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Abstract—Wireless Sensor Networks (WSN’s) are resource
constrained networks, demanding energy efficient cryptographic
algorithms in order to extend security to them. When compared
with the popular RSA algorithm, Elliptic Curve Cryptography
(ECC) offers similar level of security with smaller key size
requirements. An efficient implementation of ECC heavily relies
on the scalar multiplication operation. An efficient method for
the elliptic curve point multiplication operation is proposed
and its resource requirements are compared with binary and
non-adjacent form (NAF) techniques. While comparing these,
addition and doubling operations are considered. The proposed
scalar multiplication technique makes use of both affine and
projective coordinate systems while carrying out addition and
doubling operations. The number of computations required
to perform these operations is compared and an appropriate
coordinate system is chosen for each of the operations.

Keywords− ECC, WSN, Binary method, NAF, w-NAF, coor-
dinate system, Jacobian, Projective

I. introduction

Wireless sensor networks (WSN’s) have been finding their
applications in various diversified areas. In certain WSN
applications, the data being exchanged among the nodes
within WSN and the nodes and the base station needs to be
done securely. For this purpose, symmetrc key cryptographic
(SKC) algorithms are being widely used. If the key stored
in any of the nodes is compromised, then the attacker can
capture the data being exchanged. Alternately, asymetric
key or public key cryptographic (PKC) techniques could
be used to improve the security in a WSN. Elliptic Curve
Cryptography (ECC) [1] is gaining wide acceptance as an
alternative to the RSA. As compared to the RSA, the ECC
requires smaller key length to provide similar security level
[2]. The main attraction of ECC is the hard elliptic curve
discrete logarithm problem (ECDLP), which takes a fully
exponential time, whereas the RSA takes a sub-exponential
time. While RSA requires a 1024− bit key for guaranteeing
adequate security, ECC requires only a 160− bit key to
provide the same level of security [3], [4].

ECC implementation involves point generation, encoding,
and decoding phases. All the phases make use of the point
multiplication operation, which in turn uses point addition
and doubling sub-operations. Hence, the efficiency of an ECC

implementation depends on the algorithm used to carry out
the point multiplication [5].

The basic form of an elliptic curve over a finite field (F) is
given by the Weierstrass equation (1). [6]

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, (1)

where a1, a2, a3, a4, a6 ∈ F.
An elliptic curve over a Galois field with p elements, GF(Fp),
where p is prime and p > 3 satisfying the equation (2).

Ep(a, b) : y2 = x3 + ax + b, (2)

where a and b are constants satisfying 4a3 + 27b2
, 0.

Here the elements of the finite field are integers between 0
and (p − 1). All the operations such as addition, subtraction,
division and multiplication involve integers between 0 and
(p − 1). In order for the cryptosystem to have higher security
level, the prime number, p, should be sufficiently large.

II. background mathematics

Given a scalar K and a point P on an elliptic point, scalar
multiplication is defined as KP, which is simply addition of
point P with itself K times (P + P + · · · + P)

︸                ︷︷                ︸

K times

, so a total of

(K − 1) additions are required. The traditional double and add
algorithm for point multiplication requires repeated application
of the point addition and doubling operations given by the
equations (3) and (4), which use the affine coordinate system.

Let P(x1, y1), Q(x2, y2) and R(x3, y3) be points over an
elliptic curve Ep(a, b). The point addition (R = P + Q) is
given by the equation (3)

x3 = ∆
2 − x1 − x2 and y3 = ∆(x1 − x3) − y1, (3)

where ∆ =
y2−y1

x2−x1

and point doubling (R = 2P) is given by the equation (4)

x3 = ∆
2 − 2x1 and y3 = ∆(x1 − x3) − y1, (4)

where ∆ =
3x2

1+a

2y1
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III. PointMultiplication Techniques

The elliptic curve point addition and doubling computations
involve field inversion, addition, subtraction and multiplication
operations. Among these operations, the field inversion oper-
ation is the most expensive one.

A. Binary point multiplication method

In this method, the scalar multiplier is converted into its
binary form. Let P and Q be such that Q = KP. K can be
represented as

K =

m−1∑

i=0

ki2
i
, ki ∈ {0, 1}, (5)

where (km−1, km−2, ..., k1, k0) is the binary form of the scalar,
K. [7]
This method performs point multiplication by repeatedly ap-
plying point addition and doubling operations. For every ki,
point doubling operation is carried out, and in addition, if
ki = 1, point addition operation is also performed.

If the length of a scalar in its binary representation is
m and n is the number of 1′s in it, then a maximum of
(m−1) doubling operations and (n−1) addition operations are
required. Hence, the average computation cost for the binary
point multiplication method can be given by the equation (6).

Computation cost = (
m

2
)A + (m)D, (6)

where A and D correspond to addition and doubling opera-
tions, respectively.

B. Non-Adjacent Form (NAF) point multiplication method

In the binary point multiplication method, in case the
number of 1′s in the binary form of the scalar is more, then
more addition operations are required. In the NAF method,
the scalar is represented in its non-adjacent form. For every
point, P(x, y) ∈ Ep(a, b), the negative of the P is represented
by −P = (x, (p − y)). Thus, subtraction operation is similar
to addition operation. The signed bit representation method
of the scalar, K, is used as an alternative to the binary form
point multiplication method. Each +ve scalar, K, has a unique
canonical {−1, 0, 1} representation given by the equation (7)
[8]. This representation takes a minimum number of non-zero
elements, which are non adjacent. In this method, the number
of addition operations is reduced.

K =

l−1∑

i=0

ki2
i, ki ∈ {−1, 0, 1} (7)

The NAF of a scalar integer is unique and is denoted by
NAF(K), which has fewer non-zero digits than any other
signed digit representation of K. The NAF(K) requires at most
one extra digit when compared with its corresponding binary
form. The average density of non-zero digits among all NAF’s
of length l is about l

3 [8].
In this NAF point multiplication method, depending on the

present digit value ∈ {−1, 0, 1}, one of the following operations
is performed:

−1 : R← 2R − P

0 : R← 2R

1 : R← 2R + P

Example: For K = 63
Binary representation: 1 1 1 1 1 1
and NAF representation: 1 0 0 0 0 0 -1
In the NAF method, the computation would be as follows:
63P = 2(2(2(2(2(2P)))))− P

In this example, using the equation (7), it can be observed
that the number of point addition operations is reduced by 4
while the number of point doubling operations is increased
by 1 when compared with the same example in binary form
method. The average computation cost incurred in this NAF
method in terms of point addition and doubling operations is
expressed by the equation (8).

Computation cost = (
m

3
)A + (m)D, (8)

where A and D correspond to addition and doubling opera-
tions, respectively.

C. Windowed-NAF

In the binary form of point multiplication method, after
representing the scalar, K, in binary form {0, 1}, each bit is
examined and if the bit is 0 only the doubling operation
is performed, otherwise a doubling and addition operations
are performed. In the NAF point multiplication method, after
representing the scalar, K, in NAF form {−1, 0, 1}, each digit
is examined and if the digit is 0, only doubling operation is
done and if the digit is 1, doubling and addition operations
are carried out, other wise, i.e. if the digit is −1, doubling and
subtraction operations are performed. An extension of the NAF
method, Windowed NAF or width-w NAF method, denoted by
NAFw(K), a +ve scalar integer is represented in the form

K =

(l−1)∑

i=0

ki2
i
, |ki| ≤ 2(w−1) (9)

where each non-zero coefficient ki is odd, k(l−1) , 0. In this
representation, at most one of any w consecutive digits can be
non-zero. The average density of non-zero digits among all
the width-w NAF representations of length l is approximately

l
w+1 . Note that if w = 1, the representation results in binary
form and if w = 2, the representation results in NAF form.

The scalar, K, is represented in its width-w NAF form using
the Algorithm 1, under the condition that, for any u ≡ K mod
2w, where −2(w−1) ≤ u < 2(w−1), if K is odd, then r is chosen
such that, r = K mod 2(w−1) and K − r is divisible by 2(w−1)

[7].
After representing the scalar in its width-W NAF form, the

point multiplication operation is computed as given in the
algorithm 2.



Algorithm 1 Computing the width-w NAF of a positive
integer

INPUT: Window width w, positive integer K
OUTPUT: NAFw(K)

1) i← 0
2) While K > 1 do

a) If K is odd then: ki ← K mod 2w, K ← K − ki;
b) Else: ki ← i + 1.

3) Return(ki−1, ki−2, ..., k1, k0).

Algorithm 2 Window NAF method for point multiplication

INPUT: Window width w, positive integer k, P ∈ E(Fq)
OUTPUT:kP

1) Compute Pi = iP for i = {1, 3, · · · , 2(w−1) − 1}.
2) Q← ∞
3) For i from (l − 1) downto 0

a) Q← 2Q
b) If ki , 0 then:

i) If ki > 0 then Q← Q + Pki

ii) Else Q← Q - P−ki

4) Return(Q)

This method requires (2(w−2) − 1) pre-computations to be
carried out before hand and these values to be stored in
the memory. For example, if w = 5, then the number of
pre-computations is (2(5−2) − 1) = 7 and the required pre-
computations are: 3P, 5P, 7P, 9P, 11P, 13P and 15P.
The average computation cost incurred in this method in terms
of point additions and doublings is given by (10). [7]

Computation cost = [1D + (2(w−2) − 1)A]
︸                    ︷︷                    ︸

Precomputation overhead

+[
m

(w + 1)
A + mD],

(10)
where A and D correspond to addition and doubling opera-
tions, respectively.

IV. Projective coordinate system for point addition and
doubling

As discussed in the previous section, point doubling and
addition operations are performed at every stage and hence it
is imperative to make use of an efficient method to carry out
these operations. The equations (3) and (4) for point addition
and doubling operations using affine coordinate system require
inversion operation, which is very compute-intensive. By map-
ping the elliptic curve points in affine coordinate system to the
corresponding points in projective coordinate system, the need
for the inversion operation can be eliminated.

A. Overview

For a prime field Fp, let p∗ be a subset of non-zero elements
∈ {Fp}, λ be any element ∈ p∗ and +ve integers be s and t,
the projective coordinates, (X1, Y1, Z1) and (X2, Y2, Z2) can be
defined as an equivalence relation within the set p3/(0, 0, 0)

of non-zero triples over Fp by
(X1, Y1, Z1) ∼ (X2, Y2, Z2)
where X1= λ

sX2, Y1 = λ
tY2, Z1 = λZ2. [9]

This relation can also be expressed as

(X : Y : Z) = (λsX, λtY, λZ)

(X : Y : Z) is called the projective point, and (X, Y, Z) is
called the representative of (X : Y : Z). if Z , 0 then
( X

Zs ,
Y
Zt , 1) is a representative of projective point (X : Y : Z)

and there is 1-1 correspondence between the projective point
and affine point and their set of points respectively is P(p)∗ =
(X : Y : Z) : X, Y, Z ∈ p, Z , 0 and A(p) = (x, y) : x, y ∈ p. If
Z = 0 then there is not exit any affine point for projective
point.

The projective form of the Weierstrass equation, defined
over p, is obtained by substituting in the equation (1):
x = X

Zs and y = Y
Zt .

B. Standard projective system and mixed coordinate system

If s = 1 and t = 1, the projective coordinate system is
called as the standard projective coordinate system and the
corresponding elliptic curve equation under this coordinate
system is given by

Y2Z = X3 + aXZ2 + b (11)

If the standard projective coordinate point (X, Y, Z), Z , 0, the
corresponding affine coordinate system point is ( X

Z
, Y

Z
).

Example
For an affine point P(11, 3) in GF(F17) and Z = 2, its standard
projective point is (X, Y, Z) = (22, 6, 2) ≡ (5, 6, 2)17. The point
at infinity ∞ is given by (0 : 1 : 0) and the corresponding
negative point of (X : Y : Z) is given by (X : −Y : Z).

1) Point addition in standard projective coordinate system:

Consider P(X1 : Y1 : Z1), Q(X2 : Y2 : Z2) and R(X3 : Y3 : Z3)
in the standard projective coordinate system.
R = P + Q over Ep(a, b) is given by [10]:

X3 = BC, (12a)

Y3 = A(B2X1Z2 − A) − B3Y1Z2, (12b)

Z3 = B3Z1Z2, (12c)

where A = Y2Z1 − Y1Z2, B = X2Z1 − X1Z2,
C = A2Z1Z2 − B3 − 2B2Y1Z2

Total computation cost in terms of multiplications (M) and
squarings (S) = 12M + 2S .

2) Point doubling in standard projective coordinate system:

Given a point P = (X1 : Y1 : Z1) in the standard projective
coordinate system over Ep(a, b) : y2 = x3 + ax + b, 2P = (X3 :
Y3 : Z3) is given by [10]:

X3 = 2BD, (13a)

Y3 = A(4C − D) − 8B2Y2
1 , (13b)

Z3 = 8B3
, (13c)

where A = aZ2
1 + 3X2

1 , B = Y1Z1, C = X1Y1B, D = A2 − 8C

Total computation cost in terms of multiplications (M) and
squarings (S) = 7M + 5S .



C. Jacobian coordinate system

Consider s = 2 and t = 3, the projective coordinate system
is called Jacobian coordinate system and the elliptic curve
equation under this Jacobian system is given by

Y2 = X3 + aXZ4 + bZ6 (14)

If the Jacobian coordinate point (X, Y, Z), Z , 0 and its
corresponding affine coordinate point is ( X

Z2 ,
Y
Z3 ). The point

at infinity ∞ is given by (1 : 1 : 0) and the corresponding
negative point of (X : Y : Z) is given by (X : −Y : Z). In
Jacobian coordinate system, the point doubling for a point,
Q(X1, Y1, Z1) is given by [7]:

X3 = (3X2
1 + aZ4

1)2 − 8X1Y2
1 (15a)

Y3 = (3X2
1 + aZ4

1)(4X1Y2
1 − X3) − 8Y4

1 (15b)

Z3 = 2Y1Z1 (15c)

Total computation cost in terms of multiplications (M) and
squarings (S) = 4M + 6S .

V. Proposed method

The computation cost for the first term of the r.h.s., i.e.
(3X2

1 + aZ4
1) of the equation (15a) = 1M+2S. By substituting

a = −3 in (3X2
1 + aZ4

1) results in:
3X2

1 + aZ4
1 = 3(X1 + Z2

1)(X1 − Z2
1 )

To do this, the computation cost = 1M + 1S . As mentioned
earlier, the point doubling operation is performed during each
iteration of the point multiplication operation and hence this
method drastically reduces overall computation cost. For the
given point, P = (X1 : Y1 : Z1), 2P = (X3 : Y3 : Z3) is given
by:

X3 = A2 − 2D, (16a)

Y3 = (D − X3)A − C2/2, (16b)

Z3 = BZ1, (16c)

where A = 3(X1 − Z2
1 )(X1 + Z2

1 ), B = 2Y1, C = B2,
D = CX1

Algorithm 3 Point doubling (y2 = x3 + ax+ b, using Jacobian
coordinate for a=-3)

INPUT: P = (X1 : Y1 : Z1) in Jacobian coordinates over
Ep(−3, b) : y2 = x3 − 3x + b

OUTPUT: 2P = (X3 : Y3 : Z3) in Jacobian coordinates.

1) if P = ∞ then Return(P)
2) A← 3(X1 − Z2

1 )(X1 + Z2
1)

3) B← 2Y1

4) Z3 ← BZ1

5) C ← B2

6) D← CX1

7) X3 ← A2 − 2D

8) Y3 ← (D − X3)A −C2/2
9) Return (X3 : Y3 : Z3)

Total computation cost in terms of multiplications (M) and
squarings (S) = 4M + 4S .

A. Point addition using mixed coordinate system

It is observed that the doubling operation can be performed
efficiently making use of Jacobian coordinate system.Whereas,
in affine coordinate system, the addition operation requires
1I+2M+1S and in Jacobian coordinate system the addition
operation requires 0I+12M+4S, where I represents inversion
operation. This work makes use of both the Jacobian and
affine coordinate systems,called mixed coordinate system to
perform point addition operation. One of the two points is
represented in the Jacobian coordinate system while the other
is represented in the affine coordinate system. The resulting
point after carrying out the point addition operation,is con-
sidered to be in the Jacobian coordinate system. Therefore,
for a point P(X1, Y1, Z1) in Jacobian coordinate system and
Q(x, y) ≡ Q(X2, Y2, Z2, 1) in affine coordinates, where x2 = X2,
y2 = Y2 and Z2 = 1, R = P + Q is given by [7]

X3 = (Y2Z3
1 − Y1)2 − (X2Z1 − X1)2(X1 + X2Z2

1) (17a)

Y3 = (Y2Z3
1 − Y1)(X1(X2Z2

1 ) − X3) − Y1(X2Z2
1 − X1)3 (17b)

Z3 = (X2Z2
1 − X1)Z1 (17c)

The point addition can be efficiently performed in mixed
coordinate system for a specific elliptic curve, Ep(−3, b), as
illustrated in algorithm 4. Total computation cost for point

Algorithm 4 Point addition (y2 = x3 + ax + b, affine-
Jacobian(mixed) coordinates)

P = (X1 : Y1 : Z1) in Jacobian coordinate, Q = (x2, y2) in
affine coordinates on E(Fp) : y2 = x3 + ax + b.

OUTPUT: P + Q = (X3 : Y3 : Z3) in Jacobian coordinates.

1) If Q = ∞ then Return(X1 : Y1 : Z1).
2) If P = ∞ then Return(x2 : y2 : 1).
3) A← Z2

1 .

4) B← Z1A

5) C ← X2A

6) D← Y2B

7) E ← C − X1

8) F ← D − Y1

a) if E = 0 then

i) if F = 0 then use algorithm 3
to compute (X3 : Y3 : Z3) = 2(x2, y2, 1)
and Return(X3 : Y3 : Z3)

ii) else Return (infinite)

9) G ← E2

10) H ← GE

11) I ← X1G

12) X3 ← F2 − (H + 2I)
13) Y3 ← F(I − X3) − Y1H

14) Z3 ← Z1E

15) Return (X3 : Y3 : Z3)

addition in terms of multiplications (M) and squarings (S) =
8M + 3S .



VI. Comparison

A comparison of various scalar point multiplication meth-
ods, binary form, Non-Adjacent Form (NAF) and windowed-
NAF (w-NAF) is made. Based on the equations (6), (8) and
(10), an efficient method for scaler multiplication is proposed.
In all these methods, the number of doubling operations
required remains to be the same, however the number of
point addition operations and the number of pre-computations
depend on the window width. The comparison providing the
number of additions and pre- computations required for a 160-
bit key is given in the Fig 1.

Fig. 1. Comparison Graph

This paper has also discussed various coordinate systems
the affine coordinate system, the standard projective coordinate
system, the Jacobian coordinate system and mixed coordinate
(Jacobian + affine) system to carry out point addition and
point doubling operations. A comparison of these coordinate
systems, in terms of the total number of required squaring
and multiplication operations, is made while carrying out point
addition operation using 160-bit key. It can be observed from
the Fig 2, point addition operation can be carried out using
mixed coordinate system.

Fig. 2. Point addition Co-ordinate systems Comparison

The computational cost comparison for these schemes
is given in Table I. If key length is l, then in Jacobian
coordinates, a total of 6l doublings are required whereas
using a specific value for the elliptic curve parameter a = −3,

TABLE I
Comparison of different coordinate systems

(I - inversion, M - multiplication and S - squaring)
Coordinate Doubling Addition

System I M S I M S
Affine 1 2 2 1 2 1

Projective a ∈ p 0 7 5 12 2
a = −3 0 7 3 0 12 2

Jacobian a ∈ p 0 4 6 0 12 4
a = −3 0 4 4 0 12 4

Mixed - - - 0 8 3

a total of 4l doublings are required, which is a 33% reduction
in the doubling cost.

VII. conclusions

ECC can be used in WSN applications as a viable alternative
to the RSA in order to provide security. The efficiency of the
ECC mainly depends on the point multiplication operation.
This work proposes a computationally efficient technique for
the point multiplication operation by choosing appropriate
values for window width w and a(−3) and giving the result
for 160-bit keys. As can be noticed from fig. 1, the win-
dowed NAF(4-NAF) method gives the best result for point
multiplication. Additionally, as can be observed from Table I,
point doubling operation is best performed using the Jacobian
coordinate system, whereas point addition operation is best
performed using the mixed coordinate system for the specific
elliptic curve EP(−3, b) over a prime field. By making use of
these, while implementing point multiplication, it is possible
to improve the energy efficiency of the ECC to be used in
WSN applications.
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