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Abstract

A terminal boundary-value technique is presented for solving singularly perturbed delay differential equations, the solutions of
which exhibit layer behaviour. By introducing a terminal point, the original problem is divided into inner and outer region problems.
An implicit terminal boundary condition at the terminal point was determined. The outer region problem with the implicit boundary
condition was solved and produces an explicit boundary condition for the inner region problem. Then, the modified inner region
problem (using the stretching transformation) is solved as a two-point boundary value problem. The second-order finite difference
scheme was used to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. To
validate the efficiency of the method, some model examples were solved. The stability and convergence of the scheme was also

investigated.
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1. Introduction

Singular perturbation problems containing a small
parameter, &, multiplying to their highest derivative term
arise in many fields, such as fluid mechanics, fluid
dynamics, chemical reactor theory and elasticity, which
have received significant attention. The solution of these
types of problems shows a multi-scale character, with a
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narrow region called the boundary layer, in which their
solution changes rapidly, and an outer region in which
the solution changes smoothly. Thus, the treatment of
such problems is not trivial because of the boundary
layer behaviour of their solutions. Detailed theory and
analytical discussions of solving singular perturbation
problems have been published [ 1-9], and have the details
of numerical and asymptotic solutions [10-15].
Boundary value problems involving delay differential
equations arise in studying the mathematical modelling
of various practical phenomena, like micro-scale heat
transfer [16], the hydrodynamics of liquid helium [17],
second-sound theory [18], optically bi-stable devices
[19], diffusion in polymers [20], reaction—diffusion
equations [21], stability [22], control including con-
trol of chaotic systems [23] and a variety of models
for physiological processes and diseases [24,25]. For
example, Lange and Miura [26-30] treated the singular
perturbation analysis of the problem under consideration
in a series of papers. A numerical method based on
the fitted mesh approach to approximate the solution
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of these types of boundary value problems was pub-
lished by Kadalbajoo and Sharma [31]. The authors
constructed piecewise-uniform meshes and fitted them
to the boundary layer regions to adapt the singular
behaviour of the operator in the narrow regions. The
same authors [32] approximated the terms with delay by
first-order Taylor series expansions to analyze bound-
ary value problems of singularly perturbed differential
difference equations with negative shift or delay. They
used the invariant embedding technique and central and
upwind finite difference discretization for the second-
and first-order derivatives, respectively, and proved the
stability and convergence of their method. An expo-
nentially fitted difference scheme on a uniform mesh
is accomplished by the method of integral identities to
solve problems of the same type [33]. In this method,
the authors used exponential basis functions and inter-
polating quadrature rules with weight and remainder
terms in integral form. Various numerical methods
have also been presented for solving singularly per-
turbed boundary value problems involving small shifts,
including exponential methods based on piecewise
analytical solutions of advection—reaction—diffusion
operators [34], a fitted mesh B-spline collocation
method [35], parameter—uniform numerical meth-
ods comprising a standard implicit finite difference
scheme [36], e-uniformly convergent non-standard finite
differences [37] and e-uniformly convergent fitted
methods [38].

We devised a terminal boundary value technique for
solving singularly perturbed delay differential equations
with a boundary layer at the left end of the interval.
By introducing a terminal point into the domain, the
original problem is divided into inner and outer region
problems. A terminal boundary condition in the implicit
form is determined from the reduced problem, and the
outer region problem with the implicit boundary con-
dition is then solved as a two-point boundary-value
problem. From the solution of the outer region problem,
an explicit terminal boundary condition is obtained. The
inner region problem is modified and solved as a two-
point boundary value problem using the obtained explicit
terminal boundary condition. Finally, we combined the
solutions of the inner region and outer region problems
to obtain the approximate solution of the original prob-
lem. The method is iterative on the terminal point. We
repeated the numerical scheme for various choices of
the terminal point until the solution profiles did not dif-
fer materially from iteration to iteration. To validate the
efficiency of the method, some model examples are
solved. The stability and convergence of the scheme was
also investigated.

2. Description of the method

Consider a linear singularly perturbed two-point
boundary value problem of the form:

&y () + a(x)y' (x = 8) + b(x)y(x) = f(x),

0<x<l1

ey

Subject to the interval and boundary conditions
y(x) = p(x),
() =B, 3)

where ¢ is a small positive parameter (0<e K 1), § is
delay parameter, a(x), b(x), f{x) and ¢(x) are sufficiently
smooth functions, and S is a known constant.

For =0, the problem (1)—(3) becomes a boundary
value problem for singularly perturbed ordinary differ-
ential equations. The layer behaviour of the problem
under consideration is maintained only for § # 0 but
is sufficiently small (i.e. § is of o(¢)). When the delay
parameter § exceeds the perturbation parameter, ¢ (i.e. 8
isof O(¢)), the layer behaviour of the solution is no longer
maintained; rather, the solution exhibits an oscillatory
behaviour or is diminished.

We considered the cases in which & is of o(e)
(i.,e.b<e). Now, we assume that a(x)>M>0 and
& —da(x)>0 throughout the interval [0,1], where M is
some positive constant. Under these assumptions, (1)
has a unique solution y(x), which in general displays
a boundary layer in the neighbourhood of x=0.

Since § is of o(¢e) and the solution y(x) of the BVP
(1)-(3) is sufficiently differentiable, by using Taylor’s
series expansion, we obtain

Y(x =8~y (x) —8y"(x) “

Substituting (4) into (1), we obtain an asymptotically
equivalent two-point boundary value problem

e(l — £a(x))y"(x) + a(x)y'(x) + b(x)y(x) = f(x)  (5)
with

¥(0) = ¢(0) (6)
y=p (N

where § =£¢ with £=0(1).

The transition from Eq. (1) to Eq. (5) is admit-
ted because of the condition that the delay parameter
0< 6« 1is sufficiently small and is of o(¢).

Let x,(0<x, < 1) be the terminal point or width
or thickness of the boundary layer. It is well known
from the singular perturbation theory (see [1,3]) that the

—5<x<0 2)
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reduced equation (i.e. Eq. (5) with ¢ =0) is valid in the
outer region. Hence, by putting £ =0 in (5), we have the
reduced equation

a(x)y'(x) + b(x)y(x) = r(x) for x, <x <1 ®
Now, evaluating (8) at x=x, and denoting c1 = a(xy),

c2=b(xp) and c3 =f(xp) gives us

1Y (xp) + c2y(xp) = ¢3 e

We take (9) as the terminal boundary condition in
implicit form. As the terminal point x,, is common to
both the inner and outer regions, then the inner and outer
region problems are definedon0 <x < x, andx, <x <1,
respectively.

That is, the outer region problem:

(& — 8a(x))y" (x) + a(x)y'(x) + b(x)y(x) = f(x),

xp<x=<1 (10)

with ¢1y'(xp) + c2y(xp) =c3 and y()=p4 (11

and the inner region problem:

(e — 8a(x))y"(x) + a(x)y'(x) + b(x)y(x) = f(x),
0<x=<xp 12)

with y(0) = $(0), and y(x,)

=y (is obtained as described below)

13)
First, solving the outer region problem
(e = 8a(x))y"(x) + a(x)y'(x) + b(x)y(x) = f(x),
xp<x=1 (14)
with 1y (xp) + c2y(xp) = €3 (15)
and y(1)=p8 (16)

we obtain solution y(x) over [x,,1]. From the solution
y(x) of the outer region problem (14)—(16) on the interval
Xp <x < 1, we obtain the value of y(x,) that is the explicit
terminal boundary condition and denote it by y(x,)=y.

Now, in order to solve the inner region problem,
consider inner region problem (12) and (13) with the
assumption § = £¢, 6 = o(¢) and choose the transformation

X
(= * (17)
&

to form a new differential equation for the inner region
solution. By using (17), we transform Eq. (12) with

V) = y(te) = Y (1) (18)
Yo = 20 _ Y0 (19)
£ £
1! Y//
y//(x) — y (ztg) _ y) (20)
£ &
a(x) = alte) = A(f) 1)
b(x) = b(te) = B(t) (22)
F() = fle) = F(0) (23)

to the new inner region problem of the form:
(1 —EA@)Y () + ADY (1) + eB(1)Y (1) = e F (1),
0<t<t, (24)

and the boundary condition for (24) is determined by
(13) and (18).

Y(0) = ¢(0) = ¢o (25)
and Y(tp) = y(xp) =y (26)

where 7, =x,/e. We solve the new inner region prob-
lem (24)—(26) to obtain the solutions over the interval
0<t<t,.

To solve the two-point boundary value problems
given in Egs. (14)—(16) (outer region problem) and
(24)—(26) (inner region problem), we make use of a
second-order classical finite difference scheme. In fact,
any standard analytical or numerical method can be
used. Finally, we combine the solutions of both the inner
region defined in 0 < x < x,, and the outer region defined
in x, <x <1 problems to obtain the approximate solu-
tion of the original problem (1)—(3) over the interval
0 <x < 1. We repeat the process (numerical scheme) for
various choices of x,, (the terminal point), until the solu-
tion profiles do not differ materially from iteration to
iteration. For the computational point of view, we use an
absolute error criterion, namely

YW =YW <0 0<x<x,
where y™(x) =the solution for the mth iterate of x, and
o =the prescribed tolerance bound.

To describe the scheme for the outer region prob-
lem (14)—(16), we divide [xp,1] into N equal parts,
each of length A, x, =xp<x; <x2<---<xy=1 and we
have x;=x, +ih, i=0, 1, 2, ..., N. For convenience, let
a(x;) = aj, b(x;)=bi, fxi)=fi, y(xp) =0, y(x;) = yi- Now,
applying the classical central finite difference scheme to
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(14)—(16), we obtain the three-term recurrence relation

Eiyi.1—Fiyi+Giyiy1 =H;, i=0,1,...,N—1

27)
where
g = &%) ai
h? 2h
2(e — da;
F = (e a;) — b,
h? (28)
(& —éda;))  a
G =—__""“ 3 1
! h? 2h
H; = f;

Eq. (27) gives a system of N equations with N+ 1
unknown y_1 to yy—1. To eliminate the unknown y_1,
we use the implicit boundary condition (15); then, by
employing the second-order central difference approxi-
mation in it, we obtain

2hcy 2hc3
Yo+ y1 —

yo1 = (29)

where c1, ¢ and c3 are defined in (9). Using (29) in the
first equation of the recurrence relation (27) at i=0, we
obtain

2hcy
— | Fo+ TEO Yo + (Eo + Go)y1

2hcs
cl

:Ho+

Eo (30)

Now, Egs. (27) and (30) give N by an N tri-diagonal
system, which can be easily solved with the Thomas
algorithm.

Similarly, to set up the difference equation for
the inner region problem (24)-(26), we divide the
interval 0 <t<1, into N subintervals of equal mesh
length 1= (z, — 0)/N with mesh points 0 =7y <t; <12, .. .,
<ty =ty. Again applying the second-order classical finite
difference scheme to (24)—(26), we obtain the three-term
recurrence relation

Eyi—1 — Fyi+Gyip1 = H, i=12,...

where
(I1-84A;) A
o S e LA
! h? 2h
1 —&A;
Fi = % ~ ¢bi (32)
(I-84) A;
! h? 2h
H! = ¢F;

1

The Thomas algorithm is used to solve the tri-
diagonal system (31).

3. Lower bound of the terminal point £,

To gain further insight into the choice of ¢#,, the ter-
minal point of the boundary layer region, consider the
problem (1)—(3). Further, choose ?, such that 7, < 1/e.
Now, using Eq. (5) and assuming that 6 <& and
& —da(x)>0, we get

(e = 8a(x))y"(x) + a(x)y'(x) + b()y(x) = f(x)  (33)

Using the stretching transformation (17) and taking
the limit as ¢ — 0, we obtain

(1 — (3618@) Y'(t) +a0)Y'(t) =0 (34)

where Y(7) = y(t¢) and the boundary conditions are
Y(0)=¢0) and Y(1p)=y (35)

Now, solving the two-point boundary value problem
(34) and (35) analytically, we obtain the solution

Y(t) = my + mpe™ (36)

where  m=(—¢ea(0))/(¢ — 8a(0)), my=(y — ¢(0))/
(e(—aa(O)lp)/(s—Sa(O)) —1), and m =¢(0) — my.

As suggested by Hsiao and Jordan [39] and Lorenz
[40], t, can be determined by taking the inequality

( —ea(0)
exp

8—8(1(0)tp) <e 37

Taking the natural logarithm (In) of both sides of (37),
we get

—ea(0)t
ety g (38)
& — 8a(0)
Now, rearranging (38) gives
. da(0) — e I (39)
———1Ine
P=" ea(0)



G. File, Y.N. Reddy / Journal of Taibah University for Science 8 (2014) 289-300 293

For e=10"#, we can obtain a crude estimate of the
lower bound of #, from

1= (1 — 8a(0)10# 40)

- 1 — 8a(0)10*
20) ) In(10) ~ 2.3 (7> .

a(0)

4. Stability and convergence analysis

Theorem 1. Under the assumptions (& — da(x))>0,
a(x)>M>0 and b(x) <0, Vx € [0, 1], the solution to the
system of the difference equations (27), together with the
given boundary conditions, is unique and satisfies

IY1h.00 < 2M 1 £l 00 + (b0l + 18D (41)

where ||| o is the discrete loo —norm, given by
X = max {|x;]}.
Il o0 = max{lxil)

Proof. Let L;(.) denote the difference operator on the
left-hand side of Eq. (27) and w; be any mesh function
satisfying

Ly(w)) = f

By rearranging the difference scheme (27) and using
non-negativity of the coefficients E;, F; and G;, we obtain

Filw;i| < |Hi| + Ei |lwi—1] + G |wit1]

Now, on the assumption (¢—da(x))>0 and
a(x) > M >0, the definition of /o -norm and manipulating
the above inequality, we obtain

lwi1] — 2 Jw;| + [w; 1]
h2

(8—8M)<

lwit1] — lwi-1l

T >+bi|wi|+|fi|20

(42)

+ ||a||h,oo (

To prove the uniqueness and existence, let {u;}, {v;}
be two sets of solution of the difference equation (27)
satisfying boundary conditions. Then, w; = u; — v; sat-
isfies

Lp(w;) = fi

where f; =0 and wp = wy =0.
Summing (42) overi=1, 2, ..., N— 1, we obtain
(&6 — M) (&6 — M)

- I’l2 |w1| - hz |wN—l|

N-1

lwi| — lwy-1]

—llaly,c0 <2h > + Elbi lw;| =0 (43)
=

Since (e —=0M) >0, lally=0, b <0 and

lwi| >0 Vi, i=1,2,...,N—1, for inequal-
ity (43) to hold, we must have w; =0 Vi, i=
1,2,...,N—1.

This implies the uniqueness of the solution of the tri-
diagonal system of difference equations (27). For linear
equations, the existence is implied by uniqueness. Now,
to establish the estimate, let

wi = yi — i,

where y; satisfies difference equations (27), the boundary
conditions and

li = (1 —ih)po + (ih)B,

then wg = wy = 0 and w;,
fies

Ly(w;) = fi

Now, let

i=1,2,..., N — 1satis-

i=0,1,...,N.

lwn| = lwlip, ooz [wil,
Then, summing (42) from i=nto N — 1 and using the

assumption on a(x), gives

(e — 5M)
———5— (lwal = lwa—1] + lwy-1])

h
M M
= o (wntl = Jwn1D) = =
N—-1 N—-1
+ ) bilwil+ Y 1£il=0 (44)
=n =n

Inequality (44), together with the condition on b(x),
implies that

N-1

N
M
> lwpl < h E lfil <h E |fil = 1 f1h 00
i=n

i=0
i.e., we have
lwal <2M 1 £ lh.00 (45)
We also have

yi = w; + 1,

I¥ll7,00 = OISH%XN“)’”}
< llwllp,oo + 14,00 (46)

< |lw,| + ”l”h,oo'
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Numerical results for Example 5.1, e = 1073, §=0.5¢.

X t, =20 t,=15 t, =10 =35 Exact solution
yx) y) yx) y(x)
0.0000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.0010 0.3171426 0.4528503 0.4533947 0.4538989 0.4538692
0.0020 0.3603879 0.3792739 0.3798923 0.3804652 0.3803509
0.0030 0.3666117 0.3697083 0.3703373 0.3709202 0.3707303
0.0040 0.3678324 0.3687953 0.3694263 0.3700112 0.3697488
0.0050 0.3683816 0.3690566 0.3696884 0.3702742 0.3699358
0.0100 0.3708603 0.3714947 0.3721293 0.3717605
0.0150 0.3733556 0.3739937 0.3736230
0.0200 0.3758674 0.3754949
0.1000 0.4071563 0.4071563 0.4071563 0.4071563 0.4067525
0.2000 0.4499552 0.4499552 0.4499552 0.4499552 0.4495085
0.4000 0.5495225 0.5495225 0.5495225 0.5495225 0.5489761
0.6000 0.6711221 0.6711221 0.6711221 0.6711221 0.6704540
0.8000 0.8196300 0.8196300 0.8196300 0.8196300 0.8188125
0.9000 0.9057869 0.9057869 0.9057869 0.9057869 0.9048827
1.0000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Underline is used to indicate the numerical solutions obtained at the terminal points.

To complete the estimate, we have to find the bound

on /;

121l 7,00 = Orgniaé)sv{”il} s Or;g;v{l(l — ih)| |¢ol

+irl1Al} = max {(1—ih)ldol + (h)[Al}.

i.e., we have

211,00 < |dbol + 181 -

Table 2

Numerical results for Example 5.1, e = 1074, §=0.5¢.

From Eqgs. (45)—(47), we obtain the estimate

I¥lh,00 =2M™

U £ lloo + (ol + 18D

This theorem implies that the solution to the system
of difference equations (27) is uniformly bounded, inde-
pendently of mesh size 4 and the perturbation parameter
. Thus, the scheme is stable for all step sizes.

Corollary 1.

Under the conditions of Theorem 1,

the error e; =y(x;) — yi between the solution y(x) of the

X t, =20 t,=15 t, =10 =5 Exact solution
y(x) y(x) y(x) y(x)
0.00000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.00010 0.3181581 0.4709184 0.4707524 0.4705484 0.4534718
0.00020 0.3612116 0.3873736 0.3871895 0.3869631 0.3795465
0.00030 0.3670360 0.3711528 0.3709686 0.3707419 0.3695746
0.00040 0.3678237 0.3689013 0.3687171 0.3684904 0.3682570
0.00050 0.3679338 0.3685967 0.3684126 0.3681859 0.3681105
0.00100 0.3682020 0.3685541 0.3683699 0.3682659
0.00150 0.3684702 0.3685541 0.3684501
0.00200 0.3687384 0.3686343
0.10000 0.4066914 0.4066914 0.4066914 0.4066914 0.4065880
0.20000 0.4494485 0.4494485 0.4494485 0.4494485 0.4493469
0.40000 0.5489215 0.5489215 0.5489215 0.5489215 0.5488281
0.60000 0.6704094 0.6704094 0.6704094 0.6704094 0.6703334
0.80000 0.8187855 0.8187855 0.8187855 0.8187855 0.8187389
0.90000 0.9048674 0.9048674 0.9048674 0.9048674 0.9048420
1.00000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000

Underline is used to indicate the numerical solutions obtained at the terminal points.
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Table 3 Table 5
Numerical results for Example 5.2, e = 1073, §=0.5¢. Numerical results for Example 6.1, e = 1073, §=0.5¢.
X 1, =20 tp,=15 t, =10 tp=5 X t, =20 tp=15 1, =10 =5

y(x) y(x) y(x) y(x) y(x) y(x) y(x) y(x)
0.0000 1.0000000 1.0000000 1.0000000 1.0000000 0.00000 1.0000000 1.0000000 1.0000000 1.0000000
0.0010 0.3716997 0.3719800 0.3723023 0.3725916 0.00100 0.4596118 0.4582375 0.4568711 0.4554691
0.0020 0.2869179 0.2872367 0.2876031 0.2879317 0.00200 0.3864810 0.3849208 0.3833696 0.3817777
0.0030 0.2756975 0.2760220 0.2763947 0.2767291 0.00300 0.3765825 0.3749970 0.3734207 0.3718032
0.0040 0.2744568 0.2747825 0.2751564 0.2754918 0.00400 0.3752426 0.3736535 0.3720739 0.3704530
0.0050 0.2745652 0.2748914 0.2752659 0.2756018 0.00500 0.3750651 0.3734757 0.3718956 0.3702742
0.0100 0.2762854 0.2766135 0.2769902 0.01000 0.3753012 0.3737106 0.3721293
0.0150 0.2780575 0.2783891 0.01500 0.3755843 0.3739937
0.0200 0.2797985 0.02000 0.3758674
0.1000 0.3038107 0.3038107 0.3038107 0.3038107 0.10000 0.4071563 0.4071563 0.4071563 0.4071563
0.2000 0.3383586 0.3383586 0.3383586 0.3383587 0.20000 0.4499552 0.4499552 0.4499552 0.4499552
0.4000 0.4267997 0.4267997 0.4267997 0.4267997 0.40000 0.5495225 0.5495225 0.5495225 0.5495225
0.6000 0.5516247 0.5516247 0.5516247 0.5516248 0.60000 0.6711221 0.6711221 0.6711221 0.6711221
0.8000 0.7323793 0.7323793 0.7323793 0.7323793 0.80000 0.8196300 0.8196300 0.8196300 0.8196300
0.9000 0.8531665 0.8531665 0.8531665 0.8531665 0.90000 0.9057869 0.9057869 0.9057869 0.9057869
1.0000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000 1.0000000 1.0000000 1.0000000 1.0000000

Underline is used to indicate the numerical solutions obtained at the
terminal points.

continues problem and the solution y; of the discretized
problem, with boundary conditions, satisfies the estimate

lelln.oo < 2MMITlh 00 (48)

where

Underline is used to indicate the numerical solutions obtained at the
terminal points.

Proof. Truncation error t; is given by

7 = (e—aa(x»{(y"“ — 2 ”"‘) —yé’}

2 2
ol = max {'”‘(x) }y“)(x)\} "
simisrsna 6 Yitl — Yi—1 /
{ eh @ }
+max (e = sat) [y 49)
xi1<x=<xiy1 | 12
Table 4 Table 6
Numerical results for Example 5.2, e = 1074, §=0.5¢. Numerical results for Example 6.1, e = 1074, §=0.5¢.
x 1, =20 t,=15 1, =10 p=5 X 1, =20 =15 =10 =5
y(x) y(x) y(@) y(x) y(x) y() y(x) y(x)
0.00000 1.0000000 1.0000000 1.0000000 1.0000000 0.00000 1.0000000 1.0000000 1.0000000 1.0000000
0.00010 0.3313265 0.3425767 0.3544611 0.3668457 0.00010 0.4710844 0.4709184 0.4707524 0.4705484
0.00020 0.2408234 0.2535924 0.2670812 0.2811385 0.00020 0.3875577 0.3873736 0.3871895 0.3869631
0.00030 0.2290035 0.2420007 0.2557299 0.2700383 0.00030 0.3713371 0.3711528 0.3709686 0.3707419
0.00040 0.2292476 0.2423802 0.2562526 0.2707104 0.00040 0.3690856 0.3689013 0.3687171 0.3684904
0.00050 0.2315017 0.2447798 0.2588054 0.2734225 0.00050 0.3687811 0.3685967 0.3684126 0.3681859
0.00100 0.2446982 0.2587352 0.2735594 0.00100 0.3687384 0.3685541 0.3683699
0.00150 0.2588526 0.2736963 0.00150 0.3687384 0.3685541
0.00200 0.2738332 0.00200 0.3687384
0.10000 0.3027937 0.3027937 0.3027937 0.3027937 0.10000 0.4066914 0.4066914 0.4066914 0.4066914
0.20000 0.3372552 0.3372553 0.3372553 0.3372553 0.20000 0.4494485 0.4494485 0.4494485 0.4494485
0.40000 0.4255062 0.4255062 0.4255062 0.4255062 0.40000 0.5489215 0.5489215 0.5489215 0.5489215
0.60000 0.5501304 0.5501304 0.5501304 0.5501304 0.60000 0.6704094 0.6704094 0.6704094 0.6704094
0.80000 0.7307238 0.7307238 0.7307238 0.7307238 0.80000 0.8187855 0.8187855 0.8187855 0.8187855
0.90000 0.8514816 0.8514816 0.8514816 0.8514816 0.90000 0.9048674 0.9048674 0.9048674 0.9048674
1.00000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000 0.0000000 1.0000000 1.0000000 1.0000000

Underline is used to indicate the numerical solutions obtained at the
terminal points.

Underline is used to indicate the numerical solutions obtained at the
terminal points.
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0.4

—1t=5 -
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0.3 !

0.005
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Fig. 1. Inner layer solutions of Example 5.1 for £=0.001, §=0.1¢ and different terminal points.

lzil <  max

h2a(x) 3)
Xi—1§XSX1+1{ 6 ‘y (x)‘}

+  max
Xi—1 SX=Xj4]

h2
{812@ — 8a(x) \y“)(x)\} (50)

One can easily show that the error e; satisfies
Lp(e(xi)) = Lp(y(x)) — La(yi) = i,
i=12,..,N—-1 (618

and eg=en=0.
Then, Theorem 1 implies that

lelln.oo < 2M 1Tl 00- (52)

1.0

Estimate (48) establishes the convergence of the dif-
ference scheme for the fixed values of the parameter
e.

5. Numerical examples

To validate the efficiency of the method, we applied
it to two linear examples and one nonlinear example.

Example 5.1. Consider the singularly per-
turbed delay differential equation with left layer
ey’ (x)+y (x—8) —y(x)=0; x € [0, 1], with y(0) =1 and
y(1)=1.

—1t =05
P

----t=10
P

0.0000

0.0010 0.0015

Fig. 2. Inner layer solutions of Example 5.1 for £=0.0001, §=0.1¢ and different terminal points.
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1.00 , : :
——1t =05
-==-t=10
0.75 -
------ t =15
————— t =20
=
>
0.50 |- -
0.25 |- - T T T T
1 1 1
0.000 0.005 0.010 0.015 0.020
X

Fig. 3. Inner layer solutions of Example 5.2 for €=0.001, §=0.1¢ and different terminal points.

The exact solution is given by

(1 _ emz)emlx + (eml _ l)emzx

y(x) = m %)
el — e
where mj = (—1—4/1+4+4(c—9))/(2(e —4§)) and

my = (=1 + /144 —98))/2(e = 9)).
Numerical results are presented in Tables 1 and 2 for
=103 and £= 1074, respectively.

Example 5.2. Consider the following singularly per-
turbed variable coefficient and non-homogenous delay

differential equation:

1.00 r

&' () +e %Y x—8—yx)=0, 0<x<l1

with boundary conditions y(0)=1, —§ <x <0, y(1)=1.

The exact solution of the problem is not known.
Numerical results are presented in Tables 3 and 4 for
=103 and e=10"%, respectively.

6. Nonlinear problems

To solve nonlinear singular perturbation problems,
we used the method of quasi-linearization.

T T
_t =
----t=10
0.75 .
------ t =15
————— t =20
=
>
0.50 -
0.25 T R R T C R R LA bt
1 1 1
0.0000 0.0005 0.0010 0.0015 0.0020
X

Fig. 4. Inner layer solutions of Example 5.2 for £=0.0001, §=0.1¢ and different terminal points.
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1.0 T T T
——1 =05
----t=10
o8 e t=15 §
————— t =20
=3
>
0.6 - -
04 - -
1 1 1
0.000 0.005 0.010 0.015 0.020
X

Fig. 5. Inner layer solutions of Example 6.1 for £ =0.001, § =0.1¢ and different terminal points.

Example 6.1. Consider the following non-linear sin-
gularly perturbed delay differential equation:

&y"(x) + y(x)y'(x = 8) = y(x) = 0

under the interval and boundary conditions

yx) =1, yh=1
The quasilinear form of this example is

ey () + ¥ (x = &) — y(x) = 0; y(x) = 1,
—d=x=0,y1)=1

—-5<x<0,

The exact solution of the problem is not known.
Numerical results are presented in Tables 5 and 6 for
=103 and £ = 1074, respectively.

7. Discussion and conclusions

A terminal boundary-value technique has been pre-
sented for solving singularly perturbed delay differential
equations whose solutions exhibits boundary layer
behaviour. The method is iterative on the terminal point
xp and the process is to be repeated for different values
of x, (the terminal point which is not unique), until the

1.0 T T T
——t=05
----t=10
0.8 -
------ t=15
————— t =20
=3
>
0.6 - -
04 |- -
1 1 1
0.0000 0.0005 0.0010 0.0015 0.0020
X

Fig. 6. Inner layer solutions of Example 6.1 for £ =0.0001, §=0.1¢ and different terminal points.
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solution profile stabilizes in both the inner and outer
regions. The present method has been implemented on
two linear and one nonlinear problem with left-end
boundary layer, by taking § =0.1¢, § =0.5¢ and different
values of . The numerical results have been tabulated
and compared with the exact solutions. Although the
solutions are computed at all the points with mesh size h
only a few values have been reported. It can be observed
from the tables (Tables 1-6) and figures (Figs. 1-6) that
the present method approximates the exact solution very
well. In fact, the method helps us not only to get good
results but also to know the behaviour of the solution
in the boundary layer/inner region with 4 > & where the
existing numerical methods fail to give good results (See
Figs. 1-6). The method is simple, easy and efficient tech-
nique for solving singularly perturbed delay differential
equations.
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