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First and Second Law Analysis for the MHD Flow of Two
Immiscible Couple Stress Fluids between Two Parallel Plates

J. V. Ramana Murthy and J. Srinivas
Department of Mathematics, National Institute of Technology, Warangal, 506004, AP, India

This paper aims to analyze the heat transfer by the first and second laws of
thermodynamics for the flow of two immiscible couple stress fluids inside a horizon-
tal channel under the action of an imposed transverse magnetic field. The plates of
the channel are maintained at constant and different temperatures higher than that
of the fluid. The flow region consists of two zones, the flow of the heavier fluid tak-
ing place in the lower zone. No slip condition is taken on the plates and continuity
of velocity, vorticity, shear stress, couple stress, temperature, and heat flux are im-
posed at the interface. The velocity and temperature distributions are derived analyt-
ically and these are used to compute the dimensionless expressions for the entropy
generation number and Bejan number. The results are presented graphically. It is ob-
served that the imposed magnetic field reduces the entropy production rate near the
plates.© 2014 Wiley Periodicals, Inc. Heat Trans Asian Res, 44(5): 468-487, 2015;
Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI
10.1002/htj.21131
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1. Introduction

During the past few decades, in thermodynamic analysis, especially, the second law analy-
sis has been appearing to be an essential tool for the design and optimization of thermal systems.
The second law analysis is one of the best tools for improving the performance of thermal systems
involving heat transfer. It examines the irreversibility due to fluid flow and heat transfer in terms of
the entropy generation rate. Entropy generation is used in thermodynamics as a criterion to quan-
tify the significance of irreversibilities. The second law of thermodynamics provides a general and
unique way of optimizing the design of thermal-fluid devices both thermally and hydrodynamically
by minimizing the sum of thermal and frictional entropy generation rates. This process of mini-
mization is popularly known as the entropy generation minimization (EGM) method. Further, it can
be used to predict the performance of a thermal system in engineering processes. Thus in entropy
generation analysis, a set of optimal operating and design conditions are obtained that minimize the
irreversibilities in the system. Accurate estimation of the entropy generation rate plays an important
role in the design and development of thermo fluid components such as heat exchangers, energy stor-
age systems, pumps, turbines, electronic cooling devices, and so on. The different effective factors

© 2014 Wiley Periodicals, Inc.
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behind entropy generation in a thermal process/system, where the destruction of available energy of
a system occurs during the generation of entropy, have been investigated by Bejan [1, 2].

In thermodynamics, exergy is defined as the maximum amount of work which can be pro-
duced by a system or a flow of matter or energy as it comes to equilibrium with a reference environ-
ment. Unlike energy, exergy is not subjected to a conservation law. Exergy is consumed or destroyed,
due to irreversibility’s in any real process. Second law (exergy analysis) quantifies and locates the
losses that help in optimizing the thermal systems. Second law analysis helps us in evaluating in-
efficiencies associated with the various processes. The heat transfer process in any system involves
exergy losses or loss of the available work due to temperature gradients and fluid frictions and this
is due to the irreversible work involved in the process. The exergy loss is proportional to the entropy
generation rate [1]. Hence minimization of the entropy generation rate indicates optimum exergy or
the amount of available work. The study of entropy production or second law analysis of thermody-
namics is the gateway for optimization studies in thermal equipment and systems. This new approach
is important and, at the same time, necessary, to increase viable engineering solutions to energy prob-
lems. The new methodology is called exergy analysis. The analysis of energy utilization and entropy
generation is one of the primary objectives in designing a thermal system. The entropy generation
and its minimization were investigated extensively by Bejan [2—4], who presented systematically
the concept and working procedure. Bejan [5, 6] studied the heat transfer problems in pipe flow,
boundary layer flow past a plate, and flow in the entrance region of a rectangular duct using EGM.
He showed that engineering design of a thermal system could be improved through minimizing the
entropy generation. San and colleagues [7] were the first to have an analytical study of the effect
of mass transfer on entropy generation in forced convection between two parallel plates. They have
shown that under the criteria (—) > 0.05Re Pr, the flow is fully developed and the optimum spac-

ing between the plates can be obtalned by the equation of mean fluid temperature distribution. Later
on, many investigations have been carried to determine the entropy generation and Bejan profiles for
different geometric arrangements, flow situations, and thermal boundary conditions. Demirel and
Kahraman [8] made a thermodynamic analysis for an annular packed bed with asymmetric heating.
Delavar and Hedayatpour [9] have investigated the entropy generation characteristics in a channel
with a heat-generating porous block using the lattice Boltzmann method and found that the entropy
generation rate is more in a porous block compared to that of a clear fluid block. Kamel Hooman
and colleagues [10] observed that near the entrance region the entire heat lines changes their direc-
tion suddenly in a narrow region for a thermally developing fluid flow in saturated porous medium
between two plates.

There are many problems in the fields of hydrology and reservoir mechanics in which sys-
tems involving two or more immiscible fluids of different densities/viscosities flowing in the same
pipe or channel or through porous media are encountered. Typical fluid examples of these systems
are: air—water, water—salt water, oil-water, gas—oil, and gas—oil-water systems. These are referred
to as multiphase flows in literature. Blood flow in arteries has been studied by many researchers
considering blood as a two phase flow. Several investigations on multiphase flows are reported by
various researchers such as Bird and colleagues [11], Chaturani and Ponnalagar Samy [12], Ram-
chandra Rao and Srinivasan Usha [13], and so on. The flow and heat transfer in immiscible fluids
are of special importance in petroleum extraction and transport problems. Heat transfer in immis-
cible flows were discussed by Bakhtiyarov and Siginer [14], Prathap Kumar and colleagues [15],
Chamkha [16], and so on.
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In the last few decades, many studies have been developed in order to investigate the effect
of a magnetic field on different geometries [17, 18]. Alpher [19] discussed the heat transfer in a
magneto hydrodynamic flow between parallel plates. Nikodijevic and colleagues [20] studied the
Couette two-fluid flow and heat transfer in the presence of a uniform inclined magnetic field. It is
also to be noted that the analytical study of first and second laws of thermodynamics for the flow
within a channel in the presence of a magnetic field is significant in many industrial applications,
such as MHD marine propulsion, electronic packages, microelectronic devices, MHD generators,
pumps, accelerators, filtration, geothermal systems, and have applications in nuclear reactors too.
Some other quite promising applications are in the field of metallurgy such as MHD stirring of
molten metal and magnetic-levitation casting. Several works have been reported on the effect of
MHD flow on entropy generation for various flows and geometries by Damseh and colleagues [21],
Mabhian and colleagues [22], Kiyasatfar and colleagues [23], Chin-Chia Liu and Cheng-Ying Lo [24],
and so on. In recent years, the fluid flow and entropy generation in two immiscible fluids in a channel
have received considerable attention by researchers. Kamisli and Oztop [25] considered the fluid flow
and entropy generation in two immiscible fluids in a channel. These authors explained the thermody-
namic interface conditions involved in a flow of immiscible fluids and made a significant observation
that minimum temperature gradient in the transverse direction of the flow offers minimum entropy
generation near the plates.

To the extent the present authors have surveyed, the flow of immiscible incompressible cou-
ple stress fluids between two parallel plates has not been studied. The classical Navier—Stokes theory
does not describe the flow properties of polymeric fluids, colloidal suspension and fluids containing
certain additives. Different models have been proposed by many authors to explain the behavior of
such fluids. Stokes [26] proposed the theory of couple stress fluids for fluids which have distinct
features, such as the presence of couple stresses, body couples and nonsymmetric stress tensors.
Their accurate flow behavior cannot be predicted by the classical Newtonian theory. The main effect
of couple stresses is to introduce a size dependent effect that is not presented in the classical vis-
cous fluid theory. The fluids consisting of rigid, randomly oriented particles suspended in a viscous
medium, such as blood, lubricants containing small amount of polymer additives, electro-rheological
fluids and synthetic fluids are all examples of these fluids. The couple stress fluid theory presents
models for fluids whose microstructure is of mechanical significance. The effect of very small mi-
crostructure in a fluid can be felt if the characteristic geometric dimension of the problem considered
is of the same order of magnitude as the size of the microstructure. Classical continuum mechanics
neglects the size effect of material particles within the continua. However, in some important cases
such as fluid flow with suspended particles, this cannot be true and a size dependent couple stress
theory is needed. The spin field due to the rotation of freely suspended particles sets up an anti-
symmetric stress, known as couple-stress, leading thus to the couple stress fluid theory. These fluids
are capable of describing various types of lubricants, blood, suspension fluids, and so on. The study
of couple-stress fluids have applications in a number of processes that occur in various industries
such as the extrusion of polymer fluids, solidification of liquid crystals, cooling of metallic plate in a
bath, colloidal solutions, and so on. Stokes discussed the hydromagnetic steady flow of a fluid with
couple stress effects. A review of couple stress (polar) fluid dynamics was reported by Stokes [27].
Soundalgekar [28] discussed the effects of couple stresses on MHD Couette flow. Application of
the couple stress fluid model to biomechanics problems has been proposed in the study of peristaltic
transport [29, 30]. Many authors have investigated the couple stress effects with reference to different
lubrication problems [31-33].
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The main objective of this study is to examine the entropy generation characteristics in a
channel of two immiscible couple stress fluids under the influence of a transverse magnetic field.

Nomenclature
Be: Bejan number (ﬁ)
Br: Brinkman number (=EkPr)
Br/Q:  viscous dissipation parameter
d;;: components of the strain
D: deformation tensor
E: specific internal energy
Ek: Eckert number
f: body forces per unit mass
2h: height of the free channel
Ha: Hartmann number
h: heat flux
ki, ky:  thermal conductivity of the fluid in Zone I, II
Z: body couple per unit mass
M: couple stress tensor
n,: couple stress coefficients ratio (= Z—?)
ny: thermal conductivity ratio (= 1;—?)
n,: viscosity ratio (= ’;—?)
ng: electric conductivity ratio (= Z—z)
Nf: entropy generation due to visccl)us dissipation
Nm: entropy generation due to magnetic field
Ns: dimensionless total entropy generation number
Ny: entropy generation due to transverse conduction
Nu: Nusselt number
P: pressure
Pr: Prandtl number
q: velocity vector
Re: Reynolds number

sy, §o:  couple stress parameters
(S;)g: entropy generation rate
(S1)g,c: characteristic entropy transfer rate

T: stress tensor

Ty, T;;:  nondimensional temperatures of the plates

u: nondimensional velocity component in x-direction
X, y: nondimensional space coordinates

X,Y: space coordinates

Greek Symbols

n, n': couple stress viscosity coefficients
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rotation of the fluid particle

dimensionless temperature difference(= %)
dissipation function ’
irreversibility distribution ratio

density

nondimensional temperature

*SRe oD

Subscripts

1: fluid in Zone 1
2: fluid in Zone II

2. Formulation of the Problem and Governing Equations

Consider the flow of two immiscible couple stress fluids between two parallel plates extend-
ing in the axial direction and distant 2/ apart. Where X and Y are the axial and transverse coordinates
respectively with the origin at the centre of the channel (Fig. 1). The length of the plates is much
greater than the distance between them so that the flow at any point in the X-direction is the same.
Fluid flow is generated due to a constant pressure gradient which acts at the mouth of the channel.
A constant transverse magnetic field is applied on the plates. The fluid in the lower zone (viscosity
Hy, density p; and thermal conductivity k;) occupies the region (-4 <Y < 0), comprising the
lower half of the channel and this region is named Zone I. The fluid in the upper zone (viscosity p,,
density p,(< p;) and thermal conductivity k,) is assumed to occupy the upper half of the channel
(0 £Y < h), and this region is called Zone II. The two walls of the channel are held at different
temperatures 77 and Tp; (with 77 < Typ). The equations for the flow and energy in Zone I and II (i.e.
—h <Y < h) are assumed to be governed by couple stress fluid flow equations as given by Stokes
[26, 27]

ap

3 +V.(pg) =0 (D

YA

T=Ty ie,0,=1 |, 1‘

HT 1‘ 'TU=0 ie., u,=0

Zone - 11

dp
dax

lll

X
—> Zone -1

—
T=T, i.e.,0,=0 -h T H'T 1‘ TU=0 i.e., u=0

v

Fig. 1. Geometry of the problem.

472



dé
p[d—i]+(q.V)q] =—-VP+uVXVXg—nVXVXVXVxg+A1A+2u)V(V.9) 2)

72
pd—E=<I>+kV2T+ J

i Ea ®

where @ = u[(Vq) : (V)" + (V) : (VDI +4n((Vd) : (V@) ]+ 47 [(Va) : (Vo).

Equations (1)—(3) represent conservation of mass, balance of linear momentum and energy
equation, respectively. The scalar quantity p is the density and P is the fluid pressure at any point.
The vectors g, @ = % (Vxq), f,and ¢ are velocity, rotation, body force per unit mass and body
couple per unit mass, respectively. The material constants A and y are the viscosity coefficients
and 7 and #’ are the couple stress viscosity coefficients satisfying the constraints g > 0; 34 +2u >
0;n>0; |r]’ | < n. There is a length parameter [ = \/n/_y which is a characteristic measure of the
polarity of the couple stress fluid and this parameter is identically zero in the case of non-polar
fluids. In the energy equation @ is the dissipation function of mechanical energy per unit mass,
E is the specific internal energy, 7 = —kVT is the heat flux, where k is the thermal conductivity
and T is the temperature. The current density J, magnetic field A and electric field £ are related
by Maxwell’s equations VX E =0, VX H =u'J,V-J =0,J =c(E +§ x H), where ' is the
magnetic permeability and o is the electric conductivity.

To develop the governing equations for the problem considered, the following assumptions
are made:

(i) The flow is assumed to be one-dimensional, incompressible, laminar, steady and fully de-
veloped.

(i) The Lorentz force (f x H ) is the only body force acting on the fluid.

(ii1) The magnetic Reynolds number is assumed to be small, so that the induced magnetic field
is neglected and the Hall effect of magneto hydrodynamics is assumed to be negligible.

It is assumed that the velocity of the fluid § = (U (Y), 0, 0), which satisfies the continuity
Equation (1). The flow is subjected to a uniform applied magnetic field H, in the positive y-direction,
i.e., H= H,j whichyields J X H = —o H2§. Under the assumptions made, the governing fluid flow
Eq. (2) (in absence of body couple) of the problem is given by

oP _ 0’U o*U

2
ax ~ Moyz T Moya T ot U @

The following nondimensional quantities are introduced to make the governing equations and

.. . . X Y U P . .
the boundary conditions dimensionless: x = WY E U P = where U , is the maximum
o p

1%0

velocity of the fluid in the channel.

Equation (4) in the corresponding zones in non-dimensional form is presented below:
Zonel: (-1 <y <0)
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The governing equation in Zone I is:

d*u d’u d
—l—sl ! +Ha2s1u=—Res1—p. 5)
dy* dy? dx
Zonell: 0<y<1)
The governing equation in Zone II is:
d*u d’u n d
2 _ 5, —2 + —Ha’syu = ~Lre sz—p, (6)
dy* dy> n, n, dx
2 212
where Re = pl:tj"h is the Reynolds number, s; = % is the couple stress parameter, Ha” = #
1 i 1

O . . P . . . . .
Hartmann number, n, = =2 is the electric conductivity ratio and n = 22 s the viscosity ratio

oy Hi
(i=12).

2.1 Boundary and interface conditions

A characteristic feature of a two-layer flow is the coupling across liquid-liquid interfaces. The
liquid layers are mechanically coupled via transfer of momentum across the interfaces. Transfer of
momentum results from the continuity of tangential velocity and a stress balance across the interface.

To determine the velocity components u;(y), u,(y) in Zones I and II described above, we
adopt the following boundary and interface conditions:

Zone 1 is constituted by the fixed lower plate given by y = —1 and a fluid—fluid interface
defined by y = 0. Zone Il is constituted by the fluid interface given by y = 0 and the fixed upper plate
given by y = 1.

In view of the no slip condition on the static boundaries, we have to prescribe
u;=0 on y=-1 and u,=0 on y=1 @)
which represent the no slip condition.
Stokes [27] has proposed two types of boundary Conditions (A) and (B), respectively and
the vanishing of couple stresses on the boundary is referred to as Condition (A). This condition is

adopted here as this is appropriate in the present context. On the static boundary, this leads to

Py L oand £ 20 ary=1 ®)
=0 aty=-1 and — =0 aty=1.
dy? Y dy? Y

At the fluid—fluid interface y = 0, we assume that the velocity, vorticity, shear stress, and
couple stress components are continuous. This implies

dl/{l (O_) _ duz (0+)
dy dy
Mxyll (0_) = Mxy|2 (0+) at y = 0. 9)

uy (07) = uy (01),

> Txyll 0= Txy|2 (O+) and
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The last two conditions of Eq. (9) give us

du d’u du d’u d’u d’u
sl—l— ! =n S2_2_ 2 , L =n 2 ,  (10)
dy —dy’ ),y "\7Tdy dy’), o \dy?/),oo "\dy? /o

where n, = Z—2 is the couple stress coefficient ratio.
1

3. Solution of the Problem

3.1 Velocity distributions
Zonel: (-1 <y <0)
Solving Egs. (5) and (6), we see that the velocity component of Zone I is given by

uy (y) =cqyy Coshayy + ¢ Sinhayy + ¢13 Cosha,y + ¢4 Sinhay y — ﬁReB (11)
a

Zonell: 0 <y <1

and that of Zone II is given by

. . 1
U, (¥) = ¢p; Coshazy + ¢y Sinhazy + ¢p3 Coshayy + ¢p4 Sinh ayy — 7 sReB,  (12)
n,Ha
where a%, a% are the roots of x> —a,x +a, = 0 and a%, ai are the roots of x> — b, x + b, = 0 and
a, = a12 + a% =5),0p = alzag = Ha’s|, b, = a% + aﬁ =55,by) = a%ai = (Z—”)Hazsz.
: : B

The solutions u (¥) and u, (y) involve eight constants ¢, €y, €135 C1a»> €215 C22, €3, and
¢p4. These constants are found from the boundary conditions given in Egs. (7)—(9) and are solved
using Mathematica. As the expressions are cumbersome, they are not presented here.

3.2 Temperature distributions

Once the velocity distributions are known, the temperature distributions for the two zones
are determined by solving the energy equation (3) in the respective zones, subject to the appropriate
boundary and interface conditions. Thermal coupling is achieved through continuity of temperature
at the interface and the balance of heat flux across the interface. In the present problem, it is assumed
that the two plates are maintained at constant temperatures 77 and Ty; (17 < Tpy).

We take temperature 7(Y) as,

{Tl(Y), —h<Y <0
T(Y)= .
T,(Y), 0<Y<h
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The governing equation for the temperature 77 of the conducting fluid in Zone I is then

given by
2 2
. d°Ty au, d’u, U "
v =Ty )t ) Fe v (4

The governing equation for the temperature 7, of the conducting fluid in Zone II is then

given by
d>T, du, \* d*U,

In order to nondimensionalize the above equations, the following transformation is used in

addition to those already introduced in above: 8 = T_TYC .
n=—*r

Equations (13) and (14) are then reduced to the following form:

420 duy \? Pup\’
— Ll _Br <—1> + 1 ( L > + Hazu% (15)
dy? dy 51\ dy?

d’e, Bron, [ (du,\* 1 (du,\" n, 5

—_— = — ] +— ) + —Ha"u; |, (16)

dy? g dy 55 \ dy? n,

. . 2 . HiCp1 .
where Br = Ek Pr is the Brinkman number, Ek = is the Eckert number, Pr = —£= is the

0
epi(T11=Tr) ky

Prandtl number and n; = ];—2 is the thermal conductivity ratio.
1

In the nondimensional form, the boundary conditions for temperature and heat flux at the
walls and interface become:

(1) At the lower and upper plate boundaries the temperatures are, respectively,

0,=0 aty=—-1 and 6,=1 aty=1 a7

(i1) At the fluid interface temperature (€) and heat flux (h) are continuous:

0, =0 a 9 4 wy=0 (18)
= an —_—= —_— al =
: 2 dy " dy Y

The solutions of Egs. (15) and (16) with boundary and interface conditions are solved an-
alytically. The solution involves four constants c;s, ¢4, C25, and c,4 and these are found from the
four boundary conditions (Egs. (17) and (18)) and are obtained using Mathematica. Since they are
lengthy they are not shown here.
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Nusselt number

Heat transfer coefficient at the walls is given by Fourier’s law of heat conduction h=—kVT.

In non-dimensional form this represents Nusselt number Nu = — Z—f] . This is studied only at
y y:il

the walls of the channel.

4. Second Law Analysis

Once the velocity and temperature profiles are obtained, one can determine the entropy gen-
eration distribution in a flow channel.

4.1 The volumetric entropy generation

It is assumed that each of the couple stress fluid has constant physical properties
(p;» Wi» k;, cp;) and is flowing in the channel subjected to constant wall temperatures on each plate.
If we take an infinitesimal fluid element in each zone and assume that the element is an open thermo-
dynamic system subjected to mass fluxes, energy transfer and entropy transfer interactions through
a fixed control surface, the volumetric rate of entropy generation for couple stress fluid is given as

( Si ) G~ ( Si ) G, heat transfer + ( Si )G, viscous dissipation + (Si ) G, Joule dissipation
7

. ~ . ~ J . ~ J
>0 >0 >0
k 5 o1 1 J?
= —=[VT]"+ =0+ ——.
T2 VTl T, T, o
o

For this study, the volumetric rate of entropy generation reduces to

k; (0T, \?> u; (oU; 2 n [ 0%u; S
S)log=— =) += (=) +— L)+ LHU?, 19
( l)G T02 <aY > T() oY T() aYZ T, o ( )

4

where the value of i can be either 1 or 2 that represents fluid I or fluid II, respectively. On the right hand
side of Eq. (19), the first term represents the entropy generation rate due to heat transfer irreversibility,
the second and third terms are due to fluid friction irreversibility, and the last term is due to magnetic
effect in the form of Joule dissipation irreversibility.

4.2 The characteristic entropy generation rate

The characteristic entropy generation rate Sg; ¢ is defined as,

o [ ] [kery 0
CET T2 | | ner?
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In the above equation, Blis the heat flux in zone I, 7, is the average, characteristic, absolute
reference temperature of the medium, AT is the temperature difference and h is the half transverse
distance of the channel.

4.3 The entropy generation number

According to Bejan [2], the dimensionless form of entropy generation is the entropy gener-
ation number (Ns) and which is, by definition, equal to the ratio of the actual generation rate to a
characteristic entropy transfer rate. The entropy generation number for each fluid with dimensionless
variables are given by

2
(SI)G d91 2 Br dul 2 1 d2M1 )
Sl SG,C dy ( Q ) dy S] dy2 a Ml ( )

dusy \ 2 Puy \°
(ﬁ) +l<£> o, Ha2|. @)
dy 55\ dy?

) is the Brinkman number, which determines the importance of viscous dissipa-

(8¢ do, \* Br
Ns, = —n, (Z2) + (—
" 5G,¢ "\ ay " Q>

mU;
ki AT
tion because of the fluid frictions relative to the conduction heat flow resulting from the impressed
temperature difference and Q = (%) is the dimensionless temperature difference.

14

where Br = (

It is desirable to consider the Ek and Pr in a group that is called the Brinkman number (Br =
Ek Pr) for evaluating the relative importance of the energy due to viscous dissipation to the energy
because of heat conduction. It was reported that Br is much less than unity for many engineering
processes [5].

4.4 The viscous dissipation parameter or Group parameter

The viscous dissipation parameter is an important dimensionless number for the irreversibil-
ity analysis. It determines the relative importance of the viscous effects for the entropy generation
and it is equal to the ratio of the Brinkman number to the dimensionless temperature difference, i.e.,
(Br/QQ).

Equations (21), (22) can be expressed alternatively as follows:
Ns; =Ny, + Nf,+Nm; (i =12), (23)

where the first term (Ny;) denotes the entropy generation due to heat transfer conduction in the
transverse direction, the second term (N f;) represents the entropy generation due to the viscous dis-
sipation effect that results from the fluid frictions, and the last term (Nm;) is the entropy generation
due to the magnetic field.
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4.5 Fluid friction versus heat transfer irreversibility

The convective heat transfer processes are analyzed by the second law of thermodynamics
namely entropy generation due to the irreversibility of the processes. As stated earlier, there exists
a direct proportionality between irreversibility (quantified in the entropy generated) and the amount
of useful and available work lost in the process. In convective heat transfer both fluid frictions and
heat transfer make contributions to the rate of entropy generation. Entropy generation number (Ns)
is good for generating entropy generation profiles but fails to give any idea about the relative im-
portance of friction and heat transfer effects. The domination of the irreversibility mechanisms is
physically important since the entropy generation number is unable to overcome this problem. Two
alternate parameters, irreversibility distribution ratio (¢) and Bejan number (Be) are introduced for
this purpose and they are gaining increasing popularity among researchers studying the second law.

4.5.1 The Irreversibility ratio

The idea of irreversibility distribution ratio ¢ can enhance the understanding of the irre-
versibility’s associated with the heat transfer and the fluid friction. It is defined as the ratio of entropy
generation due to fluid frictions (Nf) to heat transfer and magnetic field in the transverse direction
(Ny),ie.,

SG, fluid friction+Sg, magnetic field < Nf + Nm)

SG, heat transfer Ny .
Here ¢ can be interpreted as follows: If 0 < @ < 1, then ¢ indicates that heat transfer irreversibility
dominates and if ¢ > 1 the irreversibility is dominated by the combined effects of fluid friction and
magnetic fields. When ¢ = 1, contribution of heat transfer to entropy generation is equal to the sum
of fluid friction and magnetic field.

4.5.2 The Bejan number

An alternative irreversibility distribution parameter, called the Bejan number Be, was defined
by Paoletti and colleagues [34], as the ratio of entropy generation due to heat transfer to the total
entropy generation and it is given by

heat transfer irreversibilty

~ heat transfer irrever sibilty + fluid friction irreversibility + Joule dissipation irreversibility
My Ny -
Ns Ny+Nf+Nm 1+¢

(24)

This is employed to understand the entropy generation mechanisms as proposed by Bejan
(2, 5].

The value of Be — 1 indicates that the heat transfer irreversibility dominates over fluid
friction, and this corresponds to the case of ¢ — 0. On the other hand, Be — 0 indicates that the
fluid friction and Joule dissipation irreversibility dominate entropy generation. This corresponds to
¢ — oo. It is obvious that Be = 0.5 is the case in which the contribution of the heat transfer
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irreversibility is equal to the sum of the fluid friction and Joule dissipation and this corresponds
to the case of ¢p = 1.

4.6 Importance of second law

By the first law of thermodynamics, we can find the temperature distributions of fluids within
the channel and also heat transfer coefficients at the plates. But this law will not give any information
regarding the relative effects of viscosity and heat convection for entropy generation. The second
law states that entropy is always positive. The law is also stated in the form of inequality of entropy
generation. It can be noted that the second law analysis makes it possible to compare many different
interactions in a system or process, and to identify the major sources of exergy destructions/losses.
This enables us to identify the exact region where the entropy generation rate is more in the entire
fluid regime. This study is facilitated through the entropy generation number (Ns) introduced by
Bejan [2, 5]. The relative effects of dissipation energy and heat transfer can be studied through the
Bejan number Be (Paoletti and colleagues [34]).

5. Results and Discussion

The first and second laws of thermodynamics for the flow of two immiscible couple stress
fluids in the presence of a constant applied magnetic field are obtained and reported in the previous
section. The parameters which influence the flow, heat transfer and entropy generation rate inside the
channel are the couple stress parameter s,, Reynolds number Re, Hartmann number Ha and viscous
dissipation (or group) parameter (Br/Q). The variations of velocity, temperature, entropy generation
number and Bejan number for different values of these parameters are shown through figures.

5.1 Flow field
0.7 1.0
—s,=1 T
06~ - - - = . .
SZ P e 0.8 e
(LS 8,73 E® A Fa N
...... s=4-".7 _--[TT"~_ \-. i ’ A
% 0.4 2 ",/'/ // \\ \ " 0.6 // ’f"i"— _\_\\ \\
H . 2 S / e N LY
il 7 %5 B -
0.3 i \'\'. > 044 oz -\\
P ot & & =2 T 381= -al ¥ . \
,/'./// \\\_'_ //./ . ——Ha=1 S IR
0.2 o 3 Lt . \
a7 W ot ---- Ha=2 e
Y, N 024 fiy - . Y R
014 7 % )’ Bt Ha=3 0
i/, \t p" A\
P zone-| zone-ll 3 4 Zone-| [ Ha=4 zone-n
0.0 i . 0.0 T } T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Yiooree® y >
Fig. 2. Effect of couple stress parameter s,on Fig. 3. Effect of Hartmann number Ha on
velocity u forB=—-1.2, Ha=0.1,n, = 0.8, velocity u for B = —-1.5,n, = 0.6, n, = 0.8,
n, = 0.8, n, = 0.8,Re=2,s5; =2. n,= 06,Re=2,5,=2,5,=2.
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5.2 Thermal field

The effect of the couple stress parameter s, on the velocity field is shown in Figure 2. It is
seen that as s, increases, the velocity increases in both zones of the channel. As s; — o0 (i = 1,2)
we get the case of a Newtonian fluid. Hence from Figure 2 we conclude that velocity of the viscous
fluid is more than that of the couple stress fluid. The effect of the Hartmann number Ha on the
velocity field is shown in Figure 3. It is seen that as the Hartmann number Ha increases, the velocity
decreases in the channel. From Eq. (4), it can be observed that the magnetic field as a body force
opposes the flow and hence the decrease in velocity is a retarding influence on the flow. Hence we
conclude that the imposed magnetic field has a retarding influence on the flow field.

The effect of the couple stress parameter s, on the temperature field is shown in Figure 4. It
is seen that as s, increases, the temperature increases in both zones of the channel. Since velocity
is increased, the temperature due to dissipation of energy (depending on velocity) also increases.
The effect of the Hartmann number Ha on the temperature distribution is shown in Figure 5. As
the Hartmann number Ha increases, temperature decreases. This may be due to the fact that as Ha
increases, velocity decreases, hence dissipation of energy decreases and this in turn leads to the
decrease in temperature.

5.3 Heat transfer

Figure 6 presents the effect of Reynolds number Re on the Nusselt number Nu as a function of
Brinkman number Br. It is observed that as the Reynolds number Re increases the Nusselt number
Nu increases. Figure 7 shows the effect of Hartmann number Ha on the Nusselt number Nu as a
function of Brinkman number Br. It is observed that as the Hartmann number Ha increases, the
Nusselt number Nu decreases.
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5.4. Entropy generation and Heat transfer irreversibility

Figure 8 describes the effect of couple stress parameter s, on entropy generation number Ns.
As s, increases, entropy generation rate Ns increases near the walls in both zones of the channel
and decreases at the interface. Entropy generation rate depends on velocity and temperature gradi-
ents (Egs. (21)) and (22) and they increase as s, increases. Hence entropy generation rate increases
at the boundaries (walls). Figure 9 shows the effect of Reynolds number Re on entropy genera-
tion number Ns. As Re increases, Ns increases. Figure 10 displays the variation of entropy gen-
eration number Ns as a function of y at different values of Hartmann number Ha. It is observed
that as Ha increases, Ns decreases drastically near the plates and has a negligibly small effect
at the interface. From Figures 8 and 9, it is observed that the entropy generation near the plates

6.5 70 —

Zone-| Zone-ll ;— s =5 zone-| zone-ll — Re=1
| 60 -| ----Re=2
\ -~ Re=3
‘ s I T Re=
i A 40
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Ns -----
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Fig. 8. Effect of couple stress parameter s, on Fig. 9. Effect of Reynolds number Re on
entropy generation number Ns for B = 3, entropy generation number Ns for B = —1.2,
Br =0.5,Ha=0.5,n, =0.6,n, = 0.6, Br=0.3,Ha=0.1,n, =0.8,n, =09,

n,=04n, =07,Re=22,5=10,Q=1 n,=08mn, =095 =10,5=10,Q=1.
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increases more rapidly in Zone I than in the Zone II. This is due to the fact that in Zone I fluid is more
viscous.

From Figure 11, we observe that as the viscous dissipation parameter (B1/€2) increases, the
entropy generation number Ns increases. The greater the viscosity of the fluid, the greater the entropy
generation rate. It is observed that Ns = 0 at the interface of the channel. This implies that at the
interface, entropy generation is minimum i.e., exergy is maximum (available energy) and hence the
dissipation of energy is almost zero and the thermal process is almost reversible there. When (B1/€2)
— 0, the entropy generation number Ns — 1 and becomes independent of the transverse distance.
This is an ideal case which corresponds to the energy due to only the heat conduction and the effect of
viscous dissipation disappears. There is a lowest point of the entropy generation rate at each specified
value of the viscous dissipation parameter and it occurs near the interface. The profiles indicate that
at the interface y = 0, the entropy generation rate is minimum and hence the available energy in the
transverse direction is maximum.

Figure 12 depicts the effect of couple stress parameter s, on Bejan number Be. As s, in-
creases, Bejan number decreases near the walls and increases at the interface. This indicates that
irreversibility is almost zero at the interface. Figure 13 illustrates the effect of Reynolds number Re
on Bejan number Be. As Re increases, Be decreases. The variation of Be near the plates is more
than that at the interface. This indicates that frictional forces are increasing rapidly near the walls.
Figure 14 predicts the variation of Bejan number Be as a function of y at different values of Hartmann
number Ha. As Ha increases, Be increases drastically near the plates and decreases at the interface.
As the Hartmann number increases, the curve for the Bejan number becomes flat for a considerable
distance in the middle of the channel. This shows that magnetic effect decreases friction at the walls
but increases the entropy generation rate at the interface. This is a significant observation that can
be made from the present study in view of its practical applicability.

483



0.95

0.90

0.85

0.80

0.75

0.70

Be -

0.65
0.60

0.55

S
0.50 I‘
Zone-| Zone-ll

-1.0 -0.5 0.0 0.5 1.0
e

Fig. 12. Effect of couple stress parameter s, on
Bejan number Be for B = —0.1, Br =
5Ha=0.1,n,=09,n,=09,n,=0.9,
n, =09,Re=25,5,=5Q=1.

—— Ha=0.2 A el
0964 _ - Ha=0.4 4G PN
a=0. 2 BN
095 J—.—. - Ha=06 / R
0:04:=f 2 Ha=0.8 \
N
093 - \ -
Y 2
s Ly \\ -
i 0924 1y \‘\\'.
7 O
& o091 7 W
0.90 Py R 1
i 2 / \\\
/7
oso % \_\
0.88 W
N
0.87
zone-| | zone-ll
0.86 . .
1.0 05 0.0 05 1.0
y—--->

Fig. 14. Effect of Hartmann number Ha on
Bejan number Be forB = —0.5, Br = 0.1,
n, = 0.8, n,= 0.8,n, =0.8,n, =0.8, Re =2,
s =10,5,=10,Q =1

099 - gl T TR
o " e Frgr
- - -~ N
098+ _ - - ,'/ - N ==
) P <.
097 - P N
a N

096 - >~ Ny
A - ~
| - ~.4
| 095 .
o
Y Y Re=1

093 - < - _-Re=2

092 1 s Re=3| l

oot ] I— P |

zone-| zone-ll
090 . .
10 05 0.0 05 10
y ——

Fig. 13. Effect of Reynolds number Re on
Bejan number Be for B = —0.1, Br =
0.,Ha=0.1,n, =08,n, =0.8,n, =038,
n,=08,s5=8s5,=8Q=1.

1.00

0.95

0.90

0.85

080

075" o BIIQ=0.0/N
—Br/Q=0.1

----Br/iQ=0.2 f

Be --

070"

0.65

pE4 -=BriQ=0.4

Zone-| Zone-ll

0.55
-1.0 -05 0.0 05 1.0

y ——>

Fig. 15. Effect of viscous dissipation parameter
(Br/Q) on Bejan number Be for B =
—-0.1, Ha = 0.1, n, = 0.8, n, = 09, n, =0.8,
n, =0.8,Re=8,s5, =8,5, =8.

From Figure 15, we observe that as the viscous dissipation parameter (Br/Q) increases, Bejan
number Be decreases. This shows that the Bejan number is maximum at the interface of the channel
and decreases as we move towards the channel walls in either direction. We again observe that for
(Br/Q) = 0, Be is equal to its maximum theoretical value (Be = 1), i.e., the fluid friction effect
provides no contribution to the entropy generation. For all other values of (Br/€2), the Bejan number
has a maximum value close to the central line of the channel and then decreases near the walls.

6. Conclusions

An analytical study of the first and second laws of thermodynamics is presented to inves-
tigate the effects of viscous dissipation and magnetic force in two immiscible couple stress fluids
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between two parallel plates. The velocity and temperature profiles are obtained analytically and used
to compute the entropy generation number Ns and Bejan number Be. Bejan number is used to find
relative effects of frictional forces and heat conduction. The effects of the viscous dissipation pa-
rameter (Br/Q2) and Hartmann number Ha on the entropy generation number Ns and Bejan number
Be are studied analytically. The computational results are presented through figures. It is observed
that

1. The entropy generation number Ns is dependent on the velocity and the temperature distri-
butions. At the value of (B1/Q2) = 0, the entropy generation distribution is observed to be independent
of the transverse distance. The entropy generation increases with increasing the viscous dissipation
parameter (Br/Q).

2. The values of Ns near the plates are more than what they are at the interface, indicating
that friction due to surface on the fluids increases entropy generation rate.

3. The values of Ns in Zone I are more than what they are in the Zone II near the plates. This
indicates that greater the viscosity of the fluid, the greater is the entropy generation rate.

4. The Bejan number is maximum and the irreversibility ratio is minimum at the interface
of the channel. This indicates that the amount of exergy (available energy) is maximum and irre-
versibility is minimum at the interface.

5. Increasing the value of Ha (i.e., magnetic force) has a tendency to retard the fluid motion
inside the channel and to decrease the friction at the walls. This allows us to conclude that couple
stress fluids can be used as good lubricants.

6. The plates act as strong sources of irreversibility.
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