressible viscous fluid past
a porous spherical shell, indicates that the terms involving An, Bn,
Cn, Dn, En, Fn, Gn and Hn for n > 2 are the extra terms here which
are not present in the case of spherical shell. The body that we
are considering is an approximate spherical shell and the flow
generated is not expected to be very different from the one
generated by flow past a porous spherical shell [22]. Also the
coefficients An, Bn, Cn, Dn, En, Fn, Gn, Hn for n > 2 are of order
γm and the coefficients En, Fn, Gn and Hn for n > 2 are of order
βm. Therefore, while implementing the boundary conditions, we
ignore the departure from the spherical form and set in (5.1) r = 1
in the terms involving An, Bn, Cn, Dn, En, Fn, Gn, Hn for n > 2 and in
(5.2) r = η in the terms involving En, Fn, Gn and Hn for n > 2.

Applying the boundary conditions (5.1)–(5.3) to the first order
in γm and βm, we have evaluated all the coefficients appearing
in the stream functions (4.1) and (4.2) for the case of porous
spherical shell and for the case of porous approximate spherical
shell, where only drag is given. These coefficients are mentioned
in the Appendix. Thus the stream functions for regions I and II are
given by
ψ (1)
=


A2 r2 + B2 r−1

+ C2 r4 + D2 r

ϑ2(ζ )

+

∞
m=2


Am−2 rm−3

+ Bm−2 r−m+3
+ Cm−2 rm

+Dm r−m+5ϑm−2(ζ )+

Am rm + Bm r−m+1

+ Cm rm+2
+ Dm r−m+3ϑm(ζ )+


Am+2 rm+2

+ Bm+2 r−m−1
+ Cm+2 rm+4

+ Dm+2 r−m+1
×ϑm+2(ζ )


, (5.4)

ψ (2)
=


E2 r2 + F2 r−1

+ G2
√
r K3/2(α r)

+H2
√
r I3/2(α r)


ϑ2(ζ )+

∞
m=2


Em−2 rm−2

+ Fm−2 r−m+3
+ Gm−2

√
r Km−5/2(α r)

+Hm−2
√
r Im−5/2(α r)


ϑm−2(ζ )

+

Em rm + Fm r−m+1

+ Gm
√
r Km−1/2(α r)

+Hm
√
r Im−1/2(α r)


ϑm(ζ )

+

Em+2 rm+2

+ Fm+2 r−m−1
+ Gm+2

√
r Km+3/2(α r)

+Hm+2
√
r Im+3/2(α r)


ϑm+2(ζ )


. (5.5)

6. Drag on the body and wall effects

The drag force acting on the porous approximate spherical shell
is given by

F = µπ

 π

0
ϖ 3 ∂

∂r


E2 ψ (1)

ϖ 2


r dθ (6.1)

whereϖ = r sin θ .
Using Eq. (4.1) and on carrying out the integration it is found to be

D = 4µπ U b

D2 +

1
5

D ′

2 +
2
35

D ′′

2


(6.2)

where D2, D ′

2, D
′′

2 are given in the Appendix.
As c → ∞ (or λ → 0), we get the drag on a porous approxi-

mate sphere with impermeable core in case of streaming in an un-
bounded medium,

D∞ = 4π µU b

∆1 +

1
5
∆2 +

2
35
∆3


(6.3)

where∆1,∆2,∆3 are given in the Appendix.
Thewall correction factorWc is defined as the ratio of the actual

drag experienced by the particle in the enclosure and the drag on
a particle in an infinite expanse of fluid. With the aid of Eqs. (6.2)
and (6.3) this becomes

Wc =
D

D∞

. (6.4)

Note that Wc = 1 as λ → 0 and Wc ≥ 1 as 0 < λ ≤ 1.

6.1. Special cases

6.1.1. Porous sphere with an impermeable core in a spherical
container

If βm = 0 and γm = 0 for m > 2, the approximate spheres
reduces to spheres and the drag experienced by the porous sphere
with an impermeable core is
D = 4π µU bD2. (6.5)

As c → ∞ (λ → 0), βm = 0 and γm = 0 for m > 2, we get
the drag on a porous sphere with impermeable core in the case of
streaming in an unbounded medium,
D∞ = 4π µU b∆1. (6.6)
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6.1.2. Porous sphere in a spherical container
As a → 0 (or η → 0), we get the drag on a porous sphere in a

spherical container,

D = 24π µU bα

α


15 λ5 (α − 2 σ)+ α2 (α + σ)

× (λ5 − 1)

coshα −


15 λ5 (α − 2 σ)+ α3 (6 λ5 − 1)

+α2 σ (α2 (λ5 − 1)− (9 λ5 + 1))

sinhα


/L1 (6.7)

where

L1 = α

−270 λ5 + α3 (α + σ) (λ− 1)4 (4 λ2 + 7 λ+ 4)

+ 6α2 (10 λ6 − 21 λ5 + 10 λ3 + 1)
− 6α σ (20 λ6 − 9 λ5 − 10 λ3 − 1)


coshα

−

−270 λ5 + 3α4 (λ− 1)3 λ (8 λ2 + 9 λ+ 3)

+ 6α2 (10 λ6 − 36 λ5 + 10 λ3 + 1)
− 6α σ (20 λ6 − 9 λ5 − 10 λ3 − 1)
− 3α3 σ (12 λ6 − 3 λ5 − 10 λ3 + 3 λ− 2)
+α5 (λ− 1)4 σ (4 λ2 + 7 λ+ 4)


sinhα.

If σ = 0, i.e., the continuity of the shear stress, the drag is given by

D = 24π µU bα2 
α


15 λ5 + α2(λ5 − 1)


coshα

−

15 λ5 + α2(6 λ5 − 1)


sinhα


/L2 (6.8)

where

L2 = α

−270 λ5 + α4(λ− 1)4(4 λ2 + 7 λ+ 4)

+ 6α2(10 λ6 − 21 λ5 + 10 λ3 + 1)

coshα

−

−270 λ5 + 3α4(λ− 1)3λ(8 λ2 + 9 λ+ 3)

+ 6α2 (10 λ6 − 36 λ5 + 10 λ3 + 1)

sinhα

which agrees with the drag on the porous sphere case derived by
Srinivacharya [10].

As a → 0 and c → ∞ (η → 0 and λ → 0), we get the drag on a
porous sphere in the case of streaming in an unbounded medium,

D∞

=
12µπ U bα2


−α (α + σ) coshα + (α + σ (1 + α2)) sinhα


α (3 + 2α2)(α + σ) coshα − (3α + (3 (1 + α2)+ 2α4) σ ) sinhα

. (6.9)

If σ = 0, i.e., the continuity of the shear stress, the drag is given by

D∞ =
12µπ U bα2 (−α coshα + sinhα)
α (3 + 2α2) coshα − 3 sinhα

(6.10)

which agreeswith the porous sphere case derived by Brinkman [7],
and Neale et al. [23].

6.1.3. Solid sphere in a spherical container
As η → 1 (or k → 0), we get the drag on a solid sphere in a

spherical container

D = 24π µU b


λ4 + λ3 + λ2 + λ+ 1


4 λ2 + 7 λ+ 4


(λ− 1)3

(6.11)

which agrees with the solid sphere in a spherical container derived
by Ramkissoon and Rahaman [6].
If λ → 0,

D∞ = −6µπ U b (6.12)

which is a well known result (Stokes’ law) for flow past a solid
sphere in an unbounded medium.
Fig. 2. The shape of the particle with varying deformation parameters γ = γ2 =

γ4 , β = β2 = β4 and the separation parameters η = 0.6 and λ = 0.5.

7. Results and discussion

The drag coefficient DN = D/(4πµUb) is numerically com-
puted for various values of k1(= 1/α =

√
k/b), γ = γ2 = γ4,

β = β2 = β4, σ , λ and η and its variation is presented in Figs. 3–7.
The parameter k1 represents the permeability parameter. The pa-
rameters γ and β characterize the deformations of porous shell
and solid core respectively. The parameters η = a/b and λ = b/c
are the separation parameters which represent the extent of close-
ness between the solid core and particle, and particle and the cav-
ity wall respectively. The changes of shape from porous spherical
particle with spherical solid core to porous approximate spherical
particle with approximate spherical core are shown Fig. 2.

The variation of DN with permeability k1, λ and η for various
values of γ is shown in Fig. 3 when β = 0.1 and σ = 0 (the con-
tinuity of the tangential stresses). In particular, Fig. 3(a) presents
the effects of λ and γ on drag coefficient. It is observed that in-
creasing permeability parameter k1 decreases the drag coefficient.
When there is no deformation of the porous shell, i.e. γ = 0, the
drag is increasing for increasing values of the separation parame-
ter λ. Also, increasing the deformation parameter γ increases the
drag coefficient for all values of the permeability. But this behavior
of drag coefficient with γ changes at some value of permeability
k1, beyond which the drag coefficient decreases for λ > 0.5. This
particular value of the permeability is decreasing as the parameter
λ tends to 1. Further, the drag coefficient decreases significantly
after some particular values of k1 as γ increases and λ → 1. This is
because of the increase in the pressure in the spherical container
when the thickness of the cavity region decreases (i.e. λ → 1). In
this case the porous particle with solid core occupies whole spher-
ical container except at the deformations of the particle.

Fig. 3(b) shows the effect of η and γ on the drag coefficient. It is
clear from this figure that increasing η, i.e. decreasing the thickness
of the porous region increases the drag coefficient when there is
no deformation of the porous shell (γ = 0). The drag coefficient is
increasing for increasing values of the deformation of the porous
shell γ . But as η increases and also the deformation of the porous
shell increases, the behavior of the drag coefficient changes at
some value of permeability k1, beyond which the drag coefficient
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(a) Variation of DN with λ and γ for η = 0.6. (b) Variation of DN with η and γ for λ = 0.5.

Fig. 3. Variation of drag coefficient DN with k1 , λ, η and γ for σ = 0, β = 0.1.
(a) Variation of DN with λ and γ for η = 0.6. (b) Variation of DN with η and γ for λ = 0.5.

Fig. 4. Variation of drag coefficient DN with k1 , λ, η and γ for σ = 0.5, β = 0.1.
(a) Variation of DN with γ for η = 0.2. (b) Variation of DN with γ for η = 0.6.

Fig. 5. Variation of drag coefficient DN with k1 and σ for γ = 0.15, β = 0.1, λ = 0.5.
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(a) Variation of DN with λ and k1 for η = 0.4. (b) Variation of DN with η and k1 for λ = 0.5.

Fig. 6. Variation of drag coefficient DN with λ, η and k1 for σ = 0.5, β = 0.1, γ = 0.15.
(a) Variation of Wc with k1 for σ = 0. (b) Variation of Wc with σ for k1 = 0.4.

Fig. 7. Variation of wall correction factor Wc with separation parameter λ for η = 0.3, β = 0.1, γ = 0.15.
decreases. This particular value of the permeability is decreasing
as the parameter η → 1. As η tends to 1, i.e. the distance between
the solid core and the porous particle decreases, the porous particle
with solid core in the spherical container becomes a solid particle
except at the deformations of the solid core and porous particle.
Hence the particular value of the permeability, at which the drag
changes its behavior, decreases.

Fig. 4 depicts the variation of drag coefficient DN with perme-
ability k1 for various values of γ , λ, and η when β = 0.1 and σ =

0.5 (i.e. when there is a jump in the stress). The drag coefficient is
increasing for increasing values of γ and then decreasing beyond
some value of permeability k1 for increasing values of λ (Fig. 4(a))
and η (Fig. 4(b)). The particular value of k1, at which drag changes
its behavior for the case of σ = 0.5 is more than the case of σ = 0.
Also the drag coefficient decreases when there is a jump in stress.

The variation of drag coefficient with k1 and σ for γ = 0.15,
β = 0.1, λ = 0.5 is plotted in Fig. 5. The values of σ are taken
in the range −1 to 1 as proposed by Ochoa-Tapia and Whitaker
[14,15]. The validity of these values of σ along with the
combination of other parameters and permeability is examined for
the present problem so that the drag experienced by the porous
approximate sphere give a physical significance. The effects of the
stress jump coefficient σ on the drag coefficient are presented in
Fig. 5(a) for η = 0.2 i.e., when the thickness of the porous region
is large. It is observed from this figure that the drag coefficient
is decreasing for increasing values of the stress jump coefficient.
For positive values of stress jump coefficient σ , there is a reversal
in the behavior of drag at a particular value of permeability.
Beyond the value of this particular permeability, the value of drag
becomes negative which is not physically possible. Therefore, the
positive values of σ can not be considered beyond that particular
permeability. If negative values of σ are considered in the stress
jump condition (3.4) the shear stress of external free flow region
becomesmore than that of the internal (porous) flow regionwhich
generates a significant drag force on the porous surface. Even
though the shear stress of the external region is low for positive
values of σ , a significant drag force is generated on the surface
for particular range of permeability. In Fig. 5(b) for η = 0.6,
it is noticed that the drag coefficient is increasing for increasing
values of η and is always positive for all values of the stress jump
coefficient.

The influence of separation parameters λ and η on the drag
coefficientwith permeability parameter k1 is depicted in Fig. 6. The
variation of drag coefficient versus λ and permeability k1 is shown
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in Fig. 6(a). It is seen that increasing λ increases DN . Increasing
permeability k1 decreases the drag coefficient. The variation of drag
coefficient versus η and permeability k1 is shown in Fig. 6(b). It is
observed that DN is increasing for increasing values of η.

The variation ofwall correction factorWc against the separation
parameter λ with continuity of tangential stress (σ = 0) for
various values of permeability k1 is shown in Fig. 7(a). It can
be observed from the figure that increasing λ increases the wall
correction. The wall correction factor is decreasing for increasing
values of the permeability parameter k1. For k1 > 1, the particle
mobility varies slowly with the separation parameter λ, compared
with the case of lower permeability. The effect of the stress jump
coefficient σ and separation parameter λ on wall correction factor
Wc has been plotted in Fig. 7(b). It is noticed that thewall corrector
factor is increasing for increasing values of λ. The magnitude of
the correction factor decreases as the jump coefficient increases.
The correction factor depends on the stress jump coefficient and
separation parameter λ. So, a jump in the tangential stress at the
boundary of the porous-liquid interface cannot be ignored.

8. Conclusions

In this paper, the creeping motion of a porous approximate
spherical shell enclosed with an approximate spherical solid core
in a concentric spherical cavity filled with an incompressible
Newtonian fluid have been investigated. An analytical solution
is obtained by considering Brinkman’s model in the porous
region and Stokes’ equation in the liquid region. At the porous-
liquid interface, the stress jump boundary condition for tangential
stress, continuity of normal stress and continuity of velocities
components have been used. The hydrodynamic drag force
experienced by the porous approximate spherical shell is obtained
in the closed form (6.2) in terms of the parameters η(=a/b),
λ(=b/c), α(=b/

√
k), and σ . The drag decreases with the

increasing permeability along with increasing the stress jump
coefficientσ . It is found that there is a significant effect of the stress
jump coefficient σ on the hydrodynamic drag. The wall correction
factor for porous approximate shell in the presence of a cavity wall
is obtained. It is seen that the effect of a stress jump coefficient
in a bounded medium is significant. Therefore, one has to take the
stress jump in the tangential stress components into consideration,
which has a significant impact on the physical problem.
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Appendix

Applying the boundary conditions (5.1) and (5.2) to the first
order in βm and γm and (5.3), we obtain the following system of
algebraic equations
A2 + B2 + C2 + D2 − E2 − F2

− K3/2(α)G2 − I3/2(α)H2

ϑ2(ζ )

+ [2 A2 − B2 + 4 C2 + D2 − 2 E2 + F2]

× γm ϑm(ζ ) ϑ2(ζ )+

∞
n=3


An + Bn + Cn + Dn − En

− Fn − Kn−1/2(α)Gn − In−1/2(α)Hn

ϑn(ζ ) = 0 (A.1)

2 A2 − B2 + 4 C2 + D2 − 2 E2 + F2 +

K3/2(α)
+α K1/2(α)

G2 +


I3/2(α)− α I1/2(α)


H2


ϑ2(ζ )

+

2 A2 + 2 B2 + 12 C2 − 2 E2 − 2 F2 − K3/2(α)G2

− I3/2(α)H2

γm ϑm(ζ ) ϑ2(ζ )

+

∞
n=3


n An − (n − 1) Bn + (n + 2) Cn − (n − 3)Dn

− n En + (n − 1) Fn +

(n − 1) Kn−1/2(α)

+α Kn−3/2(α)

Gn +


(n − 1) In−1/2(α)− α In−3/2(α)


× Hn


ϑn(ζ ) = 0 (A.2)

[−2 A2 − 2 B2 − 12 C2 + 2 (1 − α σ) E2 + (2 + α σ) F2
+


(α2

+ α σ + 2) K3/2(α)+ α2 σ K1/2(α)

G2

+

(α2

+ α σ + 2) I3/2(α)− α2 σ I1/2(α)

H2


ϑ2(ζ )

+ [6 B2 − 24 C2 − 2α σ E2 − 2 (3 + α σ) F2
− (4 + α σ) K3/2(α)G2 − (4 + α σ) I3/2(α)H2


× γm ϑm(ζ ) ϑ2(ζ )

+

∞
n=3

[−n (n − 1) An − n (n − 1) Bn

− (n + 1) (n + 2) Cn − (n − 2) (n − 3)Dn

+ n ((n − 1)− α σ) En + (n − 1) (n + α σ) Fn
+


(n − 1) (n + α σ)+ α2 Kn−1/2(α)

+α2 σ Kn−3/2(α)

Gn +


(n − 1) (n + α σ)+ α2

× In−1/2(α) −α2 σ In−3/2(α)

Hn


ϑn(ζ ) = 0 (A.3)

−10 C2 − D2 − α2 E2 +
α2

2
F2


P1(ζ )

+

−10 C2 + 2D2 − α2 E2 − α2 F2


γm ϑm(ζ ) P1(ζ )

+

∞
n=3


−
(4 n + 2)
n − 1

Cn +
(6 − 4n)

n
Dn −

α2

(n − 1)
En

+
α2

n
Fn


Pn−1(ζ ) = 0 (A.4)

η2 E2 + η−1 F2 +
√
η K3/2(α η)G2 +

√
η I3/2(α η)H2


×ϑ2(ζ )+


2 η2 E2 − η−1 F2


βm ϑm(ζ ) ϑ2(ζ )

+

∞
n=3


ηn En + η−n+1 Fn +

√
η Kn−1/2(α η)Gn

+
√
η In−1/2(α η)Hn


ϑn(ζ ) = 0 (A.5)

2 η E2 − η−2 F2 − η−1/2 
K3/2(α η)+ α η K1/2(α η)


G2

− η−1/2 
I3/2(α η)− α η I1/2(α η)


H2


ϑ2(ζ )

+

2 η E2 + 2 η−2 F2 + η−1/2 (K3/2(α η)G2

+ I3/2(α η)H2)

βm ϑm(ζ ) ϑ2(ζ )+

∞
n=3


n ηn−1 En

− (n − 1) η−n Fn − η−1/2 
(n − 1) Kn−1/2(α η)

+α η Kn−3/2(α η)

Gn − η−1/2 

(n − 1) In−1/2(α η)

−α η In−3/2(α η)

Hn


ϑn(ζ ) = 0 (A.6)
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λ−4 
λ2 A2 + λ5 B2 + C2 + λ3 D2 − λ2


ϑ2(ζ )

+

∞
n=3

λ−n−2 
λ2 An + λ2 n+1 Bn + Cn + λ2 n−1 Dn


×ϑn(ζ ) = 0 (A.7)

λ−3 
2 λ2 A2 − λ5 B2 + 4 C2 + λ3 D2 − 2 λ2


ϑ2(ζ )

+

∞
n=3

λ−n−1 
n λ2 An − (n − 1) λ2 n+1 Bn + (n + 2) Cn

− (n − 3) λ2 n−1 Dn

ϑn(ζ ) = 0. (A.8)

Equating the leading coefficients in (A.1)–(A.8) to zero and
solving the resulting system of equations, we get

A2 = (S6 z1 + S7 z2 + S8 z3 + S9 z4
+ S10 z5 + S11 z6) /∆, (A.9)

B2 = (S12 z1 + S13 z2 + S14 z3 + S15 z4
+ S16 z5 + S17 z6) /∆, (A.10)

C2 = (S18 z1 + S19 z2 + S20 z3 + S21 z4
+ S22 z5 + S23 z6) /∆, (A.11)

D2 = (S24 z1 + S25 (η z2 + z3)+ S26 z4
+ S27 z5 + S28 z6) /∆, (A.12)

E2 =

−6 η3/2 S28 z3 + S29 z4 + S30 z5


/∆, (A.13)

F2 = −η (η S30 (3 z1 + α η z5)
+ 12α η1/2(S28 + 90 λ5) z3
+ S29 η (α η z4 + 3 z6)) /(α∆), (A.14)

G2 =

3

√
η (S30 I1/2(α)+ S29 I3/2(α))

+ S31 I1/2(α η)− 18 η2 S28 I3/2(α η)

/(α∆), (A.15)

H2 =

3

√
η (S30 K1/2(α)− S29 K3/2(α))

+ S31 K1/2(α η)+ 18 η2 S28 K3/2(α η)

/(α∆), (A.16)

where
∆ = S1 z1 + S2 (η z2 + z3)+ S3 z4 + S4 z5 + S5 z6,
z1 = I1/2(α) K3/2(α η)+ I3/2(α η) K1/2(α),

z2 = I1/2(α) K3/2(α)+ I3/2(α) K1/2(α),

z3 = I3/2(α η) K1/2(α η)+ I1/2(α η) K3/2(α η),

z4 = I3/2(α) K1/2(α η)+ I1/2(α η) K3/2(α),

z5 = I1/2(α) K1/2(α η)− I1/2(α η) K1/2(α),

z6 = I3/2(α) K3/2(α η)− I3/2(α η) K3/2(α),

S1 = −3 η2

180 λ5 + 4α2 λ1 + α3 σ λ2 + 4α σ λ3


,

S2 = 6
√
η


90 λ5 − α2λ4 + 2α σ λ3


,

S3 = −540 λ5 + α3 (α + σ) (η3 + 2) λ2
+ 12α2 (15 η3 λ5 (λ− 1)+ λ5)− 12α σ λ3,

S4 = −α

180 (η3 − 1) λ5 + α2 (η3 + 2)(4 λ6 + α σ λ2)

+ 4α σ (η3 − 1) λ3

,

S5 = 3α η2

180 (λ− 1) λ5 + α (α + σ) λ2


,

S6 = 3 η2

−180 λ5 + 2α2 λ7 + α3 σ λ8 + 4α σ λ9


,

S7 = 6
√
η


90 λ5 + α2 λ10 − 2α σ λ9


,

S8 = 6 η3/2

90 λ5 + α2 λ11 − 2α σ λ9


,

S9 = −540 λ5 − α3 (α + σ)(η3 + 2) λ8
− 12α2 (15 η3 λ5 + λ12)+ 12α σ λ9,

S10 = α

−180 (η3 − 1) λ5 + 2α2 (η3 + 2) λ7

+α3 σ (η3 + 2)λ8 + 4α σ (η3 − 1) λ9

,

S11 = −3α η2

180 λ5 + α (α + σ) λ8


,

S12 = 6α η2 (α λ15 + α2 σ λ18 + 4 σ λ16),
S13 = 12α

√
η λ16 (α − 2 σ),

S14 = 12α η3/2 (α λ15 − 2 σ λ16),

S15 = 2α

−α3 (α + σ) (η3 + 2) λ18

− 3α (2 λ15 + 15 η3 λ3)+ 12α λ16

,

S16 = 2α2 
α (η3 + 2) (λ15 + α σ λ18)+ 4 σ (η3 − 1) λ16


,

S17 = −6α η2 (45 λ3 + α (α + σ) λ18),

S18 = −9α η2 λ3 (2 λ2 (α − 2 σ)+ α2 σ λ19),

S19 = 18α
√
η λ5 (α − 2 σ),

S20 = −36α η3/2 λ5 (α + σ),

S21 = 3α λ3 (12 λ2 + α2 (η3 + 2) λ19)(α + σ),

S22 = −3α2 λ3

α (η3 + 2)(2 λ2 + α σ λ19)

− 4 (η3 − 1) λ2 σ

,

S23 = 9α2 η2 λ3 (α + σ) λ19,

S24 = −18α η2

5 (α + 4 σ) λ5 + α2 σ λ17


,

S25 = 6α

15α (3 η3 + 2) λ5 + α2 (η3 + 2) (α + σ) λ17

− 60 λ5 σ

,

S26 = −6α2 
α (η3 + 2) (5 λ5 + α σ λ17)

+ 20 (η3 − 1) λ5 σ

,

S27 = 18α η2

45 λ5 + α (α + σ) λ17


,

S28 = −90 λ5 + α2 λ13 − 2α σ λ14,
S29 = 12


45 λ5 + α (α + σ) λ14


,

S30 = −12α

α σ λ16 − 3 λ5 (5 + 2α σ)


,

S31 = 6α

−90 η3 λ5 + (η3 + 2) (α2 λ13 − 2α σ λ14)


,

λ1 = 5 λ6 − 9 λ5 + 5 λ3 − 1,
λ2 = 4 λ6 − 9 λ5 + 10 λ3 − 9 λ+ 4,
λ3 = 20 λ6 − 9 λ5 − 10 λ3 − 1,
λ4 = 20 λ6 − 27 λ5 + 5 λ3 + 2,
λ5 = 10 λ6 − 21 λ5 + 10 λ3 + 1,
λ6 = 5 λ6 − 9 λ5 + 5 λ3 − 1,
λ7 = 18 λ5 − 5 λ3 + 2, λ8 = 9 λ5 − 5 λ3 − 4,
λ9 = 9 λ5 + 5 λ3 + 1,
λ10 = 27 λ5 − 10 λ3 − 2, λ11 = 27 λ5 + 5 λ3 − 2,
λ12 = 21 λ5 − 5 λ3 − 1,
λ13 = 3 λ5 − 5 λ3 + 2, λ14 = 6 λ5 − 5 λ3 − 1,
λ15 = 5 λ3 − 2, λ16 = 5 λ3 + 1,
λ17 = λ5 − 1, λ18 = λ3 − 1, λ19 = λ2 − 1,
λ20 = 4 λ2 − 1.

To obtain the remaining arbitrary constants An, Bn, Cn, Dn, En,
Fn, Gn, Hn, we require the following identities (see [1, p. 142])
ϑm(ζ ) ϑ2(ζ ) = bm−2 ϑm−2(ζ )+ bm ϑm(ζ )

+ bm+2 ϑm+2(ζ ) (A.17)
ϑm(ζ ) P1(ζ ) = am−2 Pm−3(ζ )+ am Pm−1(ζ )

+ am+2 Pm+1(ζ ) (A.18)
where

bm−2 = −
(m − 2) (m − 3)

2 (2m − 1) (2m − 3)
,

bm =
m (m − 1)

(2m + 1) (2m − 3)
,
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bm+2 = −
(m + 1) (m + 2)

2 (2m − 1) (2m + 1)
,

am−2 =
(m − 2)

(2m − 1) (2m − 3)
,

am =
1

(2m + 1) (2m − 3)
,

am+2 = −
(m + 1)

(2m − 1) (2m + 1)
.

Using these in (A.1)–(A.8), we get

An = Bn = Cn = Dn = En = Fn = Gn = Hn = 0
for n ≠ m − 2,m,m + 2 (A.19)

and when n = m − 2,m,m + 2, we have the following system

An + Bn + Cn + Dn − En − Fn − Kn−1/2(α)Gn

− In−1/2(α)Hn = ξ1 bn γm (A.20)
n An − (n − 1) Bn + (n + 2) Cn − (n − 3)Dn − n En

+ (n − 1) Fn +

(n − 1) Kn−1/2(α)+ α Kn−3/2(α)


Gn

+

(n − 1) In−1/2(α)− α In−3/2(α)


Hn = ξ2 bn γm (A.21)

−n (n − 1) An − n (n − 1) Bn − (n + 1) (n + 2) Cn

− (n − 2) (n − 3)Dn + n ((n − 1)− α σ) En
+ (n − 1) (n + α σ) Fn +


(n − 1) (n + α σ)+ α2

× Kn−1/2(α)+ α2 σ Kn−3/2(α)

Gn

+

(n − 1) (n + α σ)+ α2 In−1/2(α)

−α2 σ In−3/2(α)

Hn = ξ3 bn γm (A.22)

−
(4 n + 2)
n − 1

Cn +
(6 − 4n)

n
Dn −

α2

(n − 1)
En

+
α2

n
Fn = ξ4 an γm (A.23)

ηn En + η−n+1 Fn +
√
η Kn−1/2(α η)Gn

+
√
η In−1/2(α η)Hn = ξ5 bn βm (A.24)

n ηn−1 En − (n − 1) η−n Fn − η−1/2

×

(n − 1) Kn−1/2(α η)+ α η Kn−3/2(α η)


Gn

− η−1/2 
(n − 1) In−1/2(α η)− α η In−3/2(α η)


Hn

= ξ6 bn βm (A.25)

λ2 An + λ2 n+1 Bn + Cn + λ2 n−1 Dn = 0 (A.26)
n λ2 An − (n − 1) λ2 n+1 Bn + (n + 2) Cn

− (n − 3) λ2 n−1 Dn = 0 (A.27)

where

ξ1 = (2 A2 − B2 + 4 C2 + D2 − 2 E2 + F2),
ξ2 = (2 A2 + 2 B2 + 12 C2 − 2 E2 − 2 F2

− K3/2(α)G2 − I3/2(α)H2),

ξ3 = (6 B2 − 24 C2 − 2α σ E2 − 2 (3 + α σ) F2
− (4 + α σ) K3/2(α)G2 − (4 + α σ) I3/2(α)H2),

ξ4 = (−10 C2 + 2D2 − α2 E2 − α2 F2),
ξ5 = (2 η2 E2 − η−1 F2),
ξ6 = (2 η E2 + 2 η−2 F2 + η−1/2 (K3/2(α η)G2 + I3/2(α η)H2)).

The above system of equations is solved using MATHEMATICA
version 5.2 and the expressions for An, Bn, Cn, Dn, En, Fn, Gn and
Hn are obtained and contain the coefficients γm and βm. As the
expressions are cumbersome, they are not presented here.
The expressions for the constants D ′

2 and D ′′

2 appearing in
Eq. (6.2) are defined as

D ′

2 = 2

η3/2 (2 ξ1 φ1 + α ξ2 φ2 + ξ3 φ3 − ξ4 φ4) γ2

+α (−2 ξ5 φ5 + η ξ6 φ6) β2

/(η3/2∆) (A.28)

D ′′

2 =

−η3/2 (2 ξ1 φ1 + α ξ2 φ2 + ξ3 φ3 + 4 ξ4 φ4) γ4

+α (2 ξ5 φ5 − η ξ6 φ6) β4

/(2 η3/2∆) (A.29)

where

φ1 = 3 η2 (−60 λ5 + α2 λ7 + α3 σ λ14) z1
+ 90 (α2

+ 2) λ5
√
η z2 + 6 η3/2 (30 λ5 + α2 λ14) z3

− (180 λ5 + α2 (η3 + 2) (15 λ3 λ20 + α (α + σ) λ14)) z4
+α (−60 (η3 − 1) λ5 + α2 (η3 + 2) (λ7 + α σ λ14)) z5
− 3α η2 (15 λ3 λ20 + α (α + σ) λ14) z6,

φ2 = 3 σ η2 (60 λ5 − α2 λ13) z1 − 180
√
η σ λ5 z2

+ 90 η3/2 λ5 (α − 2 σ) z3 − (90α η3 λ5

−α2 (α + σ) (η3 + 2) λ13 + 180 σ λ5) z4
−α σ (60 (η3 − 1) λ5 − α2 (η3 + 2) λ13) z5
− 3 η2 (90 λ5 − α (α + σ) λ13) z6,

φ3 = 3 η2 (60 λ5 − α2 λ13) z1 − 180
√
η λ5 z2

+ 6 η3/2 (30 λ5 + α2 λ14) z3 − 15 λ3 (12 λ2

+α2 (η3 + 2) λ19) z4 − α (60 (η3 − 1) λ5

−α2 (η3 + 2) λ13) z5 − 45α η2 λ3 λ19 z6,
φ4 = 2 (α σ λ16 − 3 λ5 (5 + 2α σ))(3 η2 z1 − 3 η3/2 z3

+α (η3 − 1) z5)− 3
√
η (30 λ5 − α2 λ13 + 2α σ λ14) z2

− 3 (30 λ5 + α2 (2 λ17 − 5 η3 λ3 λ19)− 2α σ λ14) z4
+ 45α η2 λ3 λ19 z6,

φ5 = 3α η3/2 (α σ λ16 − 3 λ5 (5 + 2α σ))(z1 + α η z5)
+ 3 η3/2 (45 λ5 + α (α + σ) λ14)(z6 + α η z4)
−α (90 η3 λ5 − α2 (η3 − 1) λ13 + 2α σ (η3 − 1) λ14) z2,

φ6 = −6α η3/2 (α σ λ16 − 3 λ5 (5 + 2α σ)) z1
−α (90 η3 λ5 − α (η3 + 2) (α λ13
− 2 σ λ14)) z2 − 6 η3/2 (45 λ5 + α (α + σ) λ14) z6.

The expressions for the constants ∆1, ∆2 and ∆3 appearing in
Eq. (6.3) are defined as

∆1 = −3α

3 η2 ω1 + α (2 + η3) ω2


/(2∆), (A.30)

∆2 =

η3/2 (α (ξ7 φ7 + ξ8 φ8 + ξ9 φ9)+ ξ10 φ10) γ2

+α (ξ11 φ11 + ξ12 φ12) β2

/(η3/2∆), (A.31)

∆3 =

−η3/2 (α (ξ7 φ7 + ξ8 φ8 + ξ9 φ9)− 4 ξ10 φ10) γ4

+α (ξ11 φ11 + ξ12 φ12) β2

/(4 η3/2∆) (A.32)

where

ω1 = −z1 α σ + z6 (α + σ) ,

ω2 = −z5 α σ + z4 (α + σ) ,

∆ = 3 η2

α + σ (1 − α2)


z1

+

−3

√
η (z2 + η z3)+ (3 + α2 (η3 + 2)) z4 + 3α η2 z6


× (α + σ)+


α2 (η3 + 2) (1 − α σ)+ α σ (η3 − 1)


z5,

ξ7 = 3

3 η2 (−α z1 + z6)+ α (η3 + 2) (z4 − α z5)


(α + σ)

+ 3α2 √
η z2


/(α∆),

φ7 = α (η3 + 2) (ω2 + 2 z5)+ 3 η2 (ω1 + 2 z1)− 6 η3/2 z3,
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ξ8 =

3


3α3 η2 z1 + 3α

√
η z2 + α4 (η3 + 2) z5


σ

− 3α (1 + α2) (η3 + 2) (α + σ) z4
− 9 η2 (1 + α2) (α + σ) z6


/(α∆),

φ8 = 3 η2 ω1 + α (η3 + 2) ω2,

ξ9 = 3

3α η2 (2 σ + α (2 + σ(α + 2 σ))) z1

− 3α2 √
η (2 + σ 2) z2 − 6α2 η3/2 σ (α + σ) z3

−α (α + σ)

(2 + α2) (η3 + 2)+ α σ (η3 − 4)


z4

+α2 
(2α + (2 + α2) σ ) (η3 + 2)+ 2α (η3 − 1) σ 2 z5

− 3 η2 (α + σ) (2 + α(α + σ)) z6

/(α∆),

φ9 = 3 η2 (z1 − η−1/2 z3)+ α (η3 + 2) z5,
ξ10 = 9α2 (ω2 − η3/2 (α + σ)z3)/∆,

φ10 = −3 η2 σ (z1 − η−1/2 z3)+ 3 (α + σ) (
√
η z2 − z4)

−α σ (η3 − 1) z5,

ξ11 = −3

3 η (ω1 + α η ω2)

− 2α
√
η (η3 − 1) (α + σ) z3


/(α∆),

φ11 = 3 η3/2 (ω1 + α η ω2)− 2α (η3 − 1)(α + σ)z2,
ξ12 = 3


3

√
η ω1 + α (η3 + 2) (α + σ) z3


/(α

√
η∆),

φ12 = 3 η5/2 ω1 + α η (η3 + 2) (α + σ) z2.
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