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Abstract A two-fluid model of Herschel–Bulkley fluid flow through tubes of small diameters and

slip at the wall is studied. It is assumed that the core region consists of Herschel–Bulkley fluid and

Newtonian fluid in the peripheral region. Following the analysis of Chaturani and Upadhya, the

equations of motion have been linearized and analytical solution for velocity, flow flux, effective

viscosity, core hematocrit and mean hematocrit has been obtained. The expressions for all these

flow relevant quantities have been numerically computed by using Mathematica software and the

effects of various relevant parameters on these flow variables have been studied. It is found that

effective viscosity, core hematocrit and mean hematocrit of Newtonian fluid are less than those

for Bingham fluid, power-law fluid and Herschel–Bulkley fluid. Effective viscosity increases with

the yield stress, power-law index, slip and tube hematocrit but decreases with Darcy number. It

is observed that the effective viscosity and mean hematocrit increase with tube radius but the core

hematocrit decreases with tube radius. Further, it is noticed that the flow exhibits the anomalous

Fahraeus–Lindqvist effect.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Micro-circulation deals with the circulation of blood through
small blood vessels such as arterioles, capillaries and venules.
It consists of the complex network of blood vessels whose

diameter is between 10 and 250 lm. Further, the flow of blood
through smaller diameter blood vessels is accompanied by
anomalous effects. One such effect is Fahraeus–Lindqvist

effect, where the apparent viscosity of blood decreases with
tube diameter. This effect has been confirmed by several inves-
tigators (Fahraeus and Lindqvist [1] and Dintenfass [2]).

The study of blood flow in microvessels was carried out by

various authors under different assumptions (Seshadri and
Jaffrin [3] and Whitmore [4]). Most of these models deal with
one phase model. However, it is realized that blood being a

suspension of corpuscles, behaves like a non-Newtonian fluid
at lower shear rates. Haynes [5] and Bugliarello and Sevilla
[6] have considered a two-fluid model with both fluids as

Newtonian fluids and with different viscosities. Sharan and
Popel [7] and Srivastava [8] have reported that for blood flow-
ing through narrow tubes, there is a peripheral layer of plasma
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Figure 1 Geometry of the problem.

890 N. Santhosh et al.
and a core region of suspension of all erythrocytes. Haldar and
Andersson [9] have studied a two-layered blood flow model in
which the core region is occupied by a Casson type fluid and

peripheral region by Newtonian fluid. Chaturani and
Upadhya [10,11] analyzed two-fluid model by assuming
Newtonian fluid in peripheral region and polar fluids in core

region. Chamkha et al. [12] considered a micropolar fluid flow
in a vertical parallel plate channel with asymmetric heating.
Philip and Chandra [13] have studied the flow of blood

through uniform and stenosed tubes and analyzed the influ-
ence of slip velocity on the flow variables such as velocity, wall
shear stress and flow resistance. Mohanty et al. [14] have con-
sidered the unsteady heat and mass transfer characteristics of a

viscous incompressible electrically conducting micropolar
fluid.

Though Newtonian and several non-Newtonian fluid mod-

els have been used to study the motion of blood, it is realized
(Blair and Spanner [15]) that Herschel–Bulkley model
describes the behavior of blood very closely. Herschel–

Bulkley fluids are a class of non-Newtonian fluids that require
a finite critical stress, known as yield stress, in order to deform.
Therefore, these materials behave like rigid solids when the

local shear is below the yield stress. Once the yield stress is
exceeded, the material flows with a non-linear stress–strain
relationship either as a shear-thickening fluid, or as a shear-
thinning one. Few examples of fluids behaving in this manner

include paints, cement, food products, plastics, slurries, and
pharmaceutical products.

Tang and Kalyon [16] studied Herschel–Bulkley fluid flow

under wall slip using a combination of capillary and squeeze
flow viscometers. Huilgol and You [17] applied the augmented
Lagrangian method to steady flow problems of Bingham,

Casson and Herschel–Bulkley fluids in pipes of circular and
square cross-sections. Maruthi Prasad and
Radhakrishnamacharya [18] discussed the steady flow of

Herschel-Bulkely fluid in an inclined tube of non-uniform
cross-section with multiple stenoses. Taliadorou et al. [19]
derived approximate semi-analytical solutions of the axisym-
metric and plane Poiseuille flows of weakly compressible

Herschel–Bulkley fluid with no slip at the wall. Vajravelu
et al. [20] studied a mathematical model for a Herschel–
Bulkley fluid flow in an elastic tube. Gorla et al. [21] investi-

gated the combined convection from a slotted vertical plate
to Micropolar fluids with slip. Rehman et al. [22] have pre-
sented the peristaltic flow and heat transfer through a symmet-

ric channel in the presence of heat sink or source parameter.
Damianou et al. [23] solved numerically the cessation of
axisymmetric Poiseuille flow of a Herschel–Bulkley fluid under
the assumption that slip occurs along the wall.

Recently, Santhosh and Radhakrishnamacharya [24] stud-
ied a two-fluid model for the flow of Jeffrey fluid in the pres-
ence of magnetic field through porous medium in tubes of

small diameters. The objective of this paper was to study the
slip effect on Herchel–Bulkley fluid flow through narrow tubes.
Following the analysis of Chaturani and Upadhya [10] and

Vajravelu et al. [20], the linearized equations of motion have
been solved and analytical solution has been obtained. The
analytical expressions for velocity, flow rate, effective viscosity,

core hematocrit and mean hematocrit have been obtained. The
results are depicted graphically and the effects of various rele-
vant parameters on the flow variables have been studied.
2. Formulation of the problem

Consider the steady flow of Herschel–Bulkley fluid through a
narrow tube of uniform cross-section with constant radius

‘a’. It is assumed that the flow in the tube is represented by a
two-layered model in which peripheral region of thickness e
(a � b = e) is occupied by Newtonian fluid and the other is a

central core region of radius ‘b’, which is occupied by
Herschel–Bulkley fluid (Fig. 1). Let lp and lc be the viscosities
of the fluid in peripheral region and core region, respectively.
The axisymmetric cylindrical coordinate (r, z) is chosen, where

r and z denote the radial and axial coordinates and the z axis is
taken along the axis of the tube.

The equations governing the flow of Herschel–Bulkley fluid

for the present problem (Maruthi Prasad and
Radhakrishnamacharya [18] and Vajravelu et al. [20]) are
given by

1

r

@

@r
ðrsrzÞ ¼ �

@p

@z
ð1Þ

where srz, the shear stress of the Herschel–Bulkley fluid, is
given by

srz ¼ l � @u
@r

� �n

þ s0; srz P s0 ð2Þ

@u

@r
¼ 0; srz 6 s0 ð3Þ

Here u is the axial velocity, p is the pressure, s0 is the yield

stress, l is the fluid viscosity and nðP 1Þ is the flow behavior
index.

The region between r ¼ 0 and r ¼ r0 is called plug core
region and in this region, srz 6 s0. In the region between

r ¼ r0 and r ¼ b, we have srz P s0: Let u ¼ v1ðrÞ be the velocity
in the peripheral region and v2ðrÞ in the core region. Then the
equations governing the flow of fluid are (Haldar and

Andersson [9] and Vajravelu et al. [20]) as follows:
Peripheral region (Newtonian fluid):

@v1
@r
¼ � Pr

2lp

for b 6 r 6 a: ð4Þ

Core region (Herschel–Bulkley fluid):
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@v2
@r
¼ � P

2lc

� �1
n

r� r0ð Þ
1
n for r0 6 r 6 b: ð5Þ

The boundary conditions for the problem are given as follows:

a
@v1
@r
¼ � affiffiffiffiffiffiffi

Da
p v1 at r ¼ a

v1 ¼ v2; s1 ¼ s2 at r ¼ b

srz is finite at r ¼ 0

ð6a; b; cÞ

where P ¼ � @p
@z

is the constant pressure gradient. Condition

(6a) is the Saffman’s slip boundary condition (Saffman [25]),
(6b) denotes the continuity of velocities and stresses at the
interface and (6c) is the regularity condition. Further, Da is

the permeability parameter (or Darcy number) and a is the slip
parameter.

Solving equations (4) and (5) under the conditions (6), we

get

v1ðrÞ ¼
P

4lp

1þ 2

ffiffiffiffiffiffiffi
Da
p

a

� �
a2 � r2

� �
for b 6 r 6 a ð7Þ

v2ðrÞ ¼
P

2lc

� �1
n n

nþ 1

� �
b� r0ð Þ1þ

1
n � r� r0ð Þ1þ

1
n

� �

þ P

4lp

1þ 2

ffiffiffiffiffiffiffi
Da
p

a

� �
a2 � b2

� �
for r0 6 r 6 b ð8Þ

The expression for the fluid velocity in the plug flow region, vp,

is obtained by substituting r ¼ r0 in Eq. (8) as

vpðrÞ ¼
P

2lc

� �1
n n

nþ 1

� �
b� r0ð Þ1þ

1
n

þ P

4lp

1þ 2

ffiffiffiffiffiffiffi
Da
p

a

� �
a2 � b2

� �
for 0 6 r 6 r0 ð9Þ
leff ¼
lp

2 1þ 2
ffiffiffiffiffi
Da
p

a

� �
� 1� d4 þ bk�1 4

1þk

� �
l0dkþ3ð1� spÞkþ1 1� 2sp

2þk ð1� spÞ � 2
3þk ð1� spÞ2

� � ð17Þ
The flow flux in the peripheral region and core region, denoted
by Qp and Qc, is given by

Qp ¼ 2p
Z a

b

v1ðrÞr dr ð10Þ

and

Qc ¼ pr20vpðrÞ þ 2p
Z b

r0

v2ðrÞr dr ð11Þ
leff ¼
lp

1� d4 þ bk�1 4
1þk

� �
l0dkþ3 1� sp

� �kþ1
1� 2sp

2þk ð1� spÞ � 2
3þk 1
��
Substituting for v1, v2 and vp from (7)–(9) into (10) and (11), we

get

Qp ¼
Ppa4

8lp

2ð1� d2Þ 1þ 2

ffiffiffiffiffiffiffi
Da
p

a

� �
� 1þ d4

� �
ð12Þ

and

Qc ¼
Ppa4

8lp

bk�1 4

1þ k

� �
l0dkþ3 1� sp

� �kþ1�

� 1� 2sp
2þ k

ð1� spÞ �
2

3þ k
1� sp
� �2� �

þ 2d2 1þ 2

ffiffiffiffiffiffiffi
Da
p

a
� d2

� ��
ð13Þ

where

k ¼ 1

n
; b ¼ Pa

2lc

; l0 ¼
lp

lc

; d ¼ b

a
; sp ¼

r0
b
: ð14Þ

Here d is the non-dimensional core radius.

Thus, the flow flux through the tube is given by

Q ¼ Qp þQc ð15Þ

Using (12) and (13) in (15), we get

Q ¼ Ppa4

8lp

2 1þ 2

ffiffiffiffiffiffiffi
Da
p

a

� �
� 1� d4

�

þ bk�1 4

1þ k

� �
l0dkþ3 1� sp

� �kþ1

� 1� 2sp
2þ k

ð1� spÞ �
2

3þ k
1� sp
� �2� ��

ð16Þ

Comparing (16) with flow flux for Poiseuille’s flow, we get the
effective viscosity as
In the case when there is no yield stress, that is s0 ¼ 0, the
Herschel–Bulkley model reduces to the power-law model.

Thus, substituting s0 ¼ 0 i.e., sp ¼ 0; we obtain the value of

effective viscosity for the power-law model as

leP ¼
lp

2 1þ 2
ffiffiffiffiffi
Da
p

a

� �
� 1� d4 þ bk�1 4

3þk

� �
l0dkþ3

ð18Þ

Further, if we take no-slip condition, i.e., v1 ¼ 0atr ¼ a instead
of equation (6a), we get the effective viscosity as
� sp
�2� ð19Þ



Figure 2 Variation of leff with tube radius ‘a’ for different fluids

(Newtonian fluid [n= 1.0, sp ¼ 0], Bingham fluid [n= 1, sp–0

(=0.2)], power-law fluid [n–1ð¼ 1:1Þ, sp ¼ 0], Herschel–Bulkley

fluid [n–1ð¼ 1:1Þ, sp–1ð¼ 0:2Þ], H0 ¼ 40%, a = 0.2 and

Da = 0.0002).

Figure 3 Effect of yield stress (sp) on leff (H0 ¼ 40%, a = 0.2,

Da = 0.0001 and n= 1.05).

Figure 4 Effect of power-law index (n) on leff (H0 ¼ 40%,

a = 0.2, Da = 0.0001 and sp ¼ 0:2).

Figure 5 Effect of slip (a) on leff (H0 ¼ 40%, Da = 0.0001,

n= 1.05 and sp ¼ 0:2).

Figure 6 Effect of tube hematocrit (H0) on leff (a = 0.2,

Da = 0.0001, n= 1.05 and sp ¼ 0:2).

Figure 7 Effect of Darcy number (Da) on leff (H0 ¼ 40%,

a = 0.2, n = 1.05 and sp ¼ 0:2).
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Figure 8 Variation of leff with tube radius ‘a’ for different fluids

for no-slip (Newtonian fluid [n= 1.0, sp ¼ 0], Bingham fluid

[n = 1, sp–0ð¼ 0:2Þ], power-law fluid [n–1ð¼ 1:1Þ, sp ¼ 0],

Herschel–Bulkley fluid [n–1ð¼ 1:1Þ, sp–1ð¼ 0:2Þ] and H0 ¼ 40%).

Figure 9 Effect of different fluids on Hc with tube radius ‘a’

(Newtonian fluid [n= 1.0, sp ¼ 0], Bingham fluid [n = 1,

sp–0ð¼ 0:2Þ], power-law fluid [n–1ð¼ 1:1Þ, sp ¼ 0], Herschel–

Bulkley fluid [n–1ð¼ 1:1Þ, sp–1ð¼ 0:2Þ], H0 ¼ 40%, a = 0.2 and

Da = 0.0002).

Figure 10 Effect of yield-stress (sp) on Hc (H0 ¼ 40%, a = 0.2,

Da = 0.0001 and n= 1.05).

Figure 11 Effect of power-law index (n) on Hc (H0 = 40%,

a = 0.2, Da = 0.0001 and sp ¼ 0:2).

Figure 12 Effect of Darcy number (Da) on Hc (H0 ¼ 40%,

a = 0.2, n= 1.05 and sp ¼ 0:2).
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Moreover, if we put k ¼ 1 and consider the case of no slip

in (18), we obtain results for Newtonian fluids, i.e.,

leN ¼
lp

1� d4 þ l0d4
ð20Þ

This is same as the expression obtained by Buglierello and
Sevilla [6].

2.1. Mean hematocrit for cell-free wall layer

The percentage volume of red blood cells is called the hemat-

ocrit and is approximately 40–45% for adult human beings.



Figure 13 Effect of slip (a) on Hc (H0 ¼ 40%, Da = 0.0001,

n= 1.05 and sp ¼ 0:2).

Figure 14 Effect of tube hematocrit (H0) on Hc (a = 0.2,

Da = 0.0001, n= 1.05 and sp ¼ 0:2).

Figure 15 Effect of different fluids on Hm with tube radius ‘a’

(Newtonian fluid [n= 1.0, sp ¼ 0], Bingham fluid [n= 1,

sp–0ð¼ 0:2Þ], power-law fluid [n–1ð¼ 1:1Þ, sp ¼ 0], Herschel–

Bulkley fluid [n–1ð¼ 1:1Þ, sp–1ð¼ 0:2Þ], H0 ¼ 40%, a = 0.2 and

Da = 0.0002).

Figure 16 Effect of yield stress (sp) on Hm (H0 ¼ 40%, a = 0.2,

Da = 0.0001 and n = 1.05).

Figure 17 Effect of power-law index (n) on Hm (H0 ¼ 40%,

a = 0.2, Da = 0.0001 and sp ¼ 0:2).

Figure 18 Effect of Darcy number (Da) on Hm (H0 ¼ 40%,

a = 0.2, n = 1.05 and sp ¼ 0:2).
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The core hematocrit Hc is related to the hematocrit H0 of
blood leaving or entering the tube by

H0Q ¼ HcQc ð21Þ

Substituting for Qc and Q from (13) and (16) in (21), we get
(after simplification),
Hc ¼
Hc

H0

¼ 1þ
2ð1� d2Þ 1þ 2

ffiffiffiffiffi
Da
p

a

� �
� 1þ d4

bk�1 4
1þk

� �
l0dkþ3ð1� spÞkþ1 1� 2sp

2þk ð1� spÞ � 2
3þk 1� sp
� �2� �

þ 2d2 1þ 2
ffiffiffiffiffi
Da
p

a � d2
� � ð22Þ
where Hc is the normalized core hematocrit.
The mean hematocrit within the tube Hm is related to the

core hematocrit Hc by

Hmpa2 ¼ Hcpb
2 ð23Þ

On simplification, we get

Hm ¼
Hm

H0

¼ Hc

H0

d2 ð24Þ

where Hm is the normalized mean hematocrit.

Substituting for Hc from equation (22) in (24), we get
Hm ¼ d2 1þ
2ð1� d2Þ 1þ 2

ffiffiffiffi
Da
p

a

� �
� 1þ d4

bk�1 4
1þk

� �
l0dkþ3 1� sp

� �kþ1
1� 2sp

2þk ð1� spÞ � 2
3þk 1� sp
� �2� �

þ 2d2 1þ 2
ffiffiffiffi
Da
p

a � d2
� �

0
@

1
A ð25Þ
3. Results and discussion

The effects of the yield stress, power-law index, Darcy number,

slip and the tube hematocrit on the effective viscosity leff, core

hematocrit Hc and the mean hematocrit Hm (Eqs. (17), (22)

and (25)), have been numerically computed by using
Mathematica software and the results are graphically pre-
sented in Figs. 2–19. In the present analysis, the following val-

ues are chosen: lp ¼ 1:2 centipoise (cp), lc ¼ 4:0 cp and

d ¼ 1� ðe=aÞ in which e = 3.12 lm for 40% hematocrit,
3.60 lm for 30% and 4.67 lm for 20% (Haynes [5],

Chaturani and Upadhya [10]).
The effects of various parameters on effective viscosity (leff)

are shown in Figs. 2–7. It can be seen that the effective viscos-
ity (leff) for Newtonian fluid is less than that for Bingham fluid

[n= 1, sp–0ð¼ 0:2Þ], power-law fluid [n–1ð¼ 1:1Þ, sp ¼ 0] and

Herschel–Bulkley fluid [n–1ð¼ 1:1Þ, sp–1ð¼ 0:2Þ] (Fig. 2).

Figs. 3–7 show that the effective viscosity (leff) increases with

the yield stress (sp) (Fig. 3), power-law index (n) (Fig. 4), slip

(a) (Fig. 5) and tube hematocrit (H0) (Fig. 6) but decreases

with Darcy number (Da) (Fig. 7).
The expression for effective viscosity in the case of no-slip

condition, is given by Eq. (19). The effective viscosity for
different fluids has been numerically computed by using
Mathematica software and graphically is presented in Fig. 8.
It can be observed from Figs. 2 and 8 that the effective viscos-

ity in the case of slip condition (Fig. 2) is less than that in the
case of no-slip condition (Fig. 8).
Quantitative descriptions of these effects and dependence
of blood viscosity on hematocrit at different tube radii (a)
are required for the development of hydrodynamic models
of blood flow through microcirculation. The values of effec-

tive viscosity computed from the present model are in good
agreement, within the acceptable range, with the corre-
sponding values of the effective viscosity obtained in the

theoretical models of Haynes [5], Chaturani and Upadhya
[10,11] and Santhosh and Radhakrishnamacharya [24].
Further, for given values of yield stress (sp), power-law

index (n), slip (a), tube hematocrit (H0) and Darcy number

(Da), the effective viscosity (leff) increases with tube radius
(a) (Figs. 2–8), i.e., the flow exhibits Fahraeus–Lindqvist
Effect.

The effects of various parameters on the core hematocrit

(Hc) and mean hematocrit (Hm) are shown in Figs. 9–20. It

is noticed that the core hematocrit (Hm) and mean hematocrit

(Hc) for Newtonian fluid are less than those for all other fluids

(Figs. 9 and 15). Also, the core hematocrit (Hc) increases with
yield stress (sp) (Fig. 10), power-law index (n) (Fig. 11) and

Darcy number (Da) (Fig. 12) but decreases with slip (a)
(Fig. 13), tube hematocrit (H0) (Fig. 14) and tube radius (a)
(Figs. 9–14). It can be observed that the mean hematocrit

(Hm) increases with yield stress (sp) (Fig. 16), power-law index

(n) (Fig. 17), Darcy number (Da), (Fig. 18) tube hematocrit

(H0) (Fig. 19) and tube radius (a) (Figs. 15–20) but decreases
with slip (a) (Fig. 20).

4. Conclusion

A two-fluid model for the steady flow of Herschel–Bulkley
fluid through tubes of small diameters with slip effect is inves-

tigated. With the assumption that there is Herschel–Bulkley
fluid in core region and Newtonian fluid in peripheral region,
analytical expressions for effective viscosity, core hematocrit



Figure 19 Effect of tube hematocrit (H0) on Hm (a = 0.2,

Da = 0.0001, n= 1.05 and sp ¼ 0:2).

Figure 20 Effect of slip (a) on Hm (H0 ¼ 40%, Da = 0.0001,

n= 1.05 and sp ¼ 0:2).
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and mean hematocrit are obtained. The effects of various rel-
evant parameters on effective viscosity, core hematocrit and

mean hematocrit have been studied. It is found that the effec-
tive viscosity increases with yield stress, power-law index, slip
and tube hematocrit but decreases with Darcy number.

Further, it is noticed that the mean hematocrit increases with
yield stress, power-law index, Darcy number and tube hemat-
ocrit but decreases with slip.

References

[1] R. Fahraeus, T. Lindqvist, Viscosity of blood in narrow

capillary tubes, Am. J. Phys. 96 (1931) 562–568.

[2] L. Dintenfass, Inversion of Fahraeus–Lindquist phenomenon in

blood flow through capillaries of diminishing diameter, Nature

217 (1967) 1099–1100.

[3] V. Seshadri, N.Y. Jaffrin, Anomalous effects in blood flow

through narrow tubes, Inserm-Euromech 92 71 (1977) 265–282.
[4] R.L. Whitmore, A theory of blood flow in small vessels, J. Appl.

Physiol. 22 (1967) 767–771.

[5] R.H. Haynes, Physical basis of the dependence of blood

viscosity on tube radius, Am. J. Physiol. 198 (1960) 1193–1200.

[6] G. Bugliarello, J. Sevilla, Velocity distribution and other

characteristics of steady and pulsatile blood flow in fine glass

tubes, Biorheology 7 (1970) 85–107.

[7] M. Sharan, A.S. Popel, A two-phase model for flow of blood in

narrow tubes with increased effective viscosity near the wall,

Biorheology 38 (2001) 415–428.

[8] V.P. Srivastava, A theoretical model for blood flow in small

vessels, Appl. Appl. Math. 2 (2007) 51–65.

[9] K. Haldar, H.I. Andersson, Two-layered model of blood flow

through stenosed arteries, Acta. Mech. 117 (1996) 221–228.

[10] P. Chaturani, V.S. Upadhya, On micropolar fluid model for

blood flow through narrow tubes, Biorheology 16 (1979) 419–

428.

[11] P. Chaturani, V.S. Upadhya, A two-fluid model for blood flow

through small diameter tubes, Biorheology 18 (1981) 245–253.

[12] A.J. Chamkha, T. Grosan, I. Pop, Fully developed free

convection of a micropolar fluid in a vertical channel, Int.

Comm. Heat Mass Transfer 29 (2002) 1119–1127.

[13] D. Philip, P. Chandra, Flow of Eringen fluid (simple micro fluid)

through an artery with mild stenosis, Int. J. Engng Sci. 34 (1996)

87–99.

[14] B. Mohanty, S.R. Mishra, H.B. Pattanayak, Numerical

investigation on heat and mass transfer effect of micropolar

fluid over a stretching sheet through porous media, Alexandria

Eng. J. 54 (2015) 223–232.

[15] G.W.S. Blair, D.C. Spanner, An Introduction to Biorheology,

Elsevier, Amsterdam, 1974.

[16] H.S. Tang, D.M. Kalyon, Estimation of the parameters of

Herschel–Bulkley fluid under wall slip using a combination of

capillary and squeeze flow viscometers, Rheol. Acta. 43 (2004)

80–88.

[17] R.R. Huilgol, Z. You, Application of the augmented

Lagrangian method to steady pipe flows of Bingham, Casson

and Herschel–Bulkley fluids, J. Non-Newtonian Fluid Mech.

128 (2005) 126–143.

[18] K. Maruthi Prasad, G. Radhakrishnamacharya, Flow of

Herschel–Bulkley fluid through an inclined tube of non-

uniform cross-section with multiple stenoses, Arch. Mech. 60

(2) (2008) 161–172.

[19] E. Taliadoroua, G.C. Georgioua, I. Moulitsasb, Weakly

compressible Poiseuille flows of a Herschel–Bulkley fluid, J.

Non-Newtonian Fluid Mech. 158 (2009) 162–169.

[20] K. Vajravelu, S. Sreenadh, P. Devaki, K.V. Prasad,

Mathematical model for a Herschel–Bulkley fluid flow in an

elastic tube, Cent. Eur. J. Phys. 9 (5) (2011) 1357–1365.

[21] R.S.R. Gorla, Md.A. Hossain, A.J. Chamkha, Combined

convection in micropolar fluids from a vertical surface with

slip, J. Energy Heat Mass Transfer 33 (2011) 1–26.

[22] M. Rehman, S. Noreen, A. Haider, H. Azam, Effect of heat

sink/source on peristaltic flow of Jeffrey fluid through a

symmetric channel, Alexandria Eng. J. 54 (2015) 733–743.

[23] Y. Damianou, M. Philippou, G. Kaoullas, G.C. Georgiou,

Cessation of viscoplastic Poiseuille flow with wall slip, J. Non-

Newtonian Fluid Mech. 203 (2014) 24–37.

[24] N. Santhosh, G. Radhakrishnamacharya, Jeffrey fluid flow

through porous medium in the presence of magnetic field in

narrow tubes, Int. J. Eng. Math. 2014 (2014) 8 (Article ID

713831).

[25] P.G. Saffman, On the Boundary conditions at the surface of a

porous medium, Stud. Appl. Math. 1 (1971) 93–101.

http://refhub.elsevier.com/S1110-0168(15)00113-1/h0005
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0005
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0010
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0010
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0010
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0015
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0015
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0020
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0020
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0025
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0025
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0030
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0030
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0030
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0035
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0035
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0035
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0040
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0040
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0045
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0045
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0050
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0050
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0050
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0055
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0055
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0060
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0060
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0060
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0065
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0065
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0065
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0070
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0070
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0070
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0070
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0075
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0075
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0075
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0080
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0080
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0080
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0080
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0085
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0085
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0085
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0085
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0090
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0090
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0090
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0090
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0095
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0095
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0095
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0100
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0100
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0100
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0105
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0105
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0105
http://refhub.elsevier.com/S1110-0168(15)00113-1/h9000
http://refhub.elsevier.com/S1110-0168(15)00113-1/h9000
http://refhub.elsevier.com/S1110-0168(15)00113-1/h9000
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0115
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0115
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0115
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0120
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0120
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0120
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0120
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0125
http://refhub.elsevier.com/S1110-0168(15)00113-1/h0125

	Effect of slip on Herschel–Bulkley fluid flow through narrow tubes
	1 Introduction
	2 Formulation of the problem
	2.1 Mean hematocrit for cell-free wall layer

	3 Results and discussion
	4 Conclusion
	References


