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Abstract. The creeping flow of an incompressible viscous liquid past and through a porous approximate
sphere with an impermeable core is considered. The flow in the free-fluid region outside the sphere is
governed by the Stokes equation. The flow inside the porous sphere is governed by Brinkman’s model. The
boundary conditions used at the porous-liquid interface of the clear fluid and porous region are continuity
of the velocity, continuity of the pressure and Ochoa-Tapia and Whitaker’s stress jump condition. On the
surface of the impermeable core no slip condition is used. An exact solution for the problem is obtained.
An expression for the drag on the porous approximate spherical particle is obtained. A comparison is made
with our earlier results on the particle with the fluid core. The variation of drag is studied with respect to
permeability and stress jump coefficient. It is observed that the stress jump condition, characterized by a
stress jump coefficient, has a significant influence on the drag acting on a particle.

1 Introduction

Several axi-symmetric flow problems past and within porous particles of different geometries have been considered
in the last few decades using Stokes’ version of the Navier-Stokes equations for the flow outside the porous particles
and Darcy’s law or Brinkman’s equation to describe the flow within the porous particles. While working with the
problems of flow past porous particles, the specification of boundary conditions at a porous-liquid interface is not
trivial and different boundary conditions are proposed in the literature [1–6]. When the Brinkman equation is used
to model flow in the porous region, Neale and Nader [4] suggested to impose continuity of both stress and velocity
at the interface. However, by applying volume average technique, Ochoa-Tapia and Whitaker [5,6] developed a much
different interfacial boundary condition, which accounts for a jump in the stress at the interface. They derived the
stress jump boundary condition as

ε−1 ∂up

∂y
− ∂ul

∂y
=

σ√
k

up,

where up, ul are tangential velocity components in the porous region and the liquid region, respectively, y is the
ordinate normal to surface, ε is the porosity, k is the permeability of the homogeneous portion of the porous region,
and σ is the stress jump coefficient.

Srivastava and Srivastava [7] studied the Stokes flow through a porous sphere with a solid core using the stress jump
condition at the fluid-porous interface and matched Stoke’s and Oseen’s solutions far away from the sphere. They con-
cluded that drag on a porous sphere decreases with increasing permeability of the medium. Recently, Srinivasacharya
and Krishna Prasad discussed the creeping flow past a porous approximate sphere [8] and spherical shell [9]using
Ochoa-Tapia and Whitaker’s boundary conditions.

In this paper, we consider creeping flow past a porous approximate sphere with an impermeable core using a
slip condition at the interface proposed by Ochoa-Tapia [5,6]. The analysis is an extension of that presented by
Srinivasacharya and Kishna Prasad [9]. The difference between the problems considered in [9] and the present paper
is the flow in the core region. The flow examined is axially symmetric in nature. The flow equations are based on the
Stokesian version of the Navier-Stokes equations in the general viscous flow regime and the use of Brinkman’s model in
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Fig. 1. The physical situation and the coordinate system (m = 20, a = 1, b = 0.6).

the porous region. The drag experienced by the porous approximate spherical shell is evaluated. The variation of drag
is studied with respect to geometric and permeability parameters. The reason for choosing this particular problem is
two fold: First, it includes two different interfaces of interest, namely, an interface between porous and clear media at
the external surface of the approximate sphere and an interface between porous and impermeable media at the core’s
boundary. Second, it is of significance in the processing of solid particles in a chemical reactor such as new catalytic
solid-gas reaction: particularly limestone or dolomite sulphuring, and oil shale combustion.

2 Formulation of the problem

Consider the creeping flow of an incompressible Newtonian viscous fluid past a porous approximate sphere with an
impermeable core of average radius a having a solid concentric approximate spherical core of average radius b (a > b)
inside it (see fig. 1). Let (r, θ, φ) denote a spherical polar coordinate system with (er,eθ,eφ) unit basis vectors.
Assume that there is a uniform velocity U far away from the shell along the axis of symmetry θ = 0. Let the equation
of the porous approximate sphere be r = a[1 +

∑∞
m=2 βmϑm(ζ)] ≡ ra and the equation of the impermeable core be

r = b[1 +
∑∞

m=2 γmϑm(ζ)] ≡ rb where βm and γm are small, ζ = cos θ and ϑn(ζ) is the Gegenbauer function [10] of
the first kind of order n and degree −1/2. If all the βm and γm are zero, the approximate spherical shell reduces to a
spherical shell of external and internal radii a and b. The formulation follows closely that in [9].

2.1 Governing equations

Following [9], the governing equations of motion for the region outside the approximate sphere (r ≥ ra) are

∇ · q (1) = 0, (1)

∇p (1) + μ∇×∇× q (1) = 0, (2)

where q (1) is the volumetric average of the velocity, μ is the coefficient of viscosity, and p (1) is the average of the
pressure.

For the porous region (rb ≤ r ≤ ra), the equations of motion are

∇ · q (2) = 0, (3)

∇p (2) +
μ

k
q (2) + μ∇×∇× q (2) = 0, (4)

where q (2) is the volumetric average of the velocity, p(2) is the average of the pressure and k is the permeability of the
porous medium.

Since the flow is in the meridian plane and is axially symmetric, all the physical quantities are independent of φ.
Hence we assume that

q (i) = u(i)(r, θ)er + v(i)(r, θ)eθ, i = 1, 2. (5)
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In view of the incompressibility condition ∇·q (i) = 0, i = 1, 2, we introduce the stream function ψ(i)(r, θ), i = 1, 2
through

u(i) = − 1
r2 sin θ

∂ψ(i)

∂θ
, v(i) =

1
r sin θ

∂ψ(i)

∂r
, i = 1, 2. (6)

Eliminating the pressure from (2) and (4), and substituting (6) in the resulting equations, we get the following
dimensionless equations for ψ(i):

E4 ψ(1) = 0, (7)

E2 (E2 − α2)ψ(2) = 0, (8)

where α2 = a2/k and E2 =
∂2

∂r2
+

(1 − ζ2)
r2

∂2

∂ζ2
is the Stokesian stream function operator.

2.2 Boundary conditions

To determine the flow velocity and pressure outside and within the porous approximate sphere, we use the following
boundary conditions at the surface of a porous body to link the different flow regimes. The continuity of velocity
components, continuity of pressure and stress jump conditions at the interface r = rb were considered in [9] whereas
no slip condition at r = rb is considered in this problem because of the impermeable core.

i) Continuity of velocity components on the boundary of the approximate sphere,

u(1)(r, θ) = u(2)(r, θ) and v(1)(r, θ) = v(2)(r, θ) on r = ra. (9)

ii) Continuity of pressure on the boundary,

p(1)(r, θ) = p(2)(r, θ) on r = ra. (10)

iii) Ochoa-Tapia’s stress jump boundary condition for the tangential stress,

∂v(2)

∂r
− ∂v(1)

∂r
=

σ√
k

v(2) on r = ra, (11)

where σ is the stress jump coefficient.
iv) On the impermeable core,

u(2)(r, θ) = 0 and v(2)(r, θ) = 0 on r = rb. (12)
Additionally, we have the regularity conditions at infinity,

lim
r→∞

u(1)(r, θ) = U cos θ, lim
r→∞

v(1)(r, θ) = −U sin θ (13)

and the condition that velocity and pressure must be nonsingular everywhere in the flow field.

3 Solution of the problem

Using the separation of variables, the solution of (7) (as given in [9]) which is regular at infinity, i.e., far away from
the shell and on the axis, is

ψ(1) =
[

r2 +
A2

r
+ B2 r

]

ϑ2(ζ) +
∞∑

n=3

[
An r−n+1 + Bn r−n+3

]
ϑn(ζ), (14)

and the solution of (8) (as given in [9]) is

ψ(2) =
[
C2 r2 +

D2

r
+ E2

√
r K3/2(αr) + F2

√
r I3/2(αr)

]
ϑ2(ζ)

+
∞∑

n=3

[
Cn rn + Dn r−n+1 + En

√
r Kn−1/2(αr) + Fn

√
r In−1/2(αr)

]
ϑn(ζ), (15)

where In−1/2(αr) and Kn−1/2(αr) denote the modified Bessel functions of the first kind and second kind of order
n − 1/2, respectively. The solutions are general solutions and are equivalent to those in [9].
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Using eqs. (14) and (15), the expressions for the pressure in the both flow regions are

p(1) = −B2

r2
P1(ζ) +

∞∑

n=3

Bn

(
6 − 4n

n

)

r−n Pn−1(ζ), (16)

p(2) = α2

[

C2 r − D2

2 r2

]

P1(ζ) + α2
∞∑

n=3

[

Cn
rn−1

n − 1
− Dn

r−n

n

]

Pn−1(ζ). (17)

The expression for stream functions (ψ(1), ψ(2)) and pressure distributions (p(1), p(2)) given in (14)–(17) are general
and equivalent to those in [9]. The difference in the two problems (present problem and [9])will be reflected in the
values of the arbitrary constants in those formulas.

3.1 Determination of arbitrary constants

The boundary conditions from eqs. (9)–(12) in terms of the stream function in dimensionless form are

ψ(1)(r, θ) = ψ(2)(r, θ), ψ
(1)
r (r, θ) = ψ

(2)
r (r, θ),

ψ
(2)
rr − ψ

(1)
rr = α σ ψ

(2)
r , p(1)(r, θ) = p(2)(r, θ),

⎫
⎬

⎭
on r = 1 +

∞∑

m=2

βm ϑm(ζ), (18)

ψ(2)(r, θ) = 0, ψ(2)
r (r, θ) = 0 on r = η

[

1 +
∞∑

m=2

γm ϑm(ζ)

]

, (19)

where η = b/a.
We develop the solution corresponding to the boundaries r = 1 + βmϑm(ζ) and r = η[1 + γmϑm(ζ)]. Assume that

the coefficients βm and γm are sufficiently small so that squares and higher powers of βm and γm can be neglected [10].
The comparison of the stream functions (14) and (15) with those obtained in case of flow of an incompressible viscous
fluid past a porous sphere [11], indicates that the terms involving An, Bn, Cn, Dn, En and Fn for n > 2 are the extra
terms which are not present in the case of a perfect sphere. The body that we are considering is an approximate sphere
and the flow generated is not expected to be much different from the one generated by flow past a porous sphere.
Also the coefficients An, Bn, Cn, Dn, En and Fn for n > 2 are of order βm and the coefficients Cn, Dn, En and Fn

for n > 2 are of order γm. Therefore, as in [12], while implementing the boundary conditions, we ignore the departure
from the spherical form and set in (18) r = 1 in the terms involving An, Bn, Cn, Dn, En and Fn for n > 2 and in (19)
r = η in the terms involving Cn, Dn, En and Fn for n > 2.

Using the observations made above and the boundary conditions (18) and (19) in the expressions (14) and (15)
and equating leading coefficients to zero in the resulting equations, we get a system of equations in A2, B2, C2, D2,
E2, and F2. The expressions for these constants are given in appendix A. Using the identities given in [10] (p. 142),
we get An = Bn = Cn = Dn = En = Fn = 0 for n �= m− 2,m,m + 2 and another system of equations in An, Bn, Cn,
Dn, En, and Fn for n = m − 2,m,m + 2. Solving this system of equations, we get the expressions for the arbitrary
constants An, Bn, Cn,Dn, En and Fn for n = m− 2,m,m+2. As the expressions for these constants are lengthy, they
have not been presented here.

In the case where the approximate spherical shell is given by r = a [1 +
∑∞

m=2 βm ϑm(ζ)] and r =
b [1 +

∑∞
m=2 γm ϑm(ζ)], we employ the above technique for each m and obtain the expressions for the stream functions

for the regions r ≥ ra and rb ≤ r ≤ ra by superposition of the expressions thus obtained. Thus, the stream functions
for the regions r ≥ ra and rb ≤ r ≤ ra are

ψ(1) =
[

r2 +
A2

r
+ B2 r

]

ϑ2(ζ) +
∞∑

m=2

{ [
Am−2 r−m+3 + Bm−2 r−m+5

]
ϑm−2(ζ)

+
[
Am r−m+1 + Bm r−m+3

]
ϑm(ζ) +

[
Am+2 r−m−1 + Bm+2 r−m+1

]
ϑm+2(ζ)

}
, (20)

ψ(2) =
[

C2 r2 +
D2

r
+ E2

√
r K3/2(αr) + F2

√
r I3/2(αr)

]

ϑ2(ζ)

+
∞∑

m=2

{[
Cm−2 rm−2 + Dm−2 r−m+3 + Em−2

√
r Km−5/2(αr)

+ Fm−2

√
r Im−5/2(αr)

]
ϑm−2(ζ) +

[
Cm rm + Dm r−m+1 + Em

√
r Km−1/2(αr)

+ Fm

√
r Im−1/2(αr)

]
ϑm(ζ) +

[
Cm+2 rm+2 + Dm+2 r−m−1 + Em+2

√
r Km+3/2(αr)

+ Fm+2

√
r Im+3/2(αr)

]
ϑm+2(ζ)

}
. (21)
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Fig. 2. Variation of the drag coefficient with permeability k1 with varying β; σ = 0, η = 0.6, and γ = 0.1 are fixed.

4 Drag on the body

The drag force acting on the porous approximate sphere in terms of the stream function is given by

D = 2πa2

∫ π

0

r3 sin3 θ
∂

∂r

(
1

r2 sin2 θ
E2ψ(1)

)

rdθ. (22)

Using eq. (14) and carrying out the integration, it is found to be

D = 4πμUa

[

B2 +
1
5

(
B

(1)
2 β2 + B

(2)
2 γ2

)
+

2
35

(
B

(3)
2 β4 + B

(4)
2 γ4

)]

, (23)

where B
(1)
2 , B

(2)
2 , B

(3)
2 and B

(4)
2 are given in appendix A. The same expression is found in [9] with the change in the

values of B
(1)
2 , B

(2)
2 , B

(3)
2 and B

(4)
2 .

It is interesting to note that although the boundary surface is given by r = a [1 +
∑∞

m=2 βmϑm(ζ)] and r =
b [1 +

∑∞
m=2 γmϑm(ζ)], only the coefficients β2, β4, γ2 and γ4, contribute to the drag. This implies that the drag on

the porous approximate sphere with impermeable core is relatively insensitive to the details of the surface geometry.
This is similar to the observations made by Srinivasacharya [12].

If βm = 0 and γm = 0 for m > 2, the approximate spherical shell reduces to a spherical shell and the drag is

D = 4πμUaB2. (24)

The expression for the drag experienced by a porous sphere (η = 0) with continuity of tangential stress (σ = 0) is

D =
12πμUaα2(−α cosh α + sinhα)

α(3 + 2α2) cosh α − 3 sinh α
, (25)

which agrees with the porous sphere case derived by Brinkman [13], Neale et al. [14] and Qin and Kaloni [15]. The
agreement with (25) and [13], [14] and [15] was pointed out in the flow past a porous approximate spherical shell [9].

The variation of the drag coefficient DN = D/(4πμUa) versus permeability k1(= 1/α2) for fixed values of the
outer deformation parameter β (β2 = β4 = β), and inner deformation parameter γ (γ2 = γ4 = γ) with continuity
of the stress (σ = 0) is shown in figs. 2 and 3. Figure 2 shows the variation of the DN with k1 for fixed values of β
when the inner sphere is perturbed γ = 0.1. It is observed that the drag coefficient is decreasing as the permeability
k1 is increasing. There is an increase in the DN as the deformation parameter of the outer sphere β is increasing. It
is interesting to note that the DN on the porous sphere with an impermeable core is less than that of the DN on the
porous approximate sphere with an impermeable core. Figure 3 presents the variation of the DN versus k1 with the
deformation of the inner sphere γ when the outer sphere is deformed β = 0.15. As γ increases, there is a slight decrease
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Fig. 3. Variation of the drag coefficient with permeability k1 with varying γ; σ = 0, η = 0.6, and β = 0.15 are fixed.
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Fig. 4. Variation of the drag coefficient with permeability k1 with varying σ; β = 0.15, γ = 0.1, and η = 0.6 are fixed.

in the DN . These are in tune with the observations made in ref.[9]. Therefore, the effects of permeability parameter
k1 and deformation of outer sphere β on the drag coefficient are relatively insensitive to the core region (fluid core or
impermeable core) of the approximate sphere.

The effect of the stress jump coefficient σ and permeability k1 on the drag coefficient DN at the porous-liquid
interface is plotted in fig. 4. The values of σ are taken in the range −1 to 1 as proposed by Ochoa-Tapia and
Whitaker [5,6]. The validity of these values of σ along with the combination of other parameters and permeability is
examined for the present problem so that the drag experienced by the porous particle give a physical significance. It
is observed that the drag coefficient DN is decreasing as the σ is increasing. The DN is decreasing as k1 is increasing
when there is a jump in the stress at the boundary. There is no change in the behavior of the drag on the approximate
sphere with impermeable core for different values of σ unlike the drag on the approximate sphere with fluid core [9].

Figures 5 and 6 depict the variation of the drag coefficient DN with permeability k1 for various values of the
separation parameter η for fixed values σ = −0.9 and σ = 0.9, respectively. As η tends to 1, i.e., the distance between
the solid core and the outer boundary of the porous envelope (or annulus) decreases, the porous particle with solid core
becomes as a solid particle except at the deformations of the solid core and porous envelope. As η tends to 0, the porous
particle with solid core becomes equivalent to a particle that is porous throughout. When the stress jump coefficient
σ is negative, it is observed that increasing η (i.e., decreasing the thickness of the porous region) increases the drag
coefficient and the drag coefficient decreases as the permeability k1 increases. But, when the stress jump coefficient σ
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Fig. 5. Variation of the drag coefficient with permeability k1 with varying η; β = 0.15, γ = 0.1, and σ = −0.9 are fixed.
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Fig. 6. Variation of the drag coefficient with permeability k1 with varying η; β = 0.15, γ = 0.1, and σ = 0.9 are fixed.

is positive, the drag becomes negative for low values of the separation parameter η < 0.3 and the drag increases as
the permeability increases. Therefore, it is found that the variation of drag not only depends on permeability but also
on the stress jump coefficient and separation parameter.

5 Conclusions

An exact solution for the problem of the creeping flow of an incompressible viscous liquid past a porous approximate
sphere with an impermeable core is obtained by considering Brinkman’s model in the porous region and Stokes’
equations in the liquid region. At the porous-liquid interface Ochoa-Tapia’s stress jump boundary condition, the
continuity of the normal velocity and the continuity of the pressure have been used. An expression for the drag on
the porous approximate spherical shell is obtained. It is observed that the drag coefficient on the porous sphere with
an impermeable core is less than that on the porous approximate sphere with an impermeable core as in the case of
drag on approximate sphere with fluid core [9]. The drag is decreasing as the permeability is increasing. The drag is
decreasing as the stress jump coefficient σ is increasing. The drag on approximate sphere with impermeable core is
always positive for all the values of k1 and σ, but drag on approximate sphere with fluid core is negative for positive
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values of σ and beyond certain value of k1 [9]. It is found that there is a significant effect of the stress jump coefficient
σ on the hydrodynamic drag. Therefore, one has to consider the stress jump in the tangential stress components while
studying viscous flow problems involving the Brinkman equation in porous media and Stokes’ equation in a free-flow
region, which has a significant impact on the physical problem.

Appendix A.

The expressions for the constants A2, B2, C2, D2 and F2 are

A2 =
(
− 3 η2 (2α + (−4 + α2)σ) z1 + 6

√
η (α − 2σ) z2 +

(
− 12 η3/2 z3 + (12 + α2(2 + η3)) z4 + 3α η2 z6

)
(α + σ)

+α
(
− α (2 + η3) (2 + α σ) + 4 (−1 + η3)σ

)
z5

)
/(2Δ),

B2 = −3α
(
3 η2 ω1 + α (2 + η3)ω2

)
/(2Δ),

C2 = 3
(
ω2 − η3/2 (α + σ) z3

)
/Δ,

D2 = −3 η2
(
3ω1 + α η ω2 + 2α (α + σ) η−1/2 z3

)
/(α Δ),

E2 =
(
3 (α + σ)

(
α (2 + η3) I1/2(αη) + 3

√
η (I3/2(α) − η3/2 I3/2(αη))

)
− 9α σ

√
η I1/2(α)

)
/(α Δ),

F2 =
(
3 (α + σ)

(
α (2 + η3)K1/2(αη) − 3

√
η (K3/2(α) − η3/2 K3/2(αη))

)
− 9α σ

√
η K1/2(α)

)
/(α Δ),

(A.1)
where

z1 = I1/2(α)K3/2(αη) + I3/2(αη)K1/2(α), z2 = I1/2(α)K3/2(α) + I3/2(α)K1/2(α),

z3 = I3/2(αη)K1/2(αη) + I1/2(αη)K3/2(αη), z4 = I3/2(α)K1/2(αη) + I1/2(αη)K3/2(α)

z5 = I1/2(α)K1/2(αη) − I1/2(αη)K1/2(α), z6 = I3/2(α)K3/2(αη) − I3/2(αη)K3/2(α),

ω1 = −z1 α σ + z6 (α + σ) , ω2 = −z5 α σ + z4 (α + σ) ,

Δ = 3 η2
(
α + σ (1 − α2)

)
z1 +

(
−3

√
η (z2 + η z3) + (3 + α2 (2 + η3)) z4 + 3α η2 z6

)
(α + σ)

+
(
α2 (2 + η3) (1 − α σ) + α σ (−1 + η3)

)
z5.

(A.2)

The expressions for the constants B
(1)
2 , B

(2)
2 , B

(3)
2 and B

(4)
2 appearing in eq. (23) are

B
(1)
2 = (α (S1 + S2 + S3) + S4) /(Δ), B

(2)
2 = α (S5 + S6) /(η3/2 Δ),

B
(3)
2 = − (α (S1 + S2 + S3) − 4S4) /(4Δ), B

(4)
2 = α (S5 + S6) /(4 η3/2 Δ),

⎫
⎬

⎭
(A.3)

S1 = 3
( (

3 η2 (−α z1 + z6) + α (2 + η3) (z4 − α z5)
)

(α + σ) + 3α2 √η z2

)(
α (2 + η3) (ω2 + 2 z5)

+ 3 η2 (ω1 + 2 z1) − 6 η3/2 z3

)
/(α Δ),

S2 =
(
3

(
3α3 η2 z1 + 3α

√
η z2 + α4 (2 + η3) z5

)
σ − 3α (1 + α2) (2 + η3) (α + σ) z4

− 9 η2 (1 + α2) (α + σ) z6

)(
3 η2 ω1 + α (2 + η3)ω2

)
/(αΔ),

S3 = 3
(
3α η2 (2σ + α (2 + σ(α + 2σ))) z1 − 3α2 √η (2 + σ2) z2 − 6α2 η3/2 σ (α + σ) z3 − α (α + σ)

(
(2 + α2) (2 + η3)

+α σ (−4 + η3)
)

z4 + α2
(
(2α + (2 + α2)σ) (2 + η3) +2α (−1 + η3)σ2

)
z5 − 3 η2 (α + σ) (2 + α(α + σ)) z6

)

(
3 η2 (z1 − η−1/2 z3) + α (2 + η3) z5

)
/(αΔ),

S4 = 9α2
(
ω2 − η3/2 (α + σ)z3

)(
− 3 η2 σ (z1 − η−1/2 z3) + 3 (α + σ) (

√
η z2 − z4) − α σ (−1 + η3) z5

)
/(Δ),

S5 = − 3
(
3 η (ω1 + α η ω2) − 2α

√
η (−1 + η3) (α + σ) z3

)(
3 η3/2 (ω1 + α η ω2) − 2α (−1 + η3)(α + σ)z2

)
/(α Δ),

S6 = 3
(
3
√

η ω1 + α (2 + η3) (α + σ) z3

)(
3 η5/2 ω1 + α η (2 + η3) (α + σ) z2

)
/(α

√
η Δ).
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