2014 International Conference on Parallel, Distributed and Grid Computing

Software Rejuvenation in Cloud Systems
Using Neural Networks

Chapram Sudhakar
Department of CSE,

National Institute of Technology, Warangal, INDIA.
chapram@nitw.ac.in

Abstract—Virtual Machine Monitor (VMM) is very
important for the cloud and data center environment. VMM runs
continuously for a long time and hence encounters the problem of
software aging. VMM experiences failure because of software
aging. In order to prevent the VMM failure caused by software
aging, a proactive fault management approach called software
rejuvenation is used. There are various software rejuvenation
approaches existing in literature that can be broadly categorized
into two categories namely model based approaches and
measurement based approaches. Time to failure is predicted in
measurement based approaches by monitoring the resource
usage statistics. There can be any non-linear relationship between
resource usage statistics and the time to failure. Such a non-
linear function can be approximated using Artificial Neural
Networks (ANN). The change in the value of attributes of
resources is given as input to ANN and new value of time to
failure is generated as output. Experiments shows that if there is
some pattern in the arrival and departure of the VMs, then the
prediction is more accurate.

Keywords—Software Aging, Virtual Machine Monitor,
Artificial Neural Networks, Cloud Computing
I. INTRODUCTION

In software engineering, software aging refers to

progressive performance degradation or a sudden hang/crash of
a software system due to exhaustion of operating system
resources, fragmentation, and/or accumulation of errors [16]. A
Virtual Machine (VM) is a software implementation of a
computing environment in which an operating system (OS) or
a program can be installed and run. Typically a virtual machine
emulates a physical computing environment. VMM processes
the requests generated by VM for CPU, memory, network, hard
disk and other resources. VMM runs continuously for a long
time and encounters the problem of software aging.

Software rejuvenation is a cost effective technique for
dealing with software faults. It consists of a proactive fault
management technique. Its aim is to clean up the system
internal state in order to prevent the occurrence of more severe
faults, such as crashes or software malfunctioning. Cleaning
up the internal state includes removal of accumulated error
conditions, free the resources of the operating system, garbage
collection, flushing operating system kernel tables,
reinitializing the internal data structures etc. [14].

978-1-4799-7683-6/14/$31.0002014 IEEE

230

Ishan Shah, T. Ramesh
Department of CSE,
National Institute of Technology, Warangal, INDIA,
ishan.shah@gmail.com, rmesht@nitw.ac.in

Rest of the paper is organized as follows. In Section II,
related work is presented. In Section III, the proposed neural
network based approach is described. Experimental setup and
results are discussed in Section IV and Section V respectively.
Conclusions and future work are given in Section VI.

II. RELATED WORK

The software aging problem can be handled either by
creating analytical models or analyzing the software based on
measurements. In measurement based approach, the attributes
related to resources, that are subject to software aging (aging
indicators) are monitored. ANN is used to produce adequate
forecasting of swap space, physical memory, response time of
the apache web server [1] and in general can be used to predict
any non-linear function.

The following subsections describes different software
rejuvenation approaches.

A. Model Based Approach

In this approach, a model is created with some assumptions
about the system. The model is analyzed to find the appropriate
time for rejuvenation. Generally the models adopted are
Markov-based and Petri-nets based [2,4,9,14] models. Using
model based approaches, experiments are conducted on the
telecommunication and transactional systems[14].

B. Measurement Based Approach

In this approach, analysis of the software aging is
performed based on the measurements of the real systems. In
[5], Huang et al. used measurement based approach for
software rejuvenation. In this approach, system variables,
called aging indicators, are monitored directly to predict the
failure. Aging indicators can provide the onset of the software
aging. Several approaches have been proposed to perform
prediction of time to failure [1,3,6,8,10,11,12] based on aging
indicators.

In the present work, ANN is used to produce the time to
failure of the VMM, which can be used in machine
independent way. Two types of neural networks are created in
which, one takes single time slot as an input and another takes
a window of time slots.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 30,2024 at 11:04:02 UTC from IEEE Xplore. Restrictions apply.

2014 International Conference on Parallel, Distributed and Grid Computing

III. PROPOSED NEURAL NETWORK BASED APPROACH

This section explains in detail about the input data set
generation, creation and training of the neural network.

A. Input Data Generation

Six different resources are considered here, namely number
of processes, number of threads, CPU utilization, number of
open TCP connections, available physical memory and
available swap space. While generating the data, following
points are considered.

e The time attribute is considered as a discrete attribute.

e There are two events regarding virtual machine namely
arrival event and departure event.

e At a particular time, only one of the two events, arrival or
departure, can be triggered.

e There is a one to one mapping between the arrival event and
the VM.

e There is a one to one mapping between the departure event
and the VM.

e The probability of occurrence for either of the two events is
same.

e Resources are allocated to VM, when it arrives. These
resources exist until the departure event occurs for that VM.
Between the arrival event and the departure event of a VM,
the allocated resources to that VM remains constant.

e Each VM can have 1 to 10 application processes,l to 25
threads, 5S00MB to 2GB physical memory, 1GB to 4 GB
swap space and 2 to 5 open TCP connections.

e The aging rate caused by a VM remains constant
throughout the execution of that VM. The aging rate of two
VMs need not be same.

o After the departure event of VM, it will not contribute to
the aging of the VMM.

e The aging phenomenon of the VMM follows the Weibull
failure distribution.

Following flow chart Fig. 1, explains the steps of
generating the resource usage statistics.

B. Training of the Neural Network

In order to implement the neural network, ENCOG
machine learning library is used. BasicNetwork class of
ENCOG library is extended to implement feed forward neural
network.

231
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 30,2024 at 11:04:02 UTC from IEEE Xplore. Restrictions apply.

Initialize the
System
Resources

imM

Failure
>1

Generate
Probability of
arrival event

End

o0
Running
M>0

yes
Create
Virtual Machine
Free The Assigned
Resources
Assign
Resources To VM
Remove VM —
Update The
Time To Failure
Oof VMM

Fig. 1. Flowchart for Test Data Generation

The data generated, as explained in the previous subsection,
is used to train the neural network. The change in resource
utilization is computed for successive events and it is given as
input to the neural network. The rate at which a VM affects the
aging phenomenon depends on the change of resources utilized
due to that VM, but not on the absolute quantity of resources
available. As it is not dependant on absolute quantity of
resources, the approach is to some extent machine independent.

Two kinds of feed forward neural networks are created.
One neural network takes the 'data set at a particular time' and
another takes the 'data sets in an interval of time' (Time
Window) as inputs. Both neural networks generate percentage
of change in time to failure as output.

C. Finding the Suitable Neural Network

The main problem in the machine learning algorithm is to
find the right structure of the feed forward neural network. The
following iterative procedure can be used to find the suitable
neural network.

1. Create the neural network with some initial structure

2. Train the neural network with the input data

2014 International Conference on Parallel, Distributed and Grid Computing

3. Find the error of the neural network

4. Change the structure of the neural network and repeat the
steps 1-3, until the error is minimized.

IV. EXPERIMENTAL SETUP

Two datasets have been generated. One data set follows a
pattern for arrival and departure, and another without any
pattern. Data for a total period of 10000 time units is
generated. Experiments are conducted with and without a time
window. Two different neural networks are used, one takes
data set at a particular instant of time as input and another takes
data set for a time window. The prediction accuracy of both
kinds of neural networks has been compared in all the
experiments. All programs are written in Java language.

V. RESULTS AND ANALYSIS

In the first dataset, the probability of the arrival and
departure event at a particular time is same. There is no pattern
for the occurrence of the arrival and departure events. In this
experiment a time window of size five is used. Prediction times
using both neural networks is shown in the Fig. 2, in the form
of a graph and percentage of error in prediction is shown in
Table 1. Percentage of error in the predicted time to failure
ranges from 0.02% to 5.37 for time instant case. For the case of
time window of length 5 the range of percentage of error is
0.43 to 5.96. Maximum and minimum percentage of errors are
shown in bold face in the table. The neural network that takes
data of one time instant as input performs slightly better than
the neural network that takes one time window as input.

In the second dataset some regular pattern is introduced for
arrival and departure events. Time window sizes of six and
eight are considered in the experimentation. The observed
results are shown in Fig. 3. Time window based neural
networks performed better than time instant based neural
network. Among the two time window based neural networks,
the neural network with time window length of eight
performed better than the one with time window length of six.
By observing the results of both experiments it can be
concluded that the neural network that takes data of longer time
window as input performs better, when there is a regular
pattern of arrivals and departures. However when there is no
regular pattern in arrival and departure events then simple time
instant based neural network predicts slightly better than time
window based neural network.

Experiments show that the length of the time window is
important in the prediction of the time to failure, for the
system with regular patterns for arrival and departure events.
If that pattern of events can be covered in the time window
and such a time window is given as input to the neural
network then it can learn for the pattern and predict the time to
failure more accurately.

100000

wmetofa\\ure
i

90000 4
80000 - \
70000
!

60000 %

n == Actual
50000 -

}g ——Normal

40000

30000 +

20000

Time Window-5

10000

o]

135 7 91113151719212325272931333537394143 Timesslot

Fig. 2. Prediction of Time to Failure Using Neural Networks with Time

Instant and Time Window of Length-5

Table 1. Percentage of Error for Time Instant and Time Window Methods.

232

Time Time Time Time Time Time
Instant | Wind-5 | Instant | Wind-5 | Instant | Wind-5
2.31 0.43 5.25 5.64 4.62 3.5
0.4 2.26 2.2 5.09 3.86 4.29
3.08 4.39 1.52 2.69 1.84 10.6
3.94 4.8 1.61 1.76 1.03 1.09
2.68 3.9 1.39 4.15 3.69 4.16
1.99 1.06 0.61 2.81 4.32 5.05
0.92 0.55 0.62 1.74 5.14 4.52
1.44 2.9 2.15 3.81 4.31 4.98
4.79 5.96 2.79 3.26 0.03 1.2
5.02 5.47 3.52 2.4 0.84 1.81
5.37 6 3.1 5.24 0.02 1.33
4.66 2.01 1.25 2.87 0.67 1.06
2.27 1.17 1 2.45 2.61 5.19

2.5 3.46 1.73 2.42
4.72 5.65 2.37 3.93
100000 Tiffe t6 Tailire
90000
80000 -
70000 -
60000 T
50000 Normal
40000 T Timews
=f=Time w-8
30000
20000 4
10000
° 0 5 10 15 20 2 30 Timeslot

Fig. 3. Prediction of time to failure using neural networks with time instant,

time window of length-6 and time window of length-8

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 30,2024 at 11:04:02 UTC from IEEE Xplore. Restrictions apply.

2014 International Conference on Parallel, Distributed and Grid Computing

VI. CONCLUSIONS AND FUTURE WORK

By analyzing aging indicators, time to failure of the
software system can be predicted. In this work, time to failure
of the VMM is be predicted by considering different againg
indicators like number of processes, number of threads,
physical memory, swap space, number of TCP connections and
CPU utilization using Artificial Neural Networks.

The number of inputs, to the Artificial Neural Network, can
also affect the prediction accuracy. Artificial Neural Network,
that takes time window as input, predicts the more accurately if
that data contains some pattern in the arrival and departure
events of VMs.

In future work, pattern recognition techniques can be
applied to the dataset to identify more complex regularity in
the dataset. Optimal window size for the ANN can be decided,
so that it can predict time to failure of the software more
accurately.

REFERENCES

Shishiny, sally, Omar, "Mining Software Aging: A Neural Network

Approach", IEEE, 2008

Garg, S., Kintala, C., Huang, Y., And Trivedi, K., "Minimizing

completion time of a program by check pointing and rejuvenation",

Performance Evaluation Review 24, 1, 252-261,1999

Grottke, M., Li, L., Vaidyanathan, K., And Trivedi, K., "Analysis Of

Software Aging In A Web Server". Reliability, IEEE Transactions on

55, 3.2006.

Bernstein, L., "Innovative technologies for preventing network outages",

AT & TTECHJ. 72, 4, 4-10.,1993

Huang, Y., Kintala, C., Kolettis, N., And Fulton, "Software

rejuvenation: analysis, module and applications", In Fault-Tolerant

Computing, 1995. FTCS-25. Digest of Papers, Twenty-Fifth Int. 1995.

Cotroneo, D., Natella, R., Pictrantuono, R., And Russo, S., "Software

Aging Analysis Of The Linux Operating System", In Software

Reliability Engineering (ISSRE), 2010 IEEE

Machida, F., Kim, D. S., And Trivedi, K. "Modeling And Analysis Of

Software Rejuvenation In A Server Virtualized System", In Software

Aging and Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop.

Alonso, J., Belanche, L., And Avresky, D., "Predicting Software

Anomalies Using Machine Learning Techniques", Proceedings - 2011

IEEE International Symposium on Network Computing and

Applications, NCA 2011, 163—170.

Bao, Y., Sun, X., And Trivedi, K., "A Workload-Based Analysis Of

Software Aging, And Rejuvenation”, Reliability, IEEE Transactions on

54,3, 2005

[10.] Magalhaes, J. And Silva, L., "Prediction Of Performance Anomalies In
Web-Applications Based-On Software Aging Scenarios", In Software
Aging and Rejuvenation (WoSAR), 2010 IEEE Second Int’l. Workshop.

[11.] Matias Jr., R., F. P., "An Experimental Study On Software Aging And
Rejuvenation In Web Servers", Proceedings - International Computer
Software and Applications Conference 1, 189-196. 2006

[12.] Araujo, J., Matos, R., Maciel, P., Vieira, F., Matias, R., And Trivedi, K.,
"Software Rejuvenation In Eucalyptus Cloud Computing Infrastructure:
A Method Based On Time Series Forecasting And Multiple Thresholds",
In Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third
International Workshop on. 38 —43. 38

[13.] Vaidyanathan, K. And Trivedi, K., "A Comprehensive Model For
Software Rejuvenation", Dependable And Secure Computing, IEEE
Transactions On 2, 2, 2005

[14.] D. Controneo, R. Natella, R. Pietrantuono, and S. Russo, "A Survey on

Software Aging and Rejuvenation Studies", IACM Journal on Emerging

Technologies in Computing Systems (JETC), Vol 10, Issue 1, 8:1-8:34,

2014.

(9]

233

[15.] K. Vaydianathan and K.S. Trivedi., "Extended Classification of
Software Faults Based on Aging", Dept. of ECE, Duke University,
Durham, USA, 2001.

[16.] "Software Aging", http://en.wikipedia.org/wiki/Software aging, 2011

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 30,2024 at 11:04:02 UTC from IEEE Xplore. Restrictions apply.

