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Effect of Slip Condition on Micropolar Fluid Flow in a Stenosed Channel
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Abstract: Steady incompressible micropolar fluid flow through uniform channel with stenosis is investigated.
Assuming the stenosis to be mild and using the slip boundary condition, the equations governing the flow of
the proposed model are solved and closed form expressions for the flow characteristics (resistance to flow and
wall shear stress) are derived. Both the resistance to flow and the wall shear stress increase with the height of
stenosis and slip parameter but decrease with microplolar parameter. The effects of other parameters on the flow

characteristics also have been studied.
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INTRODUCTION
Theoretical and experimental studies of the
circulatory disorders have been the subject of scientific
research, since the investigation by Mann et al. (1938). It
is realized that the cardiovascular disease is closely
associated with the flow conditions m the blood vessels.
Stenosis 1s the abnormal and unnatural growth in the
arterial wall that develops at various locations of the
cardiovascular system under certain conditions. Tt may
result in serious consequences (cerebral strokes,
myocardial infarction leading to heart failure, etc.) by
reducing or occluding the blood supply. Also, it has been
suggested that the deposits of the cholesterol and
proliferation of connective tissue form plaques that
enlarge and restrict the blood flow. One may expect that
if such an event cccurs, the flow characteristics mn the
vicinity of the resulting protuberances may be
significantly altered.

In cardiac-related problems, the affected arteries get
hardened, as a result of accumulation of fatty substances
inside the lumen or because of formation of plaques as a
result of hemorthage. As the disease progresses, the
arteries/arteriole get constricted. Consequently, the flow
behavior in the stenosed artery is quite different from
that in normal artery. Having knowledge of flow
parameters in the stenosed artery, such as the velocity
pattern, the flow rate, resistance to flow and the stresses
will help bio-medical engineers in developing bio-medical
instruments.

Many mvestigators (Young, 1968; Forrester and
Young, 1970, Macdonald, 1979; Chaturani and
Ponnalagarsamy, 1983; Ogulu and Abbey, 2005) have
studied the characteristics of blood flow through a
stenosed artery. However in all these studies, blood has

been characterized as a Newtonian fluid and little
attention has been given to its suspension nature.
Some experimental studies mdicate that blood exhibits
non-Newtonian behavior at low shear rates in tubes of
small diameters (Huckaba and Hahn, 1968). Hence, several
researchers have studied blood flow in stenosed region
considering blood as a non-Newtonian fluid. For instance
Shukla et al. (1980), Jung et al. (2004), Misra and Shit
(2006) and Shah (2012) studied the effects of stenosis on
the blood flow through an artery by treating blood as a
non-Newtorian fluid.

Micropolar fluid 1s a non-Newtoman fluid that has
recelved  considerable
Micropolar fluids belong to a class of fluids with

attention from researchers.
nonsyminetrical stress tensor and are referred to as polar
fluids. The main advantage of using this fluid model
compared to other non-Newtonian fluids is that it takes
care of the rotation of fluid particles by means of
independent kinematic vector called the microrotation
vector. Ariman (1971) examined the flow of micropolar
fluid in a rigid circular tube and observed that it serves, as
a better model in comparison to the Newtoman one for the
study of blood flow. Kang and Eringen (1976),
Srinivasacharya ef al. (2003), Mekheimer and El-Kot
(2007}, Alemayehu and Radhakrishnamacharya (2012)
studied micropolar fluids under different conditions.

The existence of slip phenomenon at the boundaries
and interfaces has been observed in the flows of rarefied
gasses, hypersonic flows of chemically reacting binary
mixtures and flows of polymeric liquds (Bhatt and
Sacheti, 1979). Several investigators considered the
effect of slip (Mehta and Tiwari, 1988; Kwang et al., 2000,
El Hakeem et al., 2007, Srinivas et af., 2009; Jadon and
Yadav, 2011).
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Motivated by these studies, the present research
attempts to understand the influence of slip boundary
condition on steady mmcompressible micropolar fluid flow
i a 2 dimensional umform chamnel with stenosis.
Assuming that the stenosis is mild and using the slip
boundary condition, c¢losed-form solution has been
obtained and expressions for resistance to flow and shear
stress at the wall have been derived The effects of
various relevant parameters on these flow variables have
been studied.

MATHEMATICAL FORMULATION

Researchers consider steady, incompressible
micropolar fluid flow through a 2 dimensional uniform
channel with local stenosis. Cartesian coordinate system
is chosen so that the x-axis coincides with the center line
of the channel and the y-axis normal to it. The stenosis is
supposed to be mild and develops in a symmetric manner.

The boundary of the channel 1s taken as (Shukla et al,

1980):
d, 8 1+COSE[Xd1 h]
2 L, 2
n(x)=qd, =x<d +L, (1)
d, ; otherwise
Where:
d, = The mean half width of the non-stenotic region of
the charmel

I. = The length of the channel
1., = The length of stenosis
) The maximum height of stenosis (Fig. 1)

The equations governing the flow of incompressible
micropolar fluid (neglecting body forces and body
couples) are given by Muthu ef al. (2003):
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Fig. 1: Geometry of the channel with local stenosis

Where:

uandv = The velocity components along the x and y
directions

P = The pressure

g = The microrotation

p = The density

v = The coefficient viscosity of classical fluid
dynamics

I = The micro inertia constant

Y = The viscosity coefficients for the micropolar
fluid

t = The time

Assuming the stenosis to be mild (Young, 1968), the
Eq. 2-5 get reduced as:

2
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The slip boundary conditions for the velocity and
microrotation are respectively given by Bhatt and
Sacheti (1979):

yodDaon o dVDadg L)
(x'l ay 0"1

Where:

Da = The permeability parameter (or Darcy number)

o, = The shp parameter

Solving Eq. 6-7 under the boundary conditions
(Eq. B), the velocity is given as:
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oy ﬂdnﬁ dnﬁ M = The micropglar paramete.r .
- 5t + 1= K, = The cross viscosity coefficient
( ) 1ép 2 2 o, o,
ulyj=——-—= .
HOx k -5+ cosh(my) From Hq. 12, researchers obtain:
2n+k ms,
9) d_ QL (13)
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Integrating Eq. 13 with respect to x, researchers get
ANALYSIS pressure difference Ap along the total length of a
chanme] as:
The flux Q of the fluid is given by: Ap= gj% (14)
o Rl
iJr n*d,Da N d,v/Da N
.ﬂ‘, 2 dp 3 o, o, M The resistance to flow, denoted by 4, is defined by:
Q=Z|ludy=——— .
n poéx k U sinh (mn) Ap
2p+k | ms; m’s, ;\':6 (15)
(10)
Now introducing the following dimensionless Using Eq. 14 in 15, researchers get:
quantities:
5 d L
5':—,X':§, d =1L =-%, 7L_11d):; (16)
d, L L L = 5-[1?
o 1
=Moo Py Q (an
dy [“‘UZLJ Ud, The pressure drop in the case of no stenosis (H =1},
dq denoted by Ap, is obtained from Eq. 14 as:
1
N II.l Eq.. 1 S and 10, researchers get (after Ap, - g.‘-g a7
opping  primes); 29R,
Where:
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(NJ [SIH 4 Sl()j . sinh (MN )
Ms, MN 1 MN
Where: =
Tk m s,, = cosh(MN)+ Y22 MN sinh(MN)
MZZdU 77“‘1:7:N: 271 C('l
¥ R + 1y —
JDa s,, = sinh (MN) + Y22 MN cosh(MN)
s, = cosh(MNH j+ ——MN sinh( MNH) o
1
s, = sinh(MNH) + vDa MN cosh (MNH) The resistance to flow in the absence of stenosis, 4,
’ O 1s defined by:
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A =P (18)
Q
Using Eq. 17 in 18, researchers obtain:
1
A, =L jﬁ (19)
2 0 RZ

The normalized resistance to the flow, 2 is given by:
= A
h= 20)
A"ﬂ

The shear stress acting on the wall of the channel is
given by:

PR 1)
A
Introducing the dimensionless quantity:
7 = (22)
uu/d,

In Eq. 21 and using Eq. 9, researchers get (after
dropping primes):
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The shear stress at the wall in the absence of
stenosis (H = 1), denoted by (t,,), can be obtained from

Eq. 23 as:
Vba 1} [ jl
(24)

N*sinh (MNH)
5
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The normalized shear stress at the wall, T, 1s

given by:
(25)

RESULTS AND DISCUSSION

The resistance to the flow and the wall shear stress
are the 2 important characteristics in the study of fluid
flow through a stenosed artery. The expressions for
resistance to the flow and wall shear stress, given by
Eq. 20 and 25, respectively have been numerically
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evaluated using mathematica software for different values
of relevant parameters and presented graphically. The
important parameters involved in the expressions are:

The height of stenosis, &

The slip parameter, o,

The Darcy number, Da

The cross viscosity u, which denotes the ratio of
viscosity coefficient for micropolar fluid k to classical
viscosity coefficient of the fluid p

The microploar parameter M which can be thought of
as a fluid property depending on the size of the
microstricture; this is due to the factor (v/p)"” which
has the dimension of length

Figure 2-9 show the effects of various parameters on
the resistance to flow in a umform channel with maild
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Fig. 10: Effect of o, onT (d, = 0.4, I, = 0.2, p, = 4,
Da=0.002,x=05M=2)
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Fig. 11: Effect of p, onT (d, = 0.4, I, = 0.2, ¢, = 0.03,
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Fig. 12: Effect of M on 7. (d, = 0.4, I, =0.2, &, = 0.02,
Da=0.002, x=0.5,p,=4)

stenosis. It can be observed that the resistance to flow
increases with the height of stenosis (Fig. 2-9). This result
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agrees with the previous results obtained by Young
(1968), Shukla et al (1980) and Chaturani and
Pornalagarsamy (1983). Further, it can be noticed that the
resistance to flow increases with slip parameter o,
(Fig. 2-3) but decreases with micropolar parameter M
(Fig. 4 and 5), cross viscosity coefficient p (Fig. 6 and 7)
and Darcy number Da (Fig. & and 9). However, the
decrease with cross viscosity coefficient p, is not very
sigmuficant (Fig. 6 and 7).

Figure 10-15 show the effects of various parameters
on the wall shear stress. The wall shear stress mcreases
with the height of stenosis (Fig. 10-15).

This result agrees with previous results obtained by
Young (1968), Shukla et al. (1980) and Chaturani and
Ponnalagarsamy (1983). Moreover, the wall shear stress
increases with slip parameter (Fig. 10) but decreases with
viscosity coefficient p, (Fig. 11), micropelar parameter M
(Fig. 12 and 13) and Darcy number Da (Fig. 14 and 15).
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CONCLUSION

A mathematical model for the steady flow of an
mcompressible micropolar fluid m a 2 dimensional charmnel
with stenosis has been studied by assuming the stenosis
to mild and using slip boundary condition. Tt is observed
that both the resistance to flow and the wall shear stress
increase with the height of stenosis & and the slip
parameter ¢, but decrease with the micropolar parameter
M, the cross viscosity W, and Darcy number Da.
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