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Abstract Water quality models are used to describe the
discharge concentration relationships in the river. Number
of models exists to simulate the pollutant loads in a river,
of which some of them are based on simple cause effect
relationships and others on highly sophisticated physical
and mathematical approaches that require extensive data
inputs. Fuzzy rule based modeling extensively used in
other disciplines, is attempted in the present study for
modeling water quality with respect of dissolved pollutants
in Krishna river flowing in Southern part of India. Adaptive
Neuro Fuzzy Inference Systems (ANFIS), a recent devel-
opment in the area of neuro-computing, based on the
concept of fuzzy sets is used to model highly non-linear
relationships and are capable of adaptive learning. This
paper presents the results of the application of ANFIS for
modeling dissolved pollutants in the Krishna River. The
application and validation of the models is carried out
using water quality and flow data obtained from the mon-
itoring stations on the river. The results indicate that the
models are quite successful in simulating the physical
processes of the relationships between discharge and
concentrations.
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Introduction

Discharge—concentration relationships generally are used
for water quality studies in the river basins. Traditionally,
this task has been accomplished using methods ranging
from those that are based on empirical relationships to
those that are based on cause-effect relationships. In using
models that are based on cause-effect relationships, rigor-
ous mathematical equations are often used to describe the
physical, chemical and biological processes. Solutions of
such models often require vast data and it is often neces-
sary to estimate input parameters specific to the basin being
modeled. In many instances (especially in large river
basins), a large number of hydrological parameters are
involved and there is no unique way of estimating them.
However, they are to be determined subjectively, based on
the judgment and the effect is normally manifested in the
model output. Hence, these deterministic models, which
require large quantity of data in terms of model parameters,
have limited applicability in basins where there are data
constraints. Therefore, models which are easy to handle
and have minimum data requirement are often sought to
solve problems where data availability is limited and is
difficult to obtain data by experimental investigations
and monitoring, which would be very expensive and
cumbersome [14].

Recently mathematical models using fuzzy variables
rather than numerical variables are encroaching into water
quality related studies. In water quality modeling, there are
many domains which can be best characterized by lin-
guistic terms rather than directly, by numbers. For instance,
a modeler in a particular domain will employ terms such as
large flows and low flows to describe the discharge con-
ditions in a river. The problem faced, then, is how to deal
with what has been described—imprecision, uncertainty
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and in particular linguistic terms that cannot be defined
exactly. A fuzzy rule based modeling is qualitative mod-
eling approach by which one can describe the system
behavior using a natural language [1]. By utilizing fuzzy
logic based approach in modeling cause-effect, relation-
ships are described verbally rather than using governing
physical relationships. However, in this approach, some of
the causes that are considered for physically based models
are omitted and some of the causes not considered for in
those physical models (because of nature of generalization
or unavailability of known relationships) can be included.
The researchers have demonstrated the applicability of
fuzzy rule based approaches in hydrological modeling [2—
5]. It has been reported earlier the use of artificial neural
networks as a viable means of forecasting water quality
parameters in River Murray, South Australia [6].

The purpose of this work is to report the results of water
quality modeling study based on fuzzy rule based approach
(ANFIS). An attempt is made to model discharge—con-
centration relationships of conservative dissolved pollu-
tants in the river.

A Review of ANFIS

The concepts of fuzzy logic introduced by Zadeh in 1964
can be used to model problems of uncertainty and impre-
cision. A Fuzzy Inference System (FIS) is a popular
computing frame work based on concepts of fuzzy logic.
Adaptive Neuro-Fuzzy Inference System (ANFIS) incor-
porated the concepts of neural network learning in FIS.
ANFIS model has the capability of approximating any non-
linear function and thus is considered as universal ap-
proximator [7]. ANFIS models are being employed in wide
variety of applications of modeling, decision making, sig-
nal processing and control. The basic concepts and features
of ANFIS are described in the following sections.

Fuzzy Logic

Zadeh introduced fuzzy sets in 1964 as an approach to
handling vagueness or uncertainty and, in particular, lin-
guistic variables. Classical set theory allows for an object
to be either a member of the set or excluded from the set.
Fuzzy sets differ from classical sets in that they allow for
an object to be a partial member of a set [8]. Fuzzy sets are
defined by a membership function. For any fuzzy set A, the
function pa(Xx) represents the membership function for
which p indicates the degree of membership that x, of the
universal set X, belongs to set A and is, usually, expressed
as a number between 0 and 1:

0 < pp(x) <1 (1)

@ Springer

Fuzzy sets can either be discrete or continuous. Fuzzy
sets allow us to represent vague concepts expressed in
natural language. The representation depends not only on
the concept, but also on the context in which it is used.
Several fuzzy sets representing linguistic concepts such as
low, medium, high and so on are often employed to define
states of a variable. Such a variable is usually called a
Fuzzy variable. Membership functions can have any shape.
Trapezoidal, triangular, bell shaped functions are
commonly used to represent membership functions.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

Various types of models are reported in literature for dif-
ferent categories of neuro-fuzzy integration. During the
past few years, integration of neural networks and fuzzy
logic has emerged as one of the most active and fruitful
areas of research in the fields of fuzzy logic and neural
networks. Several paradigms of neural fuzzy modeling are
available in the literature, such as fuzzy inference networks
[9], fuzzy aggregation networks [10], neural network dri-
ven fuzzy reasoning [11], fuzzy modeling networks [12]
and ANFIS [13]. The concepts of Adaptive Neuro Fuzzy
Inference system (ANFIS) proposed by the researchers are
discussed in various literature [13]. Among the various
NFS based models proposed in literature, ANFIS is popular
and has potential applications in a wide variety of engi-
neering problems. ANFIS, proposed by the literatures is
based on the first-order Sugeno fuzzy model [13]. The
neural network paradigm used is a multi-layer feed-for-
ward back propagation network.

For simplicity, let the fuzzy inference system under
consideration be assumed to have two inputs, x and y, and
one output z as presented in Fig. 1. For a first-order Sugeno
fuzzy model, a typical rule set with two fuzzy if then rules
can be expressed as,

In the ANFIS, nodes in the same layer have similar
functions as described below. The output of node i in layer
1 is denoted as Oy,.

Layer 1: Every node in this layer is an adaptive node
with a node output defined as,

fori=1,2 (2)
fori=3,4 (3)

01, = pa(x)
01, = tgi—2(y)

where x (or y) is the input to the node; and A; (or B;.,) is
fuzzy set associated with this node.

Layer 2: Every node in this layer is a fixed node labeled
I1, which multiplies the incoming signals and outputs the

product. For instance
02 = wi = ppi(x) X pugi(y), i=12 (4)

Each node output represents the firing strength of a rule.
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Fig. 1 First order Sugeno
Fuzzy model and ANFIS
network [13]. Rule 1: If x is A,
and y is B, then

™ 1, =pxeqy +

fi =pix + qiy +r;, Rule 2: If
x is A and y is B; then
fo=pax +1y + 12

(= w, i+ Wi,
w, + W,

w, fr=pX+qy+h =W li+ Wl

8

Layer 3: Every node in this layer is a fixed node labeled
N. The ith node calculates the ratio of ith rule’s firing
strength to the sum of all rules’ firing strengths.

Wi

03':W':
i i W1+W27

i=12 (5)

Layer 4: Every node in this layer is an adaptive node
with a node function

O4; =Wifi =Wilpix + qiy + 1i) (6)

where W; is output of layer 3 and {p;, ¢; r;} is the parameter
set.

Layer 5: The single node in this layer is fixed node
labeled >, which computes the overall output as the
summation of the incoming signals

Zi wif;
dowi

Thus, an ANFIS network is functionally equivalent to a
Sugeno fuzzy model. This network can easily be extended
to a Sugeno fuzzy model with multiple inputs and rules.

The output f of a ANFIS network shown in Fig. 1 can be
written as:

Os.1— = overall output = Y _ Wif; = (7)

R I S
w1 +wy wi +wy
= Wifi + Wrfs (8)
= (Wix)p1 + (Wiy)qi + (Wi) ri + (Wax)p2

+ (Way)g2 + (Wa)ra

(a)

layer 4
layer 2 layer 3 l
! ! xy layer 5
|
W N w, w, f,
> !
w " s
-1
xy

(b)

where p;, q;, r;, p;, q> and r, are the parameters of the
model.

From Eq. (7), it is observed that the output is linear in
the parameters p;, g;, ¥, p2, ¢> and r,, which are known as
consequent parameters.

The nodes in layer 1 are adaptive nodes with a node
function given by Eq. (1). The output, O;;. Of node i in
this layer is the membership grade of a fuzzy set A (=A,,
A,, B, or B,) and it specifies the degree to which the given
input x (or y) satisfies the quantifier A. The membership
function for A can be any appropriate parameterized
membership function. If generalized bell function is used,
the membership function is given by,

g = (x) = ———— 9)
I+

X—¢Ci
ai

where {a; b;, c;} is the parameter set. These parameters are
referred as premise parameters. The output of the network f
is obviously non-linear in premise parameters. Thus the set
of total parameters S can be partitioned into two subsets: a
set of premise (non linear) parameters S; and a set of
consequent (linear) parameters S,.

The researchers have shown that ANFIS has unlimited
approximation power for matching any non linear function
arbitrarily well, provided the number of rules is not restricted
[7]. Some researchers have proposed a hybrid learning
algorithm for training ANFIS [13]. The learning takes place
in two stages. In the forward pass of the hybrid learning
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algorithm, functional signals go forward till layer 4 and the
consequent parameters are identified by the least squares
estimate. In the backward pass, the error rates propagate
backward and the premise parameters are updated by the
gradient descent, similar to back propagation algorithm.

Description of the Study Area

Krishna is one of the major rivers of peninsular India along
with the Godavari and Kaveri Rivers. The Krishna origi-
nates as a small stream in the Western Ghats and traverses
eastwards 25 km through the rocky terrains of the Deccan
traps. Finally it drains into Bay of Bengal with two major
dams at Srisailam and Nagarjuna Sagar. The Deccan traps
are considered to be the second most extensive geological
formation of the peninsular India, next only to Archean
igneous—metamorphic province in south India. The
lithology of the upper river basin is almost entirely tho-
leiitic basalts, with scattered alkaline/saline soils, laterites
and calcareous tutas. Down the basin in Karnataka and
Andhra Pradesh, the basin includes granites, ganitoids,
green stones, schists, amphibolites and gneisses.

The river Krishna drains an area of 258,948 kmz, which is
nearly 8 % of the total geo-graphical area of the country. The
total population in the basin as per 1991 causes has been
estimated as 60.78 million. The river and its tributaries flow
through different terrain having varied land use activities,
soil conditions, vegetation and agricultural practices. The
water potential of the River Krishna and its tributaries are
mainly used for drinking, industries, irrigation and power
generation. The average annual rainfall in the river basin is
about 780 mm. About 90 % of the rainfall occurs during the
wet season (June—October) and during the rest of the year
(dry season) there is very little rainfall with no regular pat-
tern. Typical tropical climate prevails in the basin for better
part of the year. For practical considerations two seasons: dry
(December-May) and wet (June—November) seasons exist
in the area. The predominant soils in the area are sandy loams
and loams. The study area presented in Fig. 2, in particular is
part of the Krishna River reach between two monitoring
stations: Pondugala (upstream, No. 7 in the Fig. 2) and
Wadenapalle (downstream, No. 5 in the Fig. 2). The river
reach between the monitoring stations is approximately
80 km long along the river. In addition to other districts,
major parts of Nalgonda and Guntur districts drain into this
part of the Krishna river reach in Andhra Pradesh.

Results and Discussions

The river water quality data for the years 1989-1994 is
used for training the ANFIS model and water quality for
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the years 1994-1997 is used for testing of the developed
models. The normalized data is used for modeling and
testing purpose. Normalization is performed by dividing
loads and discharges by the corresponding maximum value
recorded during 1989-1994.

Discharge in the river is considered as fuzzy set A.
During the monsoon season the discharges vary largely
between 1,000 and 5,000 m3/s, and hence discharge is
classified into two fuzzy classes, namely low and high.
Generalized bell function given in Eq. 8 is used as mem-
bership function. The ANFIS models developed take two
inputs, discharge in the river in present time interval and in
the previous time interval, and one output, the concentra-
tion of the pollutant being modeled. The pollutant load at
any time is influenced by the load already existing and
what is contributed additionally to that of the previous
load. Thus each ANFIS model has four fuzzy if then rules
with 12 premise parameters and twelve consequent
parameters. Training of the ANFIS models is done with
water quality data of the monsoon season for 5 years. The
results of training in terms of ‘¥’ and RMSE indicate the
success of the application of ANFIS models for that par-
ticular water quality parameter.

The pollutant concentrations/loads in the river depend
on the rainfall and catchment characteristics and thus the
runoff contribution from the drainage basin. The runoff in
turn influences the discharge and hence the load of the
pollutant. In utilizing fuzzy-rule based classification of
flows, the modeling approach helps in establishing rela-
tionship between discharge and pollutant load, which is
quite different from conventional water quality modeling
approaches. The researchers have shown that ANFIS has
the ability to model non-linear relationship through
FUZZY—IF-THEN rules [7]. ANFIS was proved to be
better than Artificial Neural Network (ANN) models in
mapping the input—output relationship. Hence, an attempt
is made in this study to use ANFIS to model complex
relation between discharge and pollutant loads.

The parameters ANFIS models developed for prediction
of pollutant loads are presented in Table 1. The pictorial
representation of results is presented in Figs. 3,4, 5,6, 7, 8,
9, 10, and 11. The results describe the models with respect
to the model architecture, parameters of the model, fuzzy
rules and applicability of the models. For each water
quality parameter considering the four fuzzy rules (Low—
Low, Low—High, High-Low and High-High), the twelve
consequent model parameters are determined with the
training data and presented in Table 1. Time series plots
(Figs. 3a 4a, 5a, 6a, 7a, 8a, 9a, 10a, and 11a) for testing
data are of great use in finding the applicability of the
models for the water quality parameters under question.
The influence of previous load on the present pollutant load
is not similar for the pollutants and the pictures presented
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(Figs. 3b 4b, 5b, 6b, 7b, 8b, 9b, 10b, and 11b) indicate the
variations for different water quality parameters.

The major dissolved cations (positively charged species
dissolved in water) in the river water are sodium (Na),
calcium (Ca), and magnesium (Mg). The major anions
(negatively charged species) are sulfate (SO,), chloride
(Cl), and bicarbonate (HCO3). Although most of the cat-
ions and anions exist as individual ions dissolved in the
river water (as Na®, Ca®", Mg*", SO, CI~, and
HCO;7), substantial concentrations of selected ions are
associated with one another (particularly calcium, magne-
sium, and sulfate which form the dissolved ion pairs CaSO,4
and MgSQ,). The formation of other ion pairs with sodium
and bicarbonates is also quite possible. In lieu of the above
discussion, time series plot for sodium, calcium, magne-
sium, bicarbonates, chlorides and sulpahtes (Figs. 3a, 4a,
Sa, 6a, 7a, 8a) indicated good applicability of the ANFIS
models in describing the relation between flow and pollu-
tant load. The concentration of dissolved silica, which is
reported as SiO,, is usually in the range 10-24 mg/L in
Krishna River water. Essentially all of the silica dissolved
in the river water occurs as undissociated silicic acid
(H4Si04). Time series plots of silica (Fig. 11a) indicated
good applicability of the models. Time series plots for
Nitrates (Fig. 9a) did not follow the actual loads closely
indicating that the limitation of the model. This is perhaps
due to the fact that the formation of nitrate—N in the river
takes a long time. With the limited data that was available
the developed model for Phosphorous could not explain the
relation between flow and load. Hence, the time series plots

for phosphorous (Fig. 10 a) were spread all over with out
any pattern.

The correlation coefficients (r) and root mean squared
Error (RMSE) for training and testing are presented in
Table 2. The correlation coefficients between observed and
predicted loads during testing phase is observed to be very
close to that obtained during training phase for water
quality parameters, namely, magnesium, bicarbonates and
chlorides. The correlation coefficient for sodium, calcium,
sulphates, nitrates and silicates is comparatively lower in
testing phase. However, the correlation coefficients
obtained for these water quality parameters in both training
and testing phases is reasonably satisfactory indicating the
applicability of ANFIS model. The correlation coefficients
for phosphates both in training and testing phases are very
low indicating that the inability of ANFIS to model phos-
phate loads. The possible reason for this perhaps may be
due to trace level phosphate concentrations and hence, very
low loads for considerable period of time. The RMSE
values presented in Table 2 indicate the errors in compu-
tations using the models. For all the parameters except for
phosphates the error is small representing good applica-
bility of the developed ANFIS models.

The load variations corresponding to the four rules for
the river discharge in the present and previous time inter-
vals (L-L, L-H, H-L and H-H) are presented in Figs. 3b
4b, 5b, 6b, 7b, 8b, 9b, 10b, and 11b. The results presented
in the 3-D plots represent a particular possible flow con-
dition during the wet season (low = 1000 m*/s and
high = 5000 m3/s). However, there can be several such
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Table 1 Parameters of ANFIS models

Parameter Rule Discharge (X;) Previous discharge (X5) Z=pX;+qXs+r
P q R
Sodium 1 Low Low —0.19 1.52 —0.03
2 Low High 0.98 11.40 —10.29
3 High Low 0.32 —1.46 0.06
4 High High —3.31 —10.52 11.42
Calcium 1 Low Low —2.39 0.13 —1.81
2 Low High 7.09 -0.23 15.86
3 High Low 0.07 2.22 2.89
4 High High 0.16 2.14 —-9.34
Magnesium 1 Low Low —0.14 0.63 0.11
2 Low High —1.27 13.40 —9.24
3 High Low 0.15 0.93 —0.18
4 High High —0.30 —84.70 65.85
Bicarbonates 1 Low Low —3.13 —1.73 —10.04
2 Low High 4.98 —18.33 21.35
3 High Low 0.01 1.03 0.28
4 High High —0.01 1.47 —0.57
Chlorides 1 Low Low 2.38 —0.29 0.66
2 Low High —7.44 1.75 —1.93
3 High Low 2.90 1.66 —347
4 High High —8.48 —-0.29 10.16
Sulphates 1 Low Low 1.43 0.53 0.47
2 Low High 2.86 7.23 —4.18
3 High Low 1.84 0.41 —2.04
4 High High 4.08 —5.89 0.39
Nitrates 1 Low Low —0.97 —0.46 1.95
2 Low High 1.41 3.87 —2.95
3 High Low —22.75 22.38 —8.28
4 High High 27.36 —50.24 17.91
Phosphates 1 Low Low 0.25 2.58 4.09
2 Low High —1.19 10.52 —11.37
3 High Low 7.50 3.077 2.39
4 High High —16.03 21.25 —10.52
Silicates 1 Low Low —95.68 29.74 15.09
2 Low High 182.10 20.90 —41.15
3 High Low 0.033 10.43 3.76
4 High High 0.05 13.54 —13.29

combinations possible in the real situation and hence, the
influence varies depending on the flow variations. In gen-
eral, the influence of low—low and low-high conditions is
not considerable on loading pattern. For most part of the
wet season the flow conditions are low-low (as flow fluc-
tuates between 1000 m>/s and about 1500 m3/s) and this
condition indicates lower loading conditions. As the low—
low condition is perhaps partial continuation of the earlier
flow conditions the influence on load is not significant.
Significant effect of the condition low-high (rising stage) is
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not indicated in the results, as a high of 5,000 m’/s is
reached after considerable period of low—low conditions.
This is possibly due to mixing and dilution being dominant
in the initial rising stage of the flow. Considerable
increases in loading pattern are observed for high—high
conditions (at peak flow conditions) in the river. The
influence of previous high flow on present high flow rep-
resents a real situation similar to doubling the pollutant
loads and hence, for all the pollutants the loads at peak flow
conditions are quite high. However, the results for high—
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Fig. 3 Results of ANFIS model
for sodium. a Load time
series—testing, b variation of
loads

Fig. 4 Results of ANFIS model
for calcium. a Load time

series—testing, b Variation of
loads

Fig. 5 Results of ANFIS model
for magnesium. a Load time

series—testing, b variation of
loads

Fig. 6 Results of ANFIS model
for bicarbonates. a Load time

series—testing, b variation of
loads
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Fig. 7 Results of ANFIS model
for chlorides. a Load time

series—testing, b variation of
loads

Fig. 8 Results of ANFIS model
for sulphates. a Load time

series—testing, b variation of
loads

Fig. 9 Results of ANFIS model
for nitrates. a Load time

series—testing, b variation of
loads

Fig. 10 Results of ANFIS
model for phosphates. a Load

time series—testing, b variation
of loads
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Fig. 11 Results of ANFIS 1.5
model for silicates. a Load time
series—testing, b variation of
loads

Load

/1
0.5

50
Time
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Table 2 Validation results of ANFIS models

100 150

Previous discharge

Discharge

(b) Variation of load

Parameter r (training) r (testing) RMSE (training) RMSE (testing)
Sodium 0.98 0.79 0.03 0.14
Calcium 0.99 0.69 0.02 0.13
Magnesium 0.94 0.84 0.06 0.09
Bicarbonates 0.99 0.94 0.03 0.06
Chlorides 0.99 0.95 0.04 0.08
Sulphates 0.99 0.72 0.02 0.14
Nitrates 0.93 0.65 0.05 0.12
Phosphates 0.55 0.30 0.16 0.40
Silicates 0.80 0.76 0.11 0.12

low (falling stage of the river) conditions continue to
indicate the influence of previous flow on the present
loading conditions. The overall trends represent some
delayed effect on loads during the peak flow conditions and
during the falling stage of the river after the peak flow.
Such trends are possible once or twice in a year during the
wet season as such peaks occur once or twice a year.

Conclusion

The modeling approach presented in this paper uses fuzzy
inference system to establish the relationships between
loads and discharge in the river. Generalized ANFIS
models successfully explained the variation in loads for
different flow conditions in the river. The peak flow and
falling stage conditions indicated the influence of previous
flow on the load due to delayed effect in the river reach
under study. The correlation coefficients in the range of
0.6-0.9 and low RMSE indicate suitability of the models to
the study area. The results presented in this paper clearly
indicate that ANFIS approach can be used for forecasting
non-conservative dissolved pollutants generally found in
river waters. However, the greatest difficulty in using these
models can be the inputs used to drive the model. This data
driven approach is suggested for situations where model

inputs are available. If the model inputs are carefully
determined, the size of the network and training time can
be reduced. As mathematical relationship between the
cause and effect is not necessary in ANFIS models, rule
arguments include unknown relationships which are not
possible in conceptual models.
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