
ORIGINAL CONTRIBUTION

Modelling Dissolved Pollutants in Krishna River Using Adaptive
Neuro Fuzzy Inference Systems

C. S. Matli • N. V. Umamahesh

Received: 13 June 2012 / Accepted: 26 March 2014 / Published online: 16 May 2014

� The Institution of Engineers (India) 2014

Abstract Water quality models are used to describe the

discharge concentration relationships in the river. Number

of models exists to simulate the pollutant loads in a river,

of which some of them are based on simple cause effect

relationships and others on highly sophisticated physical

and mathematical approaches that require extensive data

inputs. Fuzzy rule based modeling extensively used in

other disciplines, is attempted in the present study for

modeling water quality with respect of dissolved pollutants

in Krishna river flowing in Southern part of India. Adaptive

Neuro Fuzzy Inference Systems (ANFIS), a recent devel-

opment in the area of neuro-computing, based on the

concept of fuzzy sets is used to model highly non-linear

relationships and are capable of adaptive learning. This

paper presents the results of the application of ANFIS for

modeling dissolved pollutants in the Krishna River. The

application and validation of the models is carried out

using water quality and flow data obtained from the mon-

itoring stations on the river. The results indicate that the

models are quite successful in simulating the physical

processes of the relationships between discharge and

concentrations.
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Introduction

Discharge—concentration relationships generally are used

for water quality studies in the river basins. Traditionally,

this task has been accomplished using methods ranging

from those that are based on empirical relationships to

those that are based on cause-effect relationships. In using

models that are based on cause-effect relationships, rigor-

ous mathematical equations are often used to describe the

physical, chemical and biological processes. Solutions of

such models often require vast data and it is often neces-

sary to estimate input parameters specific to the basin being

modeled. In many instances (especially in large river

basins), a large number of hydrological parameters are

involved and there is no unique way of estimating them.

However, they are to be determined subjectively, based on

the judgment and the effect is normally manifested in the

model output. Hence, these deterministic models, which

require large quantity of data in terms of model parameters,

have limited applicability in basins where there are data

constraints. Therefore, models which are easy to handle

and have minimum data requirement are often sought to

solve problems where data availability is limited and is

difficult to obtain data by experimental investigations

and monitoring, which would be very expensive and

cumbersome [14].

Recently mathematical models using fuzzy variables

rather than numerical variables are encroaching into water

quality related studies. In water quality modeling, there are

many domains which can be best characterized by lin-

guistic terms rather than directly, by numbers. For instance,

a modeler in a particular domain will employ terms such as

large flows and low flows to describe the discharge con-

ditions in a river. The problem faced, then, is how to deal

with what has been described—imprecision, uncertainty
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and in particular linguistic terms that cannot be defined

exactly. A fuzzy rule based modeling is qualitative mod-

eling approach by which one can describe the system

behavior using a natural language [1]. By utilizing fuzzy

logic based approach in modeling cause-effect, relation-

ships are described verbally rather than using governing

physical relationships. However, in this approach, some of

the causes that are considered for physically based models

are omitted and some of the causes not considered for in

those physical models (because of nature of generalization

or unavailability of known relationships) can be included.

The researchers have demonstrated the applicability of

fuzzy rule based approaches in hydrological modeling [2–

5]. It has been reported earlier the use of artificial neural

networks as a viable means of forecasting water quality

parameters in River Murray, South Australia [6].

The purpose of this work is to report the results of water

quality modeling study based on fuzzy rule based approach

(ANFIS). An attempt is made to model discharge—con-

centration relationships of conservative dissolved pollu-

tants in the river.

A Review of ANFIS

The concepts of fuzzy logic introduced by Zadeh in 1964

can be used to model problems of uncertainty and impre-

cision. A Fuzzy Inference System (FIS) is a popular

computing frame work based on concepts of fuzzy logic.

Adaptive Neuro-Fuzzy Inference System (ANFIS) incor-

porated the concepts of neural network learning in FIS.

ANFIS model has the capability of approximating any non-

linear function and thus is considered as universal ap-

proximator [7]. ANFIS models are being employed in wide

variety of applications of modeling, decision making, sig-

nal processing and control. The basic concepts and features

of ANFIS are described in the following sections.

Fuzzy Logic

Zadeh introduced fuzzy sets in 1964 as an approach to

handling vagueness or uncertainty and, in particular, lin-

guistic variables. Classical set theory allows for an object

to be either a member of the set or excluded from the set.

Fuzzy sets differ from classical sets in that they allow for

an object to be a partial member of a set [8]. Fuzzy sets are

defined by a membership function. For any fuzzy set A, the

function lA(x) represents the membership function for

which l indicates the degree of membership that x, of the

universal set X, belongs to set A and is, usually, expressed

as a number between 0 and 1:

0 \ lA xð Þ\1 ð1Þ

Fuzzy sets can either be discrete or continuous. Fuzzy

sets allow us to represent vague concepts expressed in

natural language. The representation depends not only on

the concept, but also on the context in which it is used.

Several fuzzy sets representing linguistic concepts such as

low, medium, high and so on are often employed to define

states of a variable. Such a variable is usually called a

Fuzzy variable. Membership functions can have any shape.

Trapezoidal, triangular, bell shaped functions are

commonly used to represent membership functions.

Adaptive Neuro-Fuzzy Inference System (ANFIS)

Various types of models are reported in literature for dif-

ferent categories of neuro-fuzzy integration. During the

past few years, integration of neural networks and fuzzy

logic has emerged as one of the most active and fruitful

areas of research in the fields of fuzzy logic and neural

networks. Several paradigms of neural fuzzy modeling are

available in the literature, such as fuzzy inference networks

[9], fuzzy aggregation networks [10], neural network dri-

ven fuzzy reasoning [11], fuzzy modeling networks [12]

and ANFIS [13]. The concepts of Adaptive Neuro Fuzzy

Inference system (ANFIS) proposed by the researchers are

discussed in various literature [13]. Among the various

NFS based models proposed in literature, ANFIS is popular

and has potential applications in a wide variety of engi-

neering problems. ANFIS, proposed by the literatures is

based on the first-order Sugeno fuzzy model [13]. The

neural network paradigm used is a multi-layer feed-for-

ward back propagation network.

For simplicity, let the fuzzy inference system under

consideration be assumed to have two inputs, x and y, and

one output z as presented in Fig. 1. For a first-order Sugeno

fuzzy model, a typical rule set with two fuzzy if then rules

can be expressed as,

In the ANFIS, nodes in the same layer have similar

functions as described below. The output of node i in layer

l is denoted as Oli.

Layer 1: Every node in this layer is an adaptive node

with a node output defined as,

O1;i ¼ lA xð Þ for i ¼ 1; 2 ð2Þ

O1;i ¼ lBi�2 yð Þ for i ¼ 3; 4 ð3Þ

where x (or y) is the input to the node; and Ai (or Bi-2) is

fuzzy set associated with this node.

Layer 2: Every node in this layer is a fixed node labeled

P, which multiplies the incoming signals and outputs the

product. For instance

O2;i ¼ wi ¼ lAi xð Þ � lBi yð Þ; i ¼ 1; 2 ð4Þ

Each node output represents the firing strength of a rule.
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Layer 3: Every node in this layer is a fixed node labeled

N. The ith node calculates the ratio of ith rule’s firing

strength to the sum of all rules’ firing strengths.

O3;i ¼ Wi ¼
wi

w1 þ w2

; i ¼ 1; 2 ð5Þ

Layer 4: Every node in this layer is an adaptive node

with a node function

O4;i ¼ W ifi ¼ W i pix þ qiy þ rið Þ ð6Þ

where Wi is output of layer 3 and {pi, qi, ri} is the parameter

set.

Layer 5: The single node in this layer is fixed node

labeled
P

, which computes the overall output as the

summation of the incoming signals

O5:1� ¼ overall output ¼
X

i

Wifi ¼
P

i wifiP
wi

ð7Þ

Thus, an ANFIS network is functionally equivalent to a

Sugeno fuzzy model. This network can easily be extended

to a Sugeno fuzzy model with multiple inputs and rules.

The output f of a ANFIS network shown in Fig. 1 can be

written as:

f ¼ w1

w1 þ w2

f1 þ
w2

w1 þ w2

f2

¼ W1f1 þW2f2

¼ W1xð Þp1 þ W1yð Þq1 þ W1ð Þ r1 þ W2xð Þp2

þ W2yð Þq2 þ W2ð Þr2

ð8Þ

where p1, q1, r1, p1, q2 and r2 are the parameters of the

model.

From Eq. (7), it is observed that the output is linear in

the parameters p1, q1, r1, p2, q2 and r2, which are known as

consequent parameters.

The nodes in layer 1 are adaptive nodes with a node

function given by Eq. (1). The output, O1,i. Of node i in

this layer is the membership grade of a fuzzy set A (=A1,

A2, B1 or B2) and it specifies the degree to which the given

input x (or y) satisfies the quantifier A. The membership

function for A can be any appropriate parameterized

membership function. If generalized bell function is used,

the membership function is given by,

lAi ¼ xð Þ ¼ 1

1þ x�ci

ai

�
�
�

�
�
�
2bi

ð9Þ

where {ai, bi, ci} is the parameter set. These parameters are

referred as premise parameters. The output of the network f

is obviously non-linear in premise parameters. Thus the set

of total parameters S can be partitioned into two subsets: a

set of premise (non linear) parameters S1 and a set of

consequent (linear) parameters S2.

The researchers have shown that ANFIS has unlimited

approximation power for matching any non linear function

arbitrarily well, provided the number of rules is not restricted

[7]. Some researchers have proposed a hybrid learning

algorithm for training ANFIS [13]. The learning takes place

in two stages. In the forward pass of the hybrid learning

Fig. 1 First order Sugeno

Fuzzy model and ANFIS

network [13]. Rule 1: If x is A,

and y is B, then

f1 = p1x ? q1y ?r1, Rule 2: If

x is A2 and y is B2 then

f2 = p2x ?12y ? r2
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algorithm, functional signals go forward till layer 4 and the

consequent parameters are identified by the least squares

estimate. In the backward pass, the error rates propagate

backward and the premise parameters are updated by the

gradient descent, similar to back propagation algorithm.

Description of the Study Area

Krishna is one of the major rivers of peninsular India along

with the Godavari and Kaveri Rivers. The Krishna origi-

nates as a small stream in the Western Ghats and traverses

eastwards 25 km through the rocky terrains of the Deccan

traps. Finally it drains into Bay of Bengal with two major

dams at Srisailam and Nagarjuna Sagar. The Deccan traps

are considered to be the second most extensive geological

formation of the peninsular India, next only to Archean

igneous—metamorphic province in south India. The

lithology of the upper river basin is almost entirely tho-

leiitic basalts, with scattered alkaline/saline soils, laterites

and calcareous tutas. Down the basin in Karnataka and

Andhra Pradesh, the basin includes granites, ganitoids,

green stones, schists, amphibolites and gneisses.

The river Krishna drains an area of 258,948 km2, which is

nearly 8 % of the total geo-graphical area of the country. The

total population in the basin as per 1991 causes has been

estimated as 60.78 million. The river and its tributaries flow

through different terrain having varied land use activities,

soil conditions, vegetation and agricultural practices. The

water potential of the River Krishna and its tributaries are

mainly used for drinking, industries, irrigation and power

generation. The average annual rainfall in the river basin is

about 780 mm. About 90 % of the rainfall occurs during the

wet season (June–October) and during the rest of the year

(dry season) there is very little rainfall with no regular pat-

tern. Typical tropical climate prevails in the basin for better

part of the year. For practical considerations two seasons: dry

(December–May) and wet (June–November) seasons exist

in the area. The predominant soils in the area are sandy loams

and loams. The study area presented in Fig. 2, in particular is

part of the Krishna River reach between two monitoring

stations: Pondugala (upstream, No. 7 in the Fig. 2) and

Wadenapalle (downstream, No. 5 in the Fig. 2). The river

reach between the monitoring stations is approximately

80 km long along the river. In addition to other districts,

major parts of Nalgonda and Guntur districts drain into this

part of the Krishna river reach in Andhra Pradesh.

Results and Discussions

The river water quality data for the years 1989–1994 is

used for training the ANFIS model and water quality for

the years 1994–1997 is used for testing of the developed

models. The normalized data is used for modeling and

testing purpose. Normalization is performed by dividing

loads and discharges by the corresponding maximum value

recorded during 1989–1994.

Discharge in the river is considered as fuzzy set A.

During the monsoon season the discharges vary largely

between 1,000 and 5,000 m3/s, and hence discharge is

classified into two fuzzy classes, namely low and high.

Generalized bell function given in Eq. 8 is used as mem-

bership function. The ANFIS models developed take two

inputs, discharge in the river in present time interval and in

the previous time interval, and one output, the concentra-

tion of the pollutant being modeled. The pollutant load at

any time is influenced by the load already existing and

what is contributed additionally to that of the previous

load. Thus each ANFIS model has four fuzzy if then rules

with 12 premise parameters and twelve consequent

parameters. Training of the ANFIS models is done with

water quality data of the monsoon season for 5 years. The

results of training in terms of ‘r’ and RMSE indicate the

success of the application of ANFIS models for that par-

ticular water quality parameter.

The pollutant concentrations/loads in the river depend

on the rainfall and catchment characteristics and thus the

runoff contribution from the drainage basin. The runoff in

turn influences the discharge and hence the load of the

pollutant. In utilizing fuzzy-rule based classification of

flows, the modeling approach helps in establishing rela-

tionship between discharge and pollutant load, which is

quite different from conventional water quality modeling

approaches. The researchers have shown that ANFIS has

the ability to model non-linear relationship through

FUZZY—IF–THEN rules [7]. ANFIS was proved to be

better than Artificial Neural Network (ANN) models in

mapping the input—output relationship. Hence, an attempt

is made in this study to use ANFIS to model complex

relation between discharge and pollutant loads.

The parameters ANFIS models developed for prediction

of pollutant loads are presented in Table 1. The pictorial

representation of results is presented in Figs. 3, 4, 5, 6, 7, 8,

9, 10, and 11. The results describe the models with respect

to the model architecture, parameters of the model, fuzzy

rules and applicability of the models. For each water

quality parameter considering the four fuzzy rules (Low–

Low, Low–High, High–Low and High–High), the twelve

consequent model parameters are determined with the

training data and presented in Table 1. Time series plots

(Figs. 3a 4a, 5a, 6a, 7a, 8a, 9a, 10a, and 11a) for testing

data are of great use in finding the applicability of the

models for the water quality parameters under question.

The influence of previous load on the present pollutant load

is not similar for the pollutants and the pictures presented

32 J. Inst. Eng. India Ser. A (January–March 2014) 95(1):29–38

123



(Figs. 3b 4b, 5b, 6b, 7b, 8b, 9b, 10b, and 11b) indicate the

variations for different water quality parameters.

The major dissolved cations (positively charged species

dissolved in water) in the river water are sodium (Na),

calcium (Ca), and magnesium (Mg). The major anions

(negatively charged species) are sulfate (SO4), chloride

(Cl), and bicarbonate (HCO3). Although most of the cat-

ions and anions exist as individual ions dissolved in the

river water (as Na?, Ca2?, Mg2?, SO4
2-, Cl-, and

HCO3
-), substantial concentrations of selected ions are

associated with one another (particularly calcium, magne-

sium, and sulfate which form the dissolved ion pairs CaSO4

and MgSO4). The formation of other ion pairs with sodium

and bicarbonates is also quite possible. In lieu of the above

discussion, time series plot for sodium, calcium, magne-

sium, bicarbonates, chlorides and sulpahtes (Figs. 3a, 4a,

5a, 6a, 7a, 8a) indicated good applicability of the ANFIS

models in describing the relation between flow and pollu-

tant load. The concentration of dissolved silica, which is

reported as SiO2, is usually in the range 10–24 mg/L in

Krishna River water. Essentially all of the silica dissolved

in the river water occurs as undissociated silicic acid

(H4SiO4). Time series plots of silica (Fig. 11a) indicated

good applicability of the models. Time series plots for

Nitrates (Fig. 9a) did not follow the actual loads closely

indicating that the limitation of the model. This is perhaps

due to the fact that the formation of nitrate—N in the river

takes a long time. With the limited data that was available

the developed model for Phosphorous could not explain the

relation between flow and load. Hence, the time series plots

for phosphorous (Fig. 10 a) were spread all over with out

any pattern.

The correlation coefficients (r) and root mean squared

Error (RMSE) for training and testing are presented in

Table 2. The correlation coefficients between observed and

predicted loads during testing phase is observed to be very

close to that obtained during training phase for water

quality parameters, namely, magnesium, bicarbonates and

chlorides. The correlation coefficient for sodium, calcium,

sulphates, nitrates and silicates is comparatively lower in

testing phase. However, the correlation coefficients

obtained for these water quality parameters in both training

and testing phases is reasonably satisfactory indicating the

applicability of ANFIS model. The correlation coefficients

for phosphates both in training and testing phases are very

low indicating that the inability of ANFIS to model phos-

phate loads. The possible reason for this perhaps may be

due to trace level phosphate concentrations and hence, very

low loads for considerable period of time. The RMSE

values presented in Table 2 indicate the errors in compu-

tations using the models. For all the parameters except for

phosphates the error is small representing good applica-

bility of the developed ANFIS models.

The load variations corresponding to the four rules for

the river discharge in the present and previous time inter-

vals (L–L, L–H, H–L and H–H) are presented in Figs. 3b

4b, 5b, 6b, 7b, 8b, 9b, 10b, and 11b. The results presented

in the 3-D plots represent a particular possible flow con-

dition during the wet season (low = 1000 m3/s and

high = 5000 m3/s). However, there can be several such

Fig. 2 Location of monitoring

stations in the basin
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combinations possible in the real situation and hence, the

influence varies depending on the flow variations. In gen-

eral, the influence of low–low and low–high conditions is

not considerable on loading pattern. For most part of the

wet season the flow conditions are low–low (as flow fluc-

tuates between 1000 m3/s and about 1500 m3/s) and this

condition indicates lower loading conditions. As the low–

low condition is perhaps partial continuation of the earlier

flow conditions the influence on load is not significant.

Significant effect of the condition low–high (rising stage) is

not indicated in the results, as a high of 5,000 m3/s is

reached after considerable period of low–low conditions.

This is possibly due to mixing and dilution being dominant

in the initial rising stage of the flow. Considerable

increases in loading pattern are observed for high–high

conditions (at peak flow conditions) in the river. The

influence of previous high flow on present high flow rep-

resents a real situation similar to doubling the pollutant

loads and hence, for all the pollutants the loads at peak flow

conditions are quite high. However, the results for high–

Table 1 Parameters of ANFIS models

Parameter Rule Discharge (X1) Previous discharge (X2) Z = pX1 ? qX2 ? r

p q R

Sodium 1 Low Low -0.19 1.52 -0.03

2 Low High 0.98 11.40 -10.29

3 High Low 0.32 -1.46 0.06

4 High High -3.31 -10.52 11.42

Calcium 1 Low Low -2.39 0.13 -1.81

2 Low High 7.09 -0.23 15.86

3 High Low 0.07 2.22 2.89

4 High High 0.16 2.14 -9.34

Magnesium 1 Low Low -0.14 0.63 0.11

2 Low High -1.27 13.40 -9.24

3 High Low 0.15 0.93 -0.18

4 High High -0.30 -84.70 65.85

Bicarbonates 1 Low Low -3.13 -1.73 -10.04

2 Low High 4.98 -18.33 21.35

3 High Low 0.01 1.03 0.28

4 High High -0.01 1.47 -0.57

Chlorides 1 Low Low 2.38 -0.29 0.66

2 Low High -7.44 1.75 -1.93

3 High Low 2.90 1.66 -3.47

4 High High -8.48 -0.29 10.16

Sulphates 1 Low Low 1.43 0.53 0.47

2 Low High 2.86 7.23 -4.18

3 High Low 1.84 0.41 -2.04

4 High High 4.08 -5.89 0.39

Nitrates 1 Low Low -0.97 -0.46 1.95

2 Low High 1.41 3.87 -2.95

3 High Low -22.75 22.38 -8.28

4 High High 27.36 -50.24 17.91

Phosphates 1 Low Low 0.25 2.58 4.09

2 Low High -1.19 10.52 -11.37

3 High Low 7.50 3.077 2.39

4 High High -16.03 21.25 -10.52

Silicates 1 Low Low -95.68 29.74 15.09

2 Low High 182.10 20.90 -41.15

3 High Low 0.033 10.43 3.76

4 High High 0.05 13.54 -13.29
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Fig. 3 Results of ANFIS model

for sodium. a Load time

series—testing, b variation of

loads

Fig. 4 Results of ANFIS model

for calcium. a Load time

series—testing, b Variation of

loads

Fig. 5 Results of ANFIS model

for magnesium. a Load time

series—testing, b variation of

loads

Fig. 6 Results of ANFIS model

for bicarbonates. a Load time

series—testing, b variation of

loads

J. Inst. Eng. India Ser. A (January–March 2014) 95(1):29–38 35

123



Fig. 7 Results of ANFIS model

for chlorides. a Load time

series—testing, b variation of

loads

Fig. 8 Results of ANFIS model

for sulphates. a Load time

series—testing, b variation of

loads

Fig. 9 Results of ANFIS model

for nitrates. a Load time

series—testing, b variation of

loads

Fig. 10 Results of ANFIS

model for phosphates. a Load

time series—testing, b variation

of loads
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low (falling stage of the river) conditions continue to

indicate the influence of previous flow on the present

loading conditions. The overall trends represent some

delayed effect on loads during the peak flow conditions and

during the falling stage of the river after the peak flow.

Such trends are possible once or twice in a year during the

wet season as such peaks occur once or twice a year.

Conclusion

The modeling approach presented in this paper uses fuzzy

inference system to establish the relationships between

loads and discharge in the river. Generalized ANFIS

models successfully explained the variation in loads for

different flow conditions in the river. The peak flow and

falling stage conditions indicated the influence of previous

flow on the load due to delayed effect in the river reach

under study. The correlation coefficients in the range of

0.6–0.9 and low RMSE indicate suitability of the models to

the study area. The results presented in this paper clearly

indicate that ANFIS approach can be used for forecasting

non-conservative dissolved pollutants generally found in

river waters. However, the greatest difficulty in using these

models can be the inputs used to drive the model. This data

driven approach is suggested for situations where model

inputs are available. If the model inputs are carefully

determined, the size of the network and training time can

be reduced. As mathematical relationship between the

cause and effect is not necessary in ANFIS models, rule

arguments include unknown relationships which are not

possible in conceptual models.
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