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KEYWORDS Abstract A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters and
Effective viscosity; slip at the wall is studied. It is assumed that the core region consists of Herschel-Bulkley fluid and
Herschel-Bulkley fluid; Newtonian fluid in the peripheral region. Following the analysis of Chaturani and Upadhya, the
Hematocrit; equations of motion have been linearized and analytical solution for velocity, flow flux, effective
Plug flow; viscosity, core hematocrit and mean hematocrit has been obtained. The expressions for all these
Slip flow relevant quantities have been numerically computed by using Mathematica software and the

effects of various relevant parameters on these flow variables have been studied. It is found that
effective viscosity, core hematocrit and mean hematocrit of Newtonian fluid are less than those
for Bingham fluid, power-law fluid and Herschel-Bulkley fluid. Effective viscosity increases with
the yield stress, power-law index, slip and tube hematocrit but decreases with Darcy number. It
is observed that the effective viscosity and mean hematocrit increase with tube radius but the core
hematocrit decreases with tube radius. Further, it is noticed that the flow exhibits the anomalous
Fahraeus—Lindqvist effect.

© 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction anomalous effects. One such effect is Fahraeus—Lindqvist
effect, where the apparent viscosity of blood decreases with

Micro-circulation deals with the circulation of blood through tube diameter. This effect has been confirmed by several inves-

small blood vessels such as arterioles, capillaries and venules. tigators (Fahraeus and Lind.qvisF [1] and Dintenfass. (2D
It consists of the complex network of blood vessels whose The study of blood flow in microvessels was carried out by
diameter is between 10 and 250 um. Further, the flow of blood various authors under different assumptions (Seshadri and

through smaller diameter blood vessels is accompanied by  Jaffrin [3] and Whitmore [4]). Most of these models deal with
one phase model. However, it is realized that blood being a

— suspension of corpuscles, behaves like a non-Newtonian fluid
CofreSpond‘“g amhf’“ ) at lower shear rates. Haynes [5] and Bugliarello and Sevilla
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du.sa ( ) Popel [7] and Srivastava [8] have reported that for blood flow-
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and a core region of suspension of all erythrocytes. Haldar and
Andersson [9] have studied a two-layered blood flow model in
which the core region is occupied by a Casson type fluid and
peripheral region by Newtonian fluid. Chaturani and
Upadhya [10,11] analyzed two-fluid model by assuming
Newtonian fluid in peripheral region and polar fluids in core
region. Chamkha et al. [12] considered a micropolar fluid flow
in a vertical parallel plate channel with asymmetric heating.
Philip and Chandra [13] have studied the flow of blood
through uniform and stenosed tubes and analyzed the influ-
ence of slip velocity on the flow variables such as velocity, wall
shear stress and flow resistance. Mohanty et al. [14] have con-
sidered the unsteady heat and mass transfer characteristics of a
viscous incompressible electrically conducting micropolar
fluid.

Though Newtonian and several non-Newtonian fluid mod-
els have been used to study the motion of blood, it is realized
(Blair and Spanner [15]) that Herschel-Bulkley model
describes the behavior of blood very closely. Herschel-
Bulkley fluids are a class of non-Newtonian fluids that require
a finite critical stress, known as yield stress, in order to deform.
Therefore, these materials behave like rigid solids when the
local shear is below the yield stress. Once the yield stress is
exceeded, the material flows with a non-linear stress—strain
relationship either as a shear-thickening fluid, or as a shear-
thinning one. Few examples of fluids behaving in this manner
include paints, cement, food products, plastics, slurries, and
pharmaceutical products.

Tang and Kalyon [16] studied Herschel-Bulkley fluid flow
under wall slip using a combination of capillary and squeeze
flow viscometers. Huilgol and You [17] applied the augmented
Lagrangian method to steady flow problems of Bingham,
Casson and Herschel-Bulkley fluids in pipes of circular and
square cross-sections. Maruthi Prasad and
Radhakrishnamacharya [18] discussed the steady flow of
Herschel-Bulkely fluid in an inclined tube of non-uniform
cross-section with multiple stenoses. Taliadorou et al. [19]
derived approximate semi-analytical solutions of the axisym-
metric and plane Poiseuille flows of weakly compressible
Herschel-Bulkley fluid with no slip at the wall. Vajravelu
et al. [20] studied a mathematical model for a Herschel-
Bulkley fluid flow in an elastic tube. Gorla et al. [21] investi-
gated the combined convection from a slotted vertical plate
to Micropolar fluids with slip. Rehman et al. [22] have pre-
sented the peristaltic flow and heat transfer through a symmet-
ric channel in the presence of heat sink or source parameter.
Damianou et al. [23] solved numerically the cessation of
axisymmetric Poiseuille flow of a Herschel-Bulkley fluid under
the assumption that slip occurs along the wall.

Recently, Santhosh and Radhakrishnamacharya [24] stud-
ied a two-fluid model for the flow of Jeffrey fluid in the pres-
ence of magnetic field through porous medium in tubes of
small diameters. The objective of this paper was to study the
slip effect on Herchel-Bulkley fluid flow through narrow tubes.
Following the analysis of Chaturani and Upadhya [10] and
Vajravelu et al. [20], the linearized equations of motion have
been solved and analytical solution has been obtained. The
analytical expressions for velocity, flow rate, effective viscosity,
core hematocrit and mean hematocrit have been obtained. The
results are depicted graphically and the effects of various rele-
vant parameters on the flow variables have been studied.

2. Formulation of the problem

Consider the steady flow of Herschel-Bulkley fluid through a
narrow tube of uniform cross-section with constant radius
‘@’. It is assumed that the flow in the tube is represented by a
two-layered model in which peripheral region of thickness &
(a — b = ¢) is occupied by Newtonian fluid and the other is a
central core region of radius ‘b°, which is occupied by
Herschel-Bulkley fluid (Fig. 1). Let p, and p. be the viscosities
of the fluid in peripheral region and core region, respectively.
The axisymmetric cylindrical coordinate (r, z) is chosen, where
rand z denote the radial and axial coordinates and the z axis is
taken along the axis of the tube.

The equations governing the flow of Herschel-Bulkley fluid
for the present problem (Maruthi Prasad and
Radhakrishnamacharya [18] and Vajravelu et al. [20]) are
given by
%%(r‘[r:):_% (1)

where 7,., the shear stress of the Herschel-Bulkley fluid, is
given by

b n
Tz = ,LL(— 6_1:) + T, Trz 2 To (2)
0

a_l: = 07 Trz < To (3)

Here u is the axial velocity, p is the pressure, 7, is the yield
stress, p is the fluid viscosity and n(> 1) is the flow behavior
index.

The region between r =0 and r =ry is called plug core
region and in this region, 7. < 70. In the region between
r=ryand r = b, we have 7,, > 19. Let u = v,(r) be the velocity
in the peripheral region and v,(r) in the core region. Then the
equations governing the flow of fluid are (Haldar and
Andersson [9] and Vajravelu et al. [20]) as follows:

Peripheral region (Newtonian fluid):

—=——forb<r<a (4)

Core region (Herschel-Bulkley fluid):

Peripheral region p’n »V,
(O T TN
ll Core region BV I ,I \‘
I 1
: " Plug region l’:} T{\ l z
;! 1 >
ll B ] -1U |
(I
! B
\ \
</l N BV

Figure 1  Geometry of the problem.
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% =— (ﬁ) (r— 1‘0)7[’ for ro <r < b. (5)

The boundary conditions for the problem are given as follows:

O, o
=———viatr=a

CZE \/m

6a,b,c
Vw=v,T =T atr==» (62, b,c)
1, is finite at r =0

where P = —<£ is the constant pressure gradient. Condition

(6a) is the Saffman s slip boundary condition (Saffman [25]),
(6b) denotes the continuity of velocities and stresses at the
interface and (6¢) is the regularity condition. Further, Da is
the permeability parameter (or Darcy number) and « is the slip
parameter.

Solving equations (4) and (5) under the conditions (6), we
get

v|(r)_4—1;((1+2\/?)a2_r2) forb<r<a (7)
”m_<£)%/ﬁ>ahﬁﬁﬁ—w—m”ﬂ

P v De
+3 ((1 +2 a“‘)az—zf) for ry < r < b (8)
I

74

The expression for the fluid velocity in the plug flow region, v,,
is obtained by substituting r = rq in Eq. (8) as

vp(r) = (z—i()l(ni l)(b — )

—l—i(( Da)az—b2> for0<r<r 9)
4p, o

1 y4

Substituting for v, v, and v, from (7)—(9) into (10) and (11), we
get

Pra* \/]35
0,= S, (2(17012)( a >71+d4) (12)
and
_P7IEI4 k—1 4 I +3 k+1
21, 2 2
X (1 —2+k(1—r,,)—m(l—r,,) )
+2d2( ‘/fa—dz)) (13)
where
1 Pa ;M b _ T
k:;7 ﬁzzﬂy7 N*‘u_ca d*57 Tpfz‘ (]4)

Here d is the non-dimensional core radius.
Thus, the flow flux through the tube is given by

Q:Q/J+Q(' (]5)
Using (12) and (13) in (15), we get

Q:Pna4(2( ﬁ)_]_(ﬁ
81, o
1 1 43 k+1
B (1+k> (1 -7)
21, 2
X(]—sz(l—fp)—m(]—fp)z)) (16)

Comparing (16) with flow flux for Poiseuille’s flow, we get the
effective viscosity as

Nef}‘zz(l +2@> ) 7d4+[))k7 (1+A>'ud\+3( )k+l<1 _

The flow flux in the peripheral region and core region, denoted
by O, and Q,, is given by

(1-5) =2 (1-15))

2+k

(17)

In the case when there is no yield stress, that is 7y = 0, the
Herschel-Bulkley model reduces to the power-law model.
Thus, substituting 7o = 0 i.e., 7, = 0, we obtain the value of
effective viscosity for the power-law model as

i
d4+ﬁk 1(3+k) P as

ﬂ"":z(uz@) "

Further, if we take no-slip condition, i.e., v; = Oatr = a instead
of equation (6a), we get the effective viscosity as

0,= 27z/ vi(r)r dr (10)
b
and
b
Q. = v, (r )—|—2n/ v (r)r dr (11)
U
Hefr = .

1_d4+5k l(l+k> /(”H}( -

)Hl(l 2231\(1_11)) ?+k(1_fl’)2>

(19)
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Figure 2 Variation of u,, with tube radius ‘@’ for different fluids
(Newtonian fluid [# = 1.0, 7, = 0], Bingham fluid [# = 1, 7,70
(=0.2)], power-law fluid [n#1(= 1.1), 1, = 0], Herschel-Bulkley
fluid [n#1(=1.1), 1,#1(=02)], H,=40%, o« =0.2 and
Da = 0.0002).
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T T
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Figure 3 Effect of yield stress (z,) on p,, (Ho = 40%, « = 0.2,
Da = 0.0001 and n = 1.05).
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1.4 . . . . . . -
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Figure 4  Effect of power-law index (n) on p,, (Hy = 40%,

o = 0.2, Da = 0.0001 and 7, = 0.2).

1.0 . : . : ' . .
40 80 120 160 200
Tube Radius
Figure 5 Effect of slip () on pu, (Hy=40%, Da = 0.0001,

n = 1.05and 7, =0.2).
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. . ; . ; .
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Figure 6 Effect of tube hematocrit (Hy) on p, (¢ =02,
Da = 0.0001, n = 1.05 and 7, = 0.2).

.- Da = 0.0001
164 -7 - - - Da=0.0002
1 Da = 0.0003
1.4 T T T T T T T
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Figure 7 Effect of Darcy number (Da) on pu,, (Hy = 40%,
o=02,n=105and 7, =0.2).
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Figure 8  Variation of p,, with tube radius ‘@’ for different fluids
for no-slip (Newtonian fluid [# = 1.0, 7, = 0], Bingham fluid
[n =1, 1,#0(=0.2)], power-law fluid [n#1(=1.1), 7, =0],
Herschel-Bulkley fluid [n#1(= 1.1), 7,#1(= 0.2)] and H, = 40%).

1.12
| Newtonian Fluid
1.10 _}' -=- Bingham Fluid
‘-\'\ ----- Power-law Fluid
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1084 \ ¢
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40 80 120 160 200

Tube Radius

Figure 9  Effect of different fluids on H, with tube radius ‘@’
(Newtonian fluid [z = 1.0, 7, =0], Bingham fluid [z =1,
7,70(=0.2)], power-law fluid [n##1(=1.1), 7, = 0], Herschel-
Bulkley fluid [n#1(= 1.1), 7,#1(= 0.2)], Hy = 40%, o« = 0.2 and
Da = 0.0002).

Moreover, if we put k£ = 1 and consider the case of no slip
in (18), we obtain results for Newtonian fluids, i.e.,

_ Hp
Hen = 1 — d4 +,u’d4 (20)

This is same as the expression obtained by Buglierello and
Sevilla [6].

2.1. Mean hematocrit for cell-free wall layer

The percentage volume of red blood cells is called the hemat-
ocrit and is approximately 40-45% for adult human beings.

Figure 10  Effect of yield-stress (t,) on H, (Hy = 40%, o = 0.2,
Da = 0.0001 and n = 1.05).
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Figure 11  Effect of power-law index (n) on H,. (Hy = 40%,

o = 0.2, Da = 0.0001 and 7, = 0.2).
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Figure 12 Effect of Darcy number (Da) on H, (Hy = 40%,

o =0.2,n=1.05and 7, =0.2).
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Figure 13  Effect of slip (o) on H, (Hy = 40%, Da = 0.0001,
n = 1.05and 7, =0.2).
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Figure 14 Effect of tube hematocrit (H;) on H. (« = 0.2,
Da = 0.0001, » = 1.05 and 7, = 0.2).
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Figure 15  Effect of different fluids on H,, with tube radius ‘a’

(Newtonian fluid [n = 1.0, 7, =0], Bingham fluid [z =1,
7,70(=0.2)], power-law fluid [###1(=1.1), 7, = 0], Herschel-
Bulkley fluid [n##1(= 1.1), 7,#1(= 0.2)], Hy = 40%, o = 0.2 and
Da = 0.0002).
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Figure 16  Effect of yield stress (t,) on H,, (Hy = 40%, o = 0.2,
Da = 0.0001 and n = 1.05).

1.00

0.98 -

\mg 0.96

094/

0.92

T
40 80 120 160 200
Tube Radius

Figure 17 Effect of power-law index (n) on H, (Hy,=40%,
% = 0.2, Da = 0.0001 and 7, = 0.2).
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Figure 18 Effect of Darcy number (Da) on H, (H,=40%,

o=02,n=105and 7, =0.2).
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The core hematocrit H. is related to the hematocrit Hy of
blood leaving or entering the tube by

HyQ = H.Q, (21)

Substituting for Q. and Q from (13) and (16) in (21), we get
(after simplification),

H=—"=1+

2(1—d2)(1+2@)—1+d“

different fluids has been numerically computed by using
Mathematica software and graphically is presented in Fig. 8.
It can be observed from Figs. 2 and 8 that the effective viscos-
ity in the case of slip condition (Fig. 2) is less than that in the
case of no-slip condition (Fig. 8).

Hy g (ﬁ)u’d"”(l — 7, (1 —E (1) - (1 fp)2> 2 (1 42D dz)

where H. is the normalized core hematocrit.
The mean hematocrit within the tube H,, is related to the
core hematocrit H, by

H,na* = H.nb’ (23)
On simplification, we get

_ Hu :ﬂdz
H, H,

H, (24)

where H, is the normalized mean hematocrit.
Substituting for H, from equation (22) in (24), we get

H, =d&

2(1—d2)(1+2@)—1+d4

(22)

Quantitative descriptions of these effects and dependence
of blood viscosity on hematocrit at different tube radii (@)
are required for the development of hydrodynamic models
of blood flow through microcirculation. The values of effec-
tive viscosity computed from the present model are in good
agreement, within the acceptable range, with the corre-
sponding values of the effective viscosity obtained in the
theoretical models of Haynes [5], Chaturani and Upadhya
[10,11] and Santhosh and Radhakrishnamacharya [24].
Further, for given values of yield stress (r,), power-law
index (n), slip (x), tube hematocrit (H,) and Darcy number
(Da), the effective viscosity (u,;) increases with tube radius

3. Results and discussion

The effects of the yield stress, power-law index, Darcy number,
slip and the tube hematocrit on the effective viscosity u,, core
hematocrit H, and the mean hematocrit H,, (Eqgs. (17), (22)
and (25)), have been numerically computed by using
Mathematica software and the results are graphically pre-
sented in Figs. 2-19. In the present analysis, the following val-
ues are chosen: p, = 1.2 centipoise (cp), y, =4.0 cp and
d=1-(g/a) in which ¢ =3.12um for 40% hematocrit,
3.60 um for 30% and 4.67um for 20% (Haynes |[5],
Chaturani and Upadhya [10]).

The effects of various parameters on effective viscosity (i)
are shown in Figs. 2-7. It can be seen that the effective viscos-
ity (u,4) for Newtonian fluid is less than that for Bingham fluid
[n = 1, 7,#0(= 0.2)], power-law fluid [n7*1(= 1.1), 7, = 0] and
Herschel-Bulkley fluid [n#1(=1.1), 7,#1(=0.2)] (Fig. 2).
Figs. 3-7 show that the effective viscosity (u,;) increases with
the yield stress (t,) (Fig. 3), power-law index (1) (Fig. 4), slip
(z) (Fig. 5) and tube hematocrit (H,) (Fig. 6) but decreases
with Darcy number (Da) (Fig. 7).

The expression for effective viscosity in the case of no-slip
condition, is given by Eq. (19). The effective viscosity for

t B () wd (1 =) (1= 3501 = 5) = % (1 - 5)°) + 28 (142920 - @)

(a) (Figs. 2-8), i.e., the flow exhibits Fahracus—Lindqvist
Effect.

The effects of various parameters on the core hematocrit
(H.) and mean hematocrit (H,) are shown in Figs. 9-20. It
is noticed that the core hematocrit (H,,) and mean hematocrit
(H.) for Newtonian fluid are less than those for all other fluids
(Figs. 9 and 15). Also, the core hematocrit (H.) increases with
yield stress (t,) (Fig. 10), power-law index (n) (Fig. 11) and
Darcy number (Da) (Fig. 12) but decreases with slip (x)
(Fig. 13), tube hematocrit (Hy) (Fig. 14) and tube radius (a)
(Figs. 9-14). It can be observed that the mean hematocrit
(H,,) increases with yield stress (t,) (Fig. 16), power-law index
(n) (Fig. 17), Darcy number (Da), (Fig. 18) tube hematocrit
(Hy) (Fig. 19) and tube radius (a) (Figs. 15-20) but decreases
with slip () (Fig. 20).

4. Conclusion

A two-fluid model for the steady flow of Herschel-Bulkley
fluid through tubes of small diameters with slip effect is inves-
tigated. With the assumption that there is Herschel-Bulkley
fluid in core region and Newtonian fluid in peripheral region,
analytical expressions for effective viscosity, core hematocrit
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Figure 19 Effect of tube hematocrit (Hy) on H, (x = 0.2,
Da = 0.0001, n = 1.05 and 7, = 0.2).

1.00
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T
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Tube Radius

Figure 20  Effect of slip () on H, (H, = 40%, Da = 0.0001,
n = 1.05and 7, =0.2).

and mean hematocrit are obtained. The effects of various rel-
evant parameters on effective viscosity, core hematocrit and
mean hematocrit have been studied. It is found that the effec-
tive viscosity increases with yield stress, power-law index, slip
and tube hematocrit but decreases with Darcy number.
Further, it is noticed that the mean hematocrit increases with
yield stress, power-law index, Darcy number and tube hemat-
ocrit but decreases with slip.
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