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Estimation of loss factors of a constrained
layer plate using viscoelastic layer
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Abstract

A finite element method is developed and validated for the estimation of loss factors of a viscoelastically damped plate.
Viscoelastic layer is used as constrained layer and is sandwiched between an aluminum base plate and a constraining layer.
Frequency-dependent material properties are used for the viscoelastic material in the finite element model. The derived
dynamic equations of motion are used to carry out harmonic analysis to determine the natural frequencies and loss
factors of sandwich plate and validated with experimental results for cantilever boundary condition. The validated finite
element model is then used to estimate the loss factors of sandwich plate with various boundary conditions and different
thicknesses of constraining and constrained layer for a given base plate thickness. The results show that the loss factor is
maximum for a constraining layer to sandwich plate thickness ratio of 0.40-0.45 and is independent of boundary
condition. The loss factor increases with increase in thickness of the viscoelastic layer. The loss factor increases for

higher mode for all boundary conditions.
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Introduction

Viscoelastic materials (VEM) are being widely used in
aerospace structures to suppress vibrations. One of
the effective methods of using VEM to damp out
the vibration is in the form of constrained layer,
popularly known in the literature as constrained
layer damping (CLD). Energy absorbing polymer
(EAP) is the VEM used in the present work. In
CLD, viscoelastic layer is glued between base and
constraining layer plate. Flexural vibrations of con-
strained layer cause shearing strain in the viscoelastic
layer which dissipates energy and thereby reduce
vibrations. The growing use of such structures has
motivated many researchers to study sandwich struc-
tures. Adding viscoelastic layer to a structure and pre-
dicting the response is a challenging task. This is
because of the EAP which is viscoelastic in nature
and has frequency- and temperature-dependent
material properties.

The fundamental work in this field was pioneered
by Ross et al." who used a three layer model to predict
damping in plates with CLD treatment. They studied
simply supported plates and assumed a perfect inter-
face and compatibility of transverse displacement in
each layer. Kerwin® presented an analysis for a simply
supported sandwich beam using complex modulus to
account for damping and stiffness of viscoelastic core.
He observed that the energy dissipation mechanism in

the constrained core is due to its shear motion. Several
researchers like DiTaranto,” Mead and Markus,*
Mead,’ and Rao® extended Kerwin’s work. Nakra’
has carried out an exhaustive literature review on the
topic, dealing with vibration control with VEMs.
Modeling of sandwich beams is discussed by
Barbosa and Farage'® and Amichi and Atalla."'

The three-layered plate, with highly damped visco-
elastic central layer has high damping capacity and
high resistance to resonant vibrations. Ha'? has given
overview of finite element analysis of sandwich plate.
The damping properties of fiber reinforced plastic
laminated plate have been improved by adding rela-
tively thin highly damped VEM between the laminated
faces. This type of plate has been investigated by
Cupial and Niziol"® and Richards et al.'"* They used
Reissner—Mindlin plate theory and assumed complex
modulus as constant over a frequency range. Wang
et al.'” have used frequency-dependent complex shear
modulus using Golla-Hughes—McTavish method.
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Figure 1. (a) Variation of Young’s and shear modulus of EAP with frequency. (b) Variation of loss factor of EAP with frequency.

Torvik and Runyon'® studied the loss factor of plates
with CLD treatment for various boundary conditions
and considered shear modulus and loss factor as con-
stant over a frequency range. Matinez and
Elejabarrieta'”'® have carried out characterization
and modeling of viscoelastic damped structures.

The present paper discusses the modeling of the
sandwich plate using Reissner—Mindlin plate theory
considering the frequency-dependent complex modulus
and loss factors of EAP for predicting frequency
response function (FRF) of the sandwich plate.
Complex moduli of viscoelastic layer at discrete fre-
quencies are obtained from the dynamic mechanical
analyzer (DMA). Experiments are conducted in
clamped (C) at one edge and free (F) at other three
edges (CFFF) boundary condition to validate the FE
model. The validated finite element (FE) model of sand-
wich plate is used to evaluate the loss factors for differ-
ent ratios of constraining layer to sandwich plate
thicknesses (t./t) and constrained layer to sandwich
plate thicknesses (t,/t) for various boundary conditions.

Frequency-dependent properties of VEM

The VEM is evaluated for its Young’s Modulus, shear
modulus, and loss factor in the DMA. The VEM is a
blend of nitrile-butadiene rubber and polyvinyl chlor-
ide. The filler material is reinforcing carbon black.
Figure 2 shows the variation of Young’s modulus,
shear modulus, and loss factors with frequency for a
reference temperature of 25°C. The strain amplitude
is maintained at 0.5%. The glass transition tempera-
ture of EAP is —5°C. The shear modulus, Young’s
modulus, and loss factors that are obtained from
DMA are used to calculate complex shear and
Young’s modulus as given below

G*(f) = G (O +in'(D) (1)

E*(f) = E'(D(1 +in'(f) 2

where 1'(f) is the frequency-dependent loss factor of
the VEM. The shear modulus GY(f) and Young’s
modulus EV(f) for EAP can be represented by

G'(0) = apf™ +cp 3)

E'(f) = anf* +oy “4)
and loss factor n/(f) can be represented as

n'(H) = a;f* +ci3 (5)

where the constants a;q, by, €11, @12, b1z, €12, 13, bys,
and c;3 are obtained from the curve fit of measured
data. The variation of Young’s modulus, shear modu-
lus, and loss factors with frequency is shown in
Figure 1(a) and (b), respectively. The curve-fit values
are presented in Table 1.

Modeling of sandwich plate
Mathematical formulation

The equations of sandwich plate are developed based
on the following assumptions: (a) The in-plane stres-
ses in the viscoelastic (constrained) layer are much
smaller than the in-plane stresses in the base or con-
straining layer and so may be neglected. (b) The trans-
verse displacement w(X,y,t) is assumed to be same for
all layers. (c) Linear theories of elasticity and visco-
elasticity are used. (d) There is no slip at the interfaces
between the viscoelastic and base plate and viscoelas-
tic and constrained layer.

The three-layered plate under consideration and
the layer displacements are shown in Figure 2. In
this figure, u; and u; represent the mid-plane displace-
ment of the base plate and the constraining layer
along x-axis, respectively; o and o are the rotations
of the normals to the mid-planes of the base plate and
the constraining layer, respectively; and o is the rota-
tion of the normal to the mid-plane of the viscoelastic
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Figure 2. (a) Co-ordinates and dimensions, (b) displacements associated with each layer of sandwich plate.

Table |. Constants of EAP obtained from curve fit of DMA data.

Property Constants

Young’s modulus, EY a; =1.599 x 10° b, =0.3933 ¢ =-9.86 x 10°
Shear modulus, G¥ a;,=0.1807 x 10° by, =0.3869 c1,=0.2789 x 10°
Loss factor, 1’ a;3=0.4012 b;3=0.174 c;3=-0.0679

core. A similar deformation pattern is considered in
the y-direction as well.

With the shear deformation accounted for the three
layers, the displacements in each layer are given by'?

l,:li(xs Yy, z, t) = Ui(X, Y, t) + ZO(i(X, Y, t) (6)
{]i(xa Yy, z, t) = Vi(X, Y, t) + ZBi(Xv Y, t) (7)
Wi(xa Y,z t) = W(X’ Y, t) (8)

where i =1 for base plate, i =2 for constrained layer,
and 1=3 for constraining layer.

The z co-ordinate is measured from the mid-plane
of the each layer. With above displacements, the
strain in ith layer can be written in terms of displace-
ments as follows

i i i i —
e =€ntzk, € =¢,+zk, =0
ow

. : . . ow i
Y;(y = ’Yi)xy + Zk;(y’ Y;(z =0+, ’Y;/z =B+ a_y

ox
)

Where, the mid-plane strains and the curvatures
appearing in the above equations are represented in
terms of displacements as

P TR RPN T
ox BX’ oy_aya 'Yoxy_ay X (10)
ki:% ki:aji i :% B
XoxT Y 9y’ Y 9y X

The continuity of displacements at the interfaces
between the core and the base plate and constraining
layers requires that the following relation hold

t t t t
u1+§b<x1 =u2—§V0L2: uz-l-EVOLz:u,z—aCOB
(1D

Similar equations are obtained in y-direction, by
replacing u; with v; and o; with B;. From these equa-
tions the in-plane displacements and rotations of the
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viscoelastic core can be expressed in terms of the in-
plane displacements and rotations of the face layers

1 1
Uy = (UI + u3) + Z(tbo“ - tCOL3)

1o
[Kpblk= |J|/;1 /_I[Bbb]T[le][Bbb]dédn (20)

= 1 pl
2 ; (12) K=l [ [ ol DulBuldzan @D
Vo = E(Vl +v3) + Z(thl — tefi3)
| | where
o = E(u3 —u) - z—tv(tbdl + teot3) o) (Ns). _
1 1
B2 = t-(V} — Vl) — ? (thl + tCB3) [Bcp] = {N4}ay (22)
{N3}y + {Na}, x|
. {NS}, Xx |
FE model of sandwich plate
_ _ _ , [Beo] = [Bon] = | {Nshyy (23)
The sandwich plate is modeled using Reissner— 2N
Mindlin plate theory to evaluate the dynamic proper- {Ns},xy
ties. The plate is discretized using four noded plate -
element, with nine degrees of freedom (DOF) at {Ng} +—
each node. Finite element code is developed in [Bes] = ox (24)
MATLAB®. The plate is discretized into elements ¢ N ow
along the x-direction and y-direction. The element { 9}+3_y
stiffness and mass matrices are obtained as given in
the following subsections. : {[({Ns}—{Nl})/tv—((tb{N6}+tc{Ng})/ztv)]+{N5}Ax}
({N4} —{N2}) /tv = ((t{N7} +tc{No}) /2t,) | +-{Ns},
Element stiffness matrix of sandwich plate [ AN /2] @ 5)y
The complex stiffness matrix [K '], of the kth element
of the sandwich plate is given by {N1},x
) . [Bop| = {Na}, (26)
KT, = [Kep ] HKehHKeshHKE ], B P
1fs 245 x
+ [KopJy HKonlHKos (14) '
ow
. . {Né} + &
where [ch], [Kepl, [Kes] are the m-plane, bendmg, and [Bp,] = 27)
shear stiffness of the constraining layer; [KZ ] is the N7} + w
shear stiffness of viscoelastic layer; and [Kyp], [Kppb), ! oy
[Kys] are the in-plane, bending, and shear stiffness of
the base layer. The size of element stiffness matrix is L v 0
Eiti
36x36. . . D] = |y 1 0 (28)
These stiffness matrices are given by (1-v?) 0 0 a /2
—u;
e T I 0
Kolm 1 [ [ BT DxBolazan 9 B |
[Dip] = m v 1 0 (29)
Lo 0 0 (1-w)/2
K=l [ [ ol DulBaldzan  (16) .
—1J-1
[Dis] = Giti|:0 | } (30)
1 pl
Kel= 1 [ [ (BT DalBakedn a7
—ha-d i=1 for base layer (t,) and i=3 for constraining
1l . layer (tc)
KJ=w [ [ BTGBz a9 .
o [Ds] = G*tv|:0 . :| where G is the frequency
T
[Kbp]k: i /_ X /_ I[Bbp] [Dlp][BbP]dédn (19) — dependent complex shear modulus

(31
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ox oy
m=| 5% 5% (32)
an an

Element mass matrix of sandwich plate

The mass matrix for the kth element of the sandwich
plate is given by

Mk = [Mplx+Mippli + [Mepli 4 [Morlk

(33)
+ [Mcr]k + [MVp]k + [Mvr]k

where [My], denotes the mass matrix due to bending
and [Myp],, [Mep],. and [Myp], denote mass matri-
ces due to extension for base layer, constraining
layer, and viscoelastic layer, respectively. [Mp;ly,
[Mc ], and [My,], denote matrices due to rotary
inertia for base layer, constraining layer, and
viscoelastic layer, respectively. These matrices are
given by

1 1
[Muli= (o1t + ooty + p3to)l]] f | f NS (NsJdzdn
(34)

1 1
[My], = 1111 f 1 / (NI (N (Naj)dedn
(35)

1 1
[Mep], = patclJI/1 /1({N3}T{N3}+{N4}T{N4})didn

(36)
it s T T
M= —=>1J Ne} {N N7} {N7})dEd
M= 5201 [ [ (N (N} + (N7} (N7 dzdn
(37)
1 1
Mcr:p3tg NglT(Ng} + {No}T(N
Medi= 5501 [ [ (NOTING + (NI (sl
(38)
M), = pats /A (N)T[C,JNJdA (39)
_ ;b T
M= 2" [ (NDJNIA (40)
A

The size of the element mass matrix is 36 x 36.

Equations of motion

The equation of motion of sandwich plate subjected
to base excitation'® can be written as

MI{W(t)} + [K*H{w(t)} = 0 (41)

where [K ] is the frequency-dependent global complex
stiffness matrix that varies with frequency-dependent
shear modulus (G) and loss factor (m) as given in
equations (3) and (5), {w} is the transverse displace-
ment vector, and [M] is the global mass matrix and
can be written as

IMI{W(0)} + [K(1 + il{w(t)} = 0 42)

For base excitation problem, equation (42) can be
written as

Mee Ma we(t) K?;c K?;u we(t) - 0
|:Muc Muu]{wu(t) }+|:ch Kﬁu]{wu(t)}_{o}
(43)

where w(x,t) = {w.(x,t) wy(x,t)}, where wc(x,t) is the
constrained DOF and w,(x,t) is the unconstrained
DOF. The subscript cc and uu represent constrained
and unconstrained part of mass and complex stiffness
matrices. Equation (41) can be written as

|:Mcc Mcu :| WC +[K:C K:u]
My My v WetWq ch Kzu

(44)
] i ol
times =
YWe+Wwy 0
where [y] = [Kju]il[Kﬁc] is constant and

dimensionless.
Applying the constraints and ignoring off diagonal
terms, equation (44) reduces to

[Muu](Wa )+ K, Jiwa)= —{[¥I[Muu] + [Mucl} {(We)
(45)

For harmonic base acceleration input{w.}, equa-
tion (45) is solved for the response and FRFs are con-
structed. In evaluating complex global stiffness matrix
of sandwich plate, the loss factor of the viscoelastic
layer is obtained from DMA tests and for base plate is
obtained from modal testing.

Experimental setup

An aluminum base plate is constrained at one edge
and free at other three edges (CFFF) to understand
the loss factors of the first three modes. To study the
enhancement of loss factors, VEM is glued between
the base and constraining layer. The constraining
layer is also made of aluminum plate. The dimensions
and material properties of base plate, constrained
(EAP), and constraining layer used for experiment
and FE studied are given in Table 2. Experiments
are conducted with two thicknesses of t./t equals to
0.16 and 0.18 and t,/t equals to 0.09 and 0.17 for
validation of FE model. The constrained and
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Table 2. Material and dimensions of sandwich plate.

Material properties

Density (p), Young’s modulus (MPa) Shear
Sandwich plate Length (mm) Width (mm) Thickness (mm) kg/m? modulus (MPa)
Base plate (1) L =250 Ly=150 t, =4.00 2740 E=68,900
G=123,300
Constrained layer (2) L, =240 Ly=150 t,=0.50 and 1.00 1260 refer equations (3) and (4)
Constraining layer (3) L. =240 Ly=150 t.=1.00 2740 E=68,900
G=123,300

OGN
(=]
714 S(250,75) +T(125,75) O OO
= s
x | O O O
; Ly = L. = 240 [(0,0)
L, = 250 '
2 M M m

oo
nonn
Rt

DETAIL A

Figure 3. Schematic of constrained layer plate.

Figure 4. Photograph of experimental setup showing bare
plate.

constraining layers are free at all the four edges as
shown in Figure 3. Epoxy-based adhesive is used to
bond the viscoelastic layer to the base and the con-
straining layer. A snapshot of the experimental setup
is shown in Figure 4. The clamped end is in turn con-
nected to eclectrodynamic shaker that gives the base
excitation. Base excitation is chosen in the

Base

Figure 5. Schematic of test setup for acquiring FRF

experiments to minimize the contributing of armature
dynamics during evaluation of natural frequencies
and loss factors of base plate and sandwich plate.
An accelerometer kept on the clamped plate measures
the base acceleration and the other accelerometers on
the sandwich plate measure the responses. PC-based
Leuven Measurement System (LMS) controller is
used to provide harmonic acceleration input to the
shaker. The base plate and sandwich plate are tested
for a frequency band of 20-1000 Hz with a sweep rate
of 1Hz at off resonance and 0.01 Hz around reson-
ance. The time domain base acceleration input and
responses at different location of the plate are trans-
formed to frequency domain using fast Fourier trans-
form. The FRF is obtained from the response at a
given location of plate with respect to base acceler-
ation input. Figure 5 shows the schematic of test setup
for acquiring FRF.

Results and discussion

The dimensions of sandwich plate used in FE and
experiment are presented in Table 2. The sandwich
plate is discretized into 25 elements along x-direction
and three elements along y-direction as shown in
Figure 6. The constrained and constraining layer
length is 240 mm compared to base plate length of
250 mm. So, in FE model of sandwich plate, the
material properties like shear modulus and density
of constrained and constraining layer are degraded
to a low value for the elements corresponding to 1,
26, and 51 (refer Figure 6) along the constrained edge
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Figure 6. FE mesh of sandwich plate.
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Figure 7. The FRF of base plate at point S (250, 75 mm, refer
Figure 3).

so that the experimental conditions are simulated. The
Young’s modulus, shear modulus, and loss factor of
constrained layer are frequency dependent. So, the
complex stiffness is also frequency dependent. All
DOFs corresponding to clamped edges are con-
strained. Base harmonic acceleration is applied
along the constrained edge of the sandwich plate
and responses are measured for various excitation fre-
quencies from 20 to 1000 Hz. The FRF is constructed
at a given location. Experiments are conducted in
CFFF boundary condition for two thickness ratios
of t./t equals to 0.16 and 0.18 and t,/t equals to 0.09
and 0.17 for validation of FE model.

Base plate

The experimentally obtained FRF at the free end of
the bare plate (Point S: 250 mm, 75 mm, see Figure 3)
is compared with FE results and is shown in Figure 7
and given in Table 3. It is seen that the experimental

Table 3. Comparison of FEM and experimental frequencies of
base plate.

Natural frequency (Hz) ~ Amplification (g/g)

Loss factor

Mode FEM Expt FEM Expt (experiment)
| 47.7 48.7 63.4 63.7 0.0152
2 301.3 3023 54.5 56.6 0.0196
3 847.4 852.3 25.1 21.1 0.0240

FEM: finite element method.

and FE results match very well. The experimental loss
factors calculated using half power method? for the
first three modes are also given in Table 3. The damp-
ing present in the base plate is mainly due to its struc-
tural damping.

Constrained layer sandwich plate

The FRFs of constrained layer sandwich plate at loca-
tion S (250, 75 mm) and T (125, 75 mm) for two thick-
nesses of t./t equals to 0.16 and 0.18 and t,/t equals to
0.09 and 0.17 are shown in Figures 8 and 9, respect-
ively. It is seen that the FRF obtained from FE and
experiments match very well. Tables 4 and 5 present
the comparison of natural frequencies, amplification
factors, and composite loss factors obtained from FE
and experiments. Table 6 presents the comparison of
amplification factors for base plate and sandwich
plate of t./t of 0.16 and 0.18 and t,/t of 0.09 and
0.17. From the table it is seen that higher attenuation
is observed for higher modes. For a given mode,
higher attenuation is obtained for higher thicknesses
of viscoelastic layer.
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Figure 8. FRF of constrained layer plate for t//t=0.18 and t,/t =0.09 at a point (a). S (250, 75mm), (b) T (125, 75 mm).
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Figure 9. FRF of constrained layer plate for t./t=0.16 and t,/t=0.17 at a point (a). S (250, 75mm), (b) T (125, 75 mm).

Table 4. Comparison of FEM and experimental loss factors of constrained layer plate (t./t=0.18 and t,/t =0.09).

FEM Expt
Mode Freq (Hz) Amplification (g/g) Loss factor Freq (Hz) Amplification (g/g) Loss factor
| 45.5 19.81 0.030 45.0 18.60 0.031

286 8.80 0.057 281.0 8.48 0.058
3 814.0 2.50 0.070 808.0 230 0.073

FEM: finite element method.

Table 5. Comparison of FEM and experimental loss factors of constrained layer plate (t./t=0.16 and t,/t=0.17).

FEM Expt
Mode Freq (Hz) Amplification (g/g) Loss factor Freq (Hz) Amplification (g/g) Loss factor
I 43.60 14.60 0.051 43.07 14.40 0.052
267.20 4.20 0.080 273.8 3.80 0.083

3 759.00 2.10 0.12 740.16 1.70 0.130
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Table 6. Comparison of amplification factors for bare and constrained layer plate.

Sandwich

Base plate

Configuration/ amplification,

plate (t./t=0.18;
t,/t =0.09)amplification,

Sandwich plate
(t/t=0.16; t,/t =0.17)

Mode g/g (dB) g/g (dB) amplification, g/g (dB)
I 63.70 (0) 18.60 (-10) 14.40 (-13)
2 56.50 (0) 8.48 (—16) 3.80 (-22)
3 21.10 (0) 2.30 (-19) 1.70 (-23)

0.20 a1 /=0.057 0.40 At /10,057
+t /1=0.091 1 /1=0.091
et /t=0.167 Bt /=0.167

0.15} ot /1=0.430 0.30 ot /1=0.430

% 0.10f % 020}
3 3
0.05 0.10¢
u_'}&u 0.3"_0

Figure 10. Variation of loss factor for CFFF boundary
condition (mode ).

0.30

&1 /=057
+1,/t=0.091
@1 /=0.167
o /=0.430
020 ]
k
£
&
-
H
-
010}
0985 0.2 0.4 0.6 08

it
[ -

Figure I1. Variation of loss factor for CFFF boundary con-
dition (mode II).

Numerical results of constrained layer plate

(CFFF, simple support at opposite edges and free at
other opposite edges (SFSF), and free at all four
edges (FFFF) boundary conditions)

The validated FE model is used to compute the loss
factors of constrained layer plate for various thick-
nesses of constraining and constrained layer in
CFFF, SFSF, and FFFF boundary conditions. The
variation of loss factor with the ratio of constraining

Figure 12. Variation of loss factor for CFFF boundary con-
dition (mode lll).

0,10

a7
&1 /10,03
+1,/1=0.091
=0 167
et /i=0.16

o1 /1=0.430

- 0.05

Loss factor

0.00 i ; : W
0.0 0.2 0.4 0.6 0.8

Figure 13. Variation of loss factor for SFSF boundary condi-
tion (mode I).

layer thickness to total sandwich plate thickness (t./t)
for first three modes in CFFF, SFSF, and FFFF
boundary conditions is shown in Figures 10 to 12,
13 to 15, and 16 to 18, respectively. From Figures
10 to 18, it is observed that the loss factors are max-
imum when t./t lies between 0.4 and 0.45. The neutral
axis of sandwich plate lies in constrained layer, when
t/t lies between 0.4 and 0.45. So, the shear strain is
maximum if the neutral axis of the sandwich plate
falls in the constrained layer. It is also seen that
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Figure 14. Variation of loss factor for SFSF boundary condi-
tion (mode II).
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Figure 15. Variation of loss factor for SFSF boundary condi-
tion (mode IlI).
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Figure 16. Variation of loss factor for FFFF boundary condi-
tion (mode ).

the peak value of loss factor is independent of
boundary conditions. The loss factors increase
with increase in t,/t ratio for all modes and bound-
ary conditions, and for a given t,/t the loss factor
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Figure 17. Variation of loss factor for FFFF boundary condi-
tion (mode Il).
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Figure 18. Variation of loss factor for FFFF boundary condi-
tion (mode llI).

is higher for higher modes for all the boundary
conditions.

Applications

The use of constrained layer viscoelastic structures
results in higher loss factors and this has potential
applications in aerospace vehicles and automobiles.
Aerospace vehicles are exposed to severe broadband
vibrations due to boundary layer noise. It is essential
that for proper functioning of avionics, a vibration
free environment has to be ensured. This can be
achieved by using viscoelastic layer sandwich struc-
tures where it is possible to obtain very high loss fac-
tors. Also, high loss factors help in suppressing the
response around resonance. Depending upon the
acceptable response, the design parameters of the
sandwich structure can be finalized.

Conclusions

The frequency-dependent Young’s modulus and loss
factors expressed in power series for EAP are
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introduced in the sandwich plate FE model using
iterative scheme. The composite loss factors of sand-
wich plate using FEM compare very well with those
obtained from experimental results in CFFF bound-
ary condition for two thicknesses ratios. After the val-
idation of FE model with experiment for CFFF
boundary condition with two thickness ratios, numer-
ical studies are carried out for CFFF, SFSF, and
FFFF boundary conditions for various thickness of
constraining and constrained layer. It is observed
from the numerical studies that the highest loss
factor is obtained when t./t lies between 0.4 and
0.45 for all modes and boundary conditions. This cor-
responds to the neutral axis of sandwich plate falls in
constrained layer (viscoelastic layer) where the shear
strain is maximum. The loss factor also increases for
higher t,/t ratios and it is independent of boundary
conditions. The loss factor is higher for higher modes.
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Appendix |

Notation

E*(f) frequency-dependent complex Young’s
modulus of viscoelastic layer

E¥(f) frequency-dependent real component of
Young’s modulus of viscoelastic layer

G'(H frequency-dependent complex shear
modulus of viscoelastic layer

G'(f) real component of frequency-dependent
shear modulus of viscoelastic layer

i=1to3 1 for base plate, 2 for constrained layer,
and 3 for constraining layer

K" global stiffness matrix

K" complex element stiffness matrix of
sandwich plate

[Kpblk element bending stiffness of base layer

[Koplk element in-plane stiffness of constrained
layer

[Kpslk element shear stiffness of base layer

[Keplk element bending stiffness of base layer

[Keplk element in-plane stiffness of constrained
layer

[Keslk element shear stiffness of base layer

(K% complex element shear stiffness of
viscoelastic layer

K] imaginary component of global stiffness
matrix

KR real component of global stiffness matrix

L, Ly length and width of the base plate
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length of the viscoelastic layer and con-
straining layer

global stiffness matrix

element mass matrix of sandwich plate
mass matrix due to bending

mass matrix due to extension of base
layer

mass matrix due to rotary inertia of base
layer

mass matrix due to extension of
constraining layer

mass matrix due to rotary inertia of
constraining layer

mass matrix due to extension of
constrained layer

mass matrix due to rotary inertia of
constrained layer

total thickness of sandwich plate
thickness of base plate, constrained, and
constraining layer

ratio of constraining layer thickness to
total sandwich plate thickness

tV/tb
U;

Vi

g
n ()

g and n
P1, P2, P3

ratio of constrained layer thickness to
base plate thickness

axial displacement of plate in
x-direction

axial displacement of base plate in
y-direction

transverse displacement of all three layers
base displacement and base acceleration,
respectively

rotation normal to mid-plane in
x-direction

rotation normal to mid-plane in
y-direction

shear strain in ith layer

strain in ith layer

frequency-dependent loss factor
natural co-ordinates

density of base plate, constrained layer,
and constraining plate, respectively



