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Abstract—Virtual Machine Monitor (VMM) is very 

important for the cloud and data center environment. VMM runs 
continuously for a long time and hence encounters the problem of 
software aging.  VMM experiences failure because of software 
aging. In order to prevent the VMM failure caused by software 
aging, a proactive fault management approach called software 
rejuvenation is used. There are various software rejuvenation 
approaches existing in literature that can be broadly categorized 
into two categories namely model based approaches and 
measurement based approaches. Time to failure is predicted in 
measurement based approaches by monitoring the resource 
usage statistics. There can be any non-linear relationship between 
resource usage statistics and the time to failure. Such a non-
linear function can be approximated using Artificial Neural 
Networks (ANN). The change in the value of attributes of 
resources is given as input to ANN and new value of time to 
failure is generated as output. Experiments shows that if there is 
some pattern in the arrival and departure of the VMs, then the 
prediction is more accurate. 
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Artificial Neural Networks, Cloud Computing 

I.  INTRODUCTION  
 

In software engineering, software aging refers to 
progressive performance degradation or a sudden hang/crash of 
a software system due to exhaustion of operating system 
resources, fragmentation, and/or accumulation of errors [16]. A 
Virtual Machine (VM) is a software implementation of a 
computing environment in which an operating system (OS) or 
a program can be installed and run. Typically a virtual machine 
emulates a physical computing environment. VMM processes 
the requests generated by VM for CPU, memory, network, hard 
disk and other resources. VMM runs continuously for a long 
time and encounters the problem of software aging.  

Software rejuvenation is a cost effective technique for 
dealing with software faults. It consists of a proactive fault 
management technique. Its aim is to clean up the system 
internal state in order to prevent the occurrence of more severe 
faults, such as crashes or software malfunctioning. Cleaning 
up the internal state includes removal of accumulated error 
conditions, free the resources of the operating system, garbage 
collection, flushing operating system kernel tables, 
reinitializing the internal data structures etc. [14].  

Rest of the paper is organized as follows. In Section II, 
related work is presented. In Section III, the proposed neural 
network based approach is described. Experimental setup and 
results are discussed in Section IV and Section V respectively. 
Conclusions and future work are given in Section VI. 

II. RELATED WORK 
 

The software aging problem can be handled either by 
creating analytical models or analyzing the software based on 
measurements. In measurement based approach, the attributes 
related to resources, that are subject to software aging (aging 
indicators) are monitored. ANN is used to produce adequate 
forecasting of swap space, physical memory, response time of 
the apache web server [1] and in general can be used to predict 
any non-linear function.  

The following subsections describes different software 
rejuvenation approaches.  

A. Model Based Approach 
In this approach, a model is created with some assumptions 

about the system. The model is analyzed to find the appropriate 
time for rejuvenation. Generally the models adopted are 
Markov-based and Petri-nets based [2,4,9,14] models. Using 
model based approaches, experiments are conducted on the 
telecommunication and transactional systems[14]. 

B. Measurement Based Approach 
In this approach, analysis of the software aging is 

performed based on the measurements of the real systems. In 
[5], Huang et al. used measurement based approach for 
software rejuvenation. In this approach, system variables, 
called aging indicators, are monitored directly to predict the 
failure. Aging indicators can provide the onset of the software 
aging. Several approaches have been proposed to perform 
prediction of time to failure [1,3,6,8,10,11,12] based on aging 
indicators. 

In the present work, ANN is used to produce the time to 
failure of the VMM, which can be used in machine 
independent way. Two types of neural networks are created in 
which, one takes single time slot as an input and another takes 
a window of time slots.  
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III. PROPOSED NEURAL NETWORK BASED APPROACH 
 

This section explains in detail about the input data set 
generation, creation and  training of the neural network.  

A. Input Data Generation 
Six different resources are considered here, namely number 

of processes, number of threads, CPU utilization, number of 
open TCP connections, available physical memory and 
available swap space. While generating the data, following 
points are considered. 

• The time attribute is considered as a discrete attribute. 

• There are two events regarding virtual machine namely 
arrival event and departure event. 

• At a particular time, only one of the two events, arrival or 
departure, can be triggered.  

• There is a one to one mapping between the arrival event and 
the VM. 

• There is a one to one mapping between the departure event 
and the VM. 

• The probability of occurrence for either of the two events is 
same. 

• Resources are allocated to VM, when it arrives. These 
resources exist until the departure event occurs for that VM. 
Between the arrival event and the departure event of a VM, 
the allocated resources to that VM remains constant.  

• Each VM can have 1 to 10 application processes,1 to 25 
threads, 500MB to 2GB physical memory, 1GB to 4 GB 
swap space and 2 to 5 open TCP connections.  

• The aging rate caused by a VM remains constant 
throughout the execution of that VM. The aging rate of two 
VMs need not be same.  

• After the departure event of VM, it will not contribute to 
the aging of the VMM. 

• The aging phenomenon of the VMM follows the Weibull  
failure distribution. 

Following flow chart Fig. 1, explains the steps of 
generating the resource usage statistics.  

B. Training of the Neural Network 
In order to implement the neural network, ENCOG 

machine learning library is used. BasicNetwork class of 
ENCOG library is extended to implement feed forward neural 
network.  

 

 
Fig. 1. Flowchart for Test Data Generation 

 

The data generated, as explained in the previous subsection, 
is used to train the neural network. The change in resource 
utilization is computed for successive events and it is given as 
input to the neural network. The rate at which a VM affects the 
aging phenomenon depends on the change of resources utilized 
due to that VM, but not on the absolute quantity of resources 
available. As it is not dependant on absolute quantity of 
resources, the approach is to some extent machine independent.  

Two kinds of feed forward neural networks are created. 
One neural network takes the 'data set at a particular time' and 
another takes the 'data sets in an interval of time' (Time 
Window) as inputs. Both neural networks generate percentage 
of change in time to failure as output.  

C. Finding the Suitable Neural Network 
The main problem in the machine learning algorithm is to 

find the right structure of the feed forward neural network. The 
following iterative procedure can be used to find the suitable 
neural network.  

1. Create the neural network with some initial structure 

2. Train the neural network with the input data 
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3. Find the error of the neural network  

4. Change the structure of the neural network and repeat the 
steps 1-3, until the error is minimized. 

IV. EXPERIMENTAL SETUP 
 

Two datasets have been generated. One data set follows a 
pattern for arrival and departure, and another without any 
pattern. Data for a total period of 10000 time units is 
generated. Experiments are conducted with and without a time 
window. Two different neural networks are used, one takes 
data set at a particular instant of time as input and another takes 
data set for a time window. The prediction accuracy of both 
kinds of neural networks has been compared in all the 
experiments. All programs are written in Java language. 

V. RESULTS AND ANALYSIS 
 

In the first dataset, the probability of the arrival and 
departure event at a particular time is same. There is no pattern 
for the occurrence of the arrival and departure events. In this 
experiment a time window of size five is used. Prediction times 
using both neural networks is shown in the Fig. 2, in the form 
of a graph and percentage of error in prediction is shown in 
Table 1. Percentage of error in the predicted time to failure 
ranges from 0.02% to 5.37 for time instant case. For the case of 
time window of length 5 the range of percentage of error is 
0.43 to 5.96. Maximum and minimum percentage of errors are 
shown in bold face in the table. The neural network that takes 
data of one time instant as input performs slightly better than 
the neural network that takes one time window as input.  

In the second dataset some regular pattern is introduced for 
arrival and departure events. Time window sizes of six and 
eight are considered in the experimentation. The observed 
results are shown in Fig. 3. Time window based neural 
networks performed better than time instant based neural 
network. Among the two  time window based neural networks, 
the neural network with time window length of eight 
performed better than the one with time window length of six. 
By observing the results of both experiments it can be 
concluded that the neural network that takes data of longer time 
window as input performs better, when there is a regular 
pattern of arrivals and departures. However when there is no 
regular pattern in arrival and departure events then simple time 
instant based neural network predicts slightly better than time 
window based neural network. 

Experiments show that the length of the time window is 
important in the prediction of the time to failure, for the 
system with regular patterns for arrival and departure events. 
If that pattern  of events can be covered in the time window 
and such a time window is given as input to the neural 
network then it can learn for the pattern and predict the time to 
failure more accurately. 

 
Fig. 2. Prediction of Time to Failure Using Neural Networks with Time 

Instant and Time Window of Length-5 

 

Table 1. Percentage of Error for Time Instant and Time Window Methods. 

Time 
Instant 

Time 
Wind-5 

Time 
Instant 

Time 
Wind-5 

Time 
Instant 

Time 
Wind-5 

2.31 0.43 5.25 5.64 4.62 3.5 
0.4 2.26 2.2 5.09 3.86 4.29 

3.08 4.39 1.52 2.69 1.84 10.6 
3.94 4.8 1.61 1.76 1.03 1.09 
2.68 3.9 1.39 4.15 3.69 4.16 
1.99 1.06 0.61 2.81 4.32 5.05 
0.92 0.55 0.62 1.74 5.14 4.52 
1.44 2.9 2.15 3.81 4.31 4.98 
4.79 5.96 2.79 3.26 0.03 1.2 
5.02 5.47 3.52 2.4 0.84 1.81 
5.37 6 3.1 5.24 0.02 1.33 
4.66 2.01 1.25 2.87 0.67 1.06 
2.27 1.17 1 2.45 2.61 5.19 
2.5 3.46 1.73 2.42   

4.72 5.65 2.37 3.93   
 

Fig. 3. Prediction of time to failure using neural networks with time instant, 
time window of length-6 and time window of length-8 
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VI. CONCLUSIONS AND FUTURE WORK 
By analyzing aging indicators, time to failure of the 

software system can be predicted. In this work, time to failure 
of the VMM is be predicted by considering different againg 
indicators like number of processes, number of threads, 
physical memory, swap space, number of TCP connections and 
CPU utilization using Artificial Neural Networks.   

The number of inputs, to the Artificial Neural Network, can 
also affect the prediction accuracy. Artificial Neural Network, 
that takes time window as input, predicts the more accurately if 
that data contains some pattern in the arrival and departure 
events of VMs. 

In future work, pattern recognition techniques can be 
applied to the dataset to identify more complex regularity in 
the dataset. Optimal window size for the ANN can be decided,  
so that it can predict time to failure of the software more 
accurately. 
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