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bstract

A terminal boundary-value technique is presented for solving singularly perturbed delay differential equations, the solutions of
hich exhibit layer behaviour. By introducing a terminal point, the original problem is divided into inner and outer region problems.
n implicit terminal boundary condition at the terminal point was determined. The outer region problem with the implicit boundary

ondition was solved and produces an explicit boundary condition for the inner region problem. Then, the modified inner region
roblem (using the stretching transformation) is solved as a two-point boundary value problem. The second-order finite difference
cheme was used to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. To

alidate the efficiency of the method, some model examples were solved. The stability and convergence of the scheme was also
nvestigated.

 2014 Taibah University. Production and hosting by Elsevier B.V. All rights reserved.
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.  Introduction

Singular perturbation problems containing a small
arameter, ε, multiplying to their highest derivative term
rise in many fields, such as fluid mechanics, fluid
ynamics, chemical reactor theory and elasticity, which
ave received significant attention. The solution of these
ypes of problems shows a multi-scale character, with a
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narrow region called the boundary layer, in which their
solution changes rapidly, and an outer region in which
the solution changes smoothly. Thus, the treatment of
such problems is not trivial because of the boundary
layer behaviour of their solutions. Detailed theory and
analytical discussions of solving singular perturbation
problems have been published [1–9], and have the details
of numerical and asymptotic solutions [10–15].

Boundary value problems involving delay differential
equations arise in studying the mathematical modelling
of various practical phenomena, like micro-scale heat
transfer [16], the hydrodynamics of liquid helium [17],
second-sound theory [18], optically bi-stable devices
[19], diffusion in polymers [20], reaction–diffusion
equations [21], stability [22], control including con-
trol of chaotic systems [23] and a variety of models
for physiological processes and diseases [24,25]. For

example, Lange and Miura [26–30] treated the singular
perturbation analysis of the problem under consideration
in a series of papers. A numerical method based on
the fitted mesh approach to approximate the solution
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of these types of boundary value problems was pub-
lished by Kadalbajoo and Sharma [31]. The authors
constructed piecewise-uniform meshes and fitted them
to the boundary layer regions to adapt the singular
behaviour of the operator in the narrow regions. The
same authors [32] approximated the terms with delay by
first-order Taylor series expansions to analyze bound-
ary value problems of singularly perturbed differential
difference equations with negative shift or delay. They
used the invariant embedding technique and central and
upwind finite difference discretization for the second-
and first-order derivatives, respectively, and proved the
stability and convergence of their method. An expo-
nentially fitted difference scheme on a uniform mesh
is accomplished by the method of integral identities to
solve problems of the same type [33]. In this method,
the authors used exponential basis functions and inter-
polating quadrature rules with weight and remainder
terms in integral form. Various numerical methods
have also been presented for solving singularly per-
turbed boundary value problems involving small shifts,
including exponential methods based on piecewise
analytical solutions of advection–reaction–diffusion
operators [34], a fitted mesh B-spline collocation
method [35], parameter–uniform numerical meth-
ods comprising a standard implicit finite difference
scheme [36], ε-uniformly convergent non-standard finite
differences [37] and ε-uniformly convergent fitted
methods [38].

We devised a terminal boundary value technique for
solving singularly perturbed delay differential equations
with a boundary layer at the left end of the interval.
By introducing a terminal point into the domain, the
original problem is divided into inner and outer region
problems. A terminal boundary condition in the implicit
form is determined from the reduced problem, and the
outer region problem with the implicit boundary con-
dition is then solved as a two-point boundary-value
problem. From the solution of the outer region problem,
an explicit terminal boundary condition is obtained. The
inner region problem is modified and solved as a two-
point boundary value problem using the obtained explicit
terminal boundary condition. Finally, we combined the
solutions of the inner region and outer region problems
to obtain the approximate solution of the original prob-
lem. The method is iterative on the terminal point. We
repeated the numerical scheme for various choices of
the terminal point until the solution profiles did not dif-

fer materially from iteration to iteration. To validate the
efficiency of the method, some model examples are
solved. The stability and convergence of the scheme was
also investigated.
ersity for Science 8 (2014) 289–300

2.  Description  of  the  method

Consider a linear singularly perturbed two-point
boundary value problem of the form:

εy′′(x) +  a(x)y′(x  −  δ) +  b(x)y(x) =  f  (x),  0 ≤  x  ≤  1

(1)

Subject to the interval and boundary conditions

y(x) =  φ(x),  −  δ  ≤  x  ≤  0 (2)

y(1) =  β,  (3)

where ε is a small positive parameter (0 < ε  �  1), δ  is
delay parameter, a(x), b(x), f(x) and φ(x) are sufficiently
smooth functions, and β  is a known constant.

For δ  = 0, the problem (1)–(3) becomes a boundary
value problem for singularly perturbed ordinary differ-
ential equations. The layer behaviour of the problem
under consideration is maintained only for δ  /=  0 but
is sufficiently small (i.e. δ  is of o(ε)). When the delay
parameter δ  exceeds the perturbation parameter, ε  (i.e. δ

is of O(ε)), the layer behaviour of the solution is no longer
maintained; rather, the solution exhibits an oscillatory
behaviour or is diminished.

We considered the cases in which δ  is of o(ε)
(i.e.δ < ε). Now, we assume that a(x) ≥  M  > 0 and
ε −  δa(x) > 0 throughout the interval [0,1], where M  is
some positive constant. Under these assumptions, (1)
has a unique solution y(x), which in general displays
a boundary layer in the neighbourhood of x  = 0.

Since δ  is of o(ε) and the solution y(x) of the BVP
(1)–(3) is sufficiently differentiable, by using Taylor’s
series expansion, we obtain

y′(x  −  δ) ≈  y′(x) −  δy′′(x) (4)

Substituting (4) into (1), we obtain an asymptotically
equivalent two-point boundary value problem

ε(1 −  ξa(x))y′′(x) +  a(x)y′(x) +  b(x)y(x) =  f (x) (5)

with

y(0) =  φ(0) (6)

y(1) =  β  (7)

where δ  = ξε  with ξ  = O(1).
The transition from Eq. (1) to Eq. (5) is admit-

ted because of the condition that the delay parameter

0 < δ  �  1 is sufficiently small and is of o(ε).

Let xp(0 < xp �  1) be the terminal point or width
or thickness of the boundary layer. It is well known
from the singular perturbation theory (see [1,3]) that the
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educed equation (i.e. Eq. (5) with ε = 0) is valid in the
uter region. Hence, by putting ε = 0 in (5), we have the
educed equation

(x)y′(x) +  b(x)y(x) =  r(x) for xp ≤  x  ≤  1 (8)

Now, evaluating (8) at x  = xp and denoting c1 = a(xp),
2 = b(xp) and c3 = f(xp) gives us

1y
′(xp) +  c2y(xp) =  c3 (9)

We take (9) as the terminal boundary condition in
mplicit form. As the terminal point xp is common to
oth the inner and outer regions, then the inner and outer
egion problems are defined on 0 ≤  x ≤  xp and xp ≤  x  ≤  1,
espectively.

That is, the outer region problem:

ε −  δa(x))y′′(x) +  a(x)y′(x) +  b(x)y(x) =  f  (x),

xp ≤  x ≤  1 (10)

ith c1y
′(xp) +  c2y(xp) =  c3 and y(1) =  β (11)

nd the inner region problem:

ε −  δa(x))y′′(x) +  a(x)y′(x) +  b(x)y(x) =  f  (x),

0 ≤  x ≤  xp (12)

ith y(0) =  φ(0),  and y(xp)

= γ  (is obtained as described below)

(13)

First, solving the outer region problem

ε −  δa(x))y′′(x) +  a(x)y′(x) +  b(x)y(x) =  f  (x),

xp ≤  x ≤  1 (14)

ith c1y
′(xp) +  c2y(xp) =  c3 (15)

nd y(1) =  β  (16)

e obtain solution y(x) over [xp,1]. From the solution
(x) of the outer region problem (14)–(16) on the interval
p ≤  x ≤  1, we obtain the value of y(xp) that is the explicit
erminal boundary condition and denote it by y(xp) = γ .

Now, in order to solve the inner region problem,

onsider inner region problem (12) and (13) with the
ssumption δ = ξε, δ = o(ε) and choose the transformation

 = x

ε
(17)
ersity for Science 8 (2014) 289–300 291

to form a new differential equation for the inner region
solution. By using (17), we transform Eq. (12) with

y(x) =  y(tε) =  Y (t) (18)

y′(x) = y′(tε)

ε
= Y ′(t)

ε
(19)

y′′(x) = y′′(tε)

ε2 = Y ′′(t)
ε2 (20)

a(x) =  a(tε) =  A(t) (21)

b(x) =  b(tε) =  B(t) (22)

f (x) =  f (tε) =  F (t) (23)

to the new inner region problem of the form:

(1 −  ξA(t))Y ′′(t) +  A(t)Y ′(t) +  εB(t)Y (t) =  εF (t),

0 ≤  t ≤  tp (24)

and the boundary condition for (24) is determined by
(13) and (18).

Y (0) =  φ(0) =  φ0 (25)

and Y (tp) =  y(xp) =  γ  (26)

where tp = xp/ε. We solve the new inner region prob-
lem (24)–(26) to obtain the solutions over the interval
0 ≤  t  ≤  tp.

To solve the two-point boundary value problems
given in Eqs. (14)–(16) (outer region problem) and
(24)–(26) (inner region problem), we make use of a
second-order classical finite difference scheme. In fact,
any standard analytical or numerical method can be
used. Finally, we combine the solutions of both the inner
region defined in 0 ≤  x ≤  xp and the outer region defined
in xp ≤  x ≤  1 problems to obtain the approximate solu-
tion of the original problem (1)–(3) over the interval
0 ≤  x  ≤  1. We repeat the process (numerical scheme) for
various choices of xp (the terminal point), until the solu-
tion profiles do not differ materially from iteration to
iteration. For the computational point of view, we use an
absolute error criterion, namely∣∣∣ym+1(x) −  ym(x)

∣∣∣ ≤ σ,  0 ≤  x  ≤  xp

where ym(x) = the solution for the mth iterate of xp and
σ = the prescribed tolerance bound.

To describe the scheme for the outer region prob-
lem (14)–(16), we divide [x ,1] into N equal parts,
p

each of length h, xp = x0 < x1 < x2 < · · ·  < xN = 1 and we
have xi = xp + ih, i = 0, 1, 2, . .  ., N. For convenience, let
a(xi) = ai, b(xi) = bi, f(xi) = fi, y(xp) = y0, y(xi) = yi. Now,
applying the classical central finite difference scheme to
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(14)–(16), we obtain the three-term recurrence relation

Eiyi−1 −  Fiyi +  Giyi+1 =  Hi,  i =  0,  1,  . .  ., N  −  1

(27)

where

Ei = (ε −  δai)

h2 − ai

2h

Fi = 2(ε −  δai)

h2 −  bi

Gi = (ε −  δai)

h2 + ai

2h

Hi =  fi

(28)

Eq. (27) gives a system of N  equations with N  + 1
unknown y−1 to yN−1. To eliminate the unknown y−1,
we use the implicit boundary condition (15); then, by
employing the second-order central difference approxi-
mation in it, we obtain

y−1 = 2hc2

c1
y0 +  y1 − 2hc3

c1
(29)

where c1, c2 and c3 are defined in (9). Using (29) in the
first equation of the recurrence relation (27) at i = 0, we
obtain

−
(

F0 + 2hc2

c1
E0

)
y0 +  (E0 +  G0)y1

=  H0 + 2hc3

c1
E0 (30)

Now, Eqs. (27) and (30) give N  by an N  tri-diagonal
system, which can be easily solved with the Thomas
algorithm.

Similarly, to set up the difference equation for
the inner region problem (24)–(26), we divide the
interval 0 ≤  t ≤  tp into N  subintervals of equal mesh
length h = (tp −  0)/N  with mesh points 0 = t0 < t1 < t2, . .  .,
< tN = tp. Again applying the second-order classical finite
difference scheme to (24)–(26), we obtain the three-term

recurrence relation

E′
iyi−1 −  F ′

i yi +  G′
iyi+1 =  H ′

i , i =  1,  2,  .  . ., N  −  1

(31)
ersity for Science 8 (2014) 289–300

where

E′
i = (1 −  ξAi)

h2 − Ai

2h

F ′
i = (1 −  ξAi)

h2 −  εBi

G′
i = (1 −  ξAi)

h2 + Ai

2h

H ′
i =  εFi

(32)

The Thomas algorithm is used to solve the tri-
diagonal system (31).

3.  Lower  bound  of  the  terminal  point  tp

To gain further insight into the choice of tp, the ter-
minal point of the boundary layer region, consider the
problem (1)–(3). Further, choose tp such that tp �  1/ε.
Now, using Eq. (5) and assuming that δ  �  ε and
ε −  δa(x) > 0, we get

(ε  −  δa(x))y′′(x) +  a(x)y′(x) +  b(x)y(x) =  f (x) (33)

Using the stretching transformation (17) and taking
the limit as ε  →  0, we obtain(

1 − δa(0)

ε

)
Y ′′(t) +  a(0)Y ′(t) =  0 (34)

where Y(t) = y(tε) and the boundary conditions are

Y (0) =  φ(0) and Y (tp) =  γ  (35)

Now, solving the two-point boundary value problem
(34) and (35) analytically, we obtain the solution

Y (t) =  m1 +  m2e
mt (36)

where m  = (−  εa(0))/(ε  −  δa(0)), m2 = (γ  −  φ(0))/
(e(−εa(0)tp)/(ε−δa(0)) −  1), and m1 = φ(0) −  m2.

As suggested by Hsiao and Jordan [39] and Lorenz
[40], tp can be determined by taking the inequality

exp

( −εa(0)

ε  −  δa(0)
tp

)
< ε  (37)

Taking the natural logarithm (ln) of both sides of (37),
we get

−εa(0)tp
ε  −  δa(0)

<  ln ε (38)
Now, rearranging (38) gives

tp≥δa(0) −  ε

εa(0)
ln ε (39)
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For ε  = 10−μ, we can obtain a crude estimate of the
ower bound of tp from

p≥μ

(
1 − δa(0)10μ

a(0)

)
ln(10) ≈ 2.3μ

(
1 − δa(0)10μ

a(0)

)
. (40)

.  Stability  and  convergence  analysis

heorem  1.  Under  the  assumptions  (ε  −  δa(x)) > 0,
(x) ≥  M  > 0 and  b(x) < 0, ∀x  ∈  [0, 1],  the  solution  to  the
ystem of  the  difference  equations  (27), together  with  the
iven boundary  conditions,  is  unique  and  satisfies

y‖h,∞ ≤  2M−1‖f‖h,∞ + (|φ0| + |β|) (41)

here ‖·‖h,∞ is  the  discrete  l∞ −  norm, given  by
x‖h,∞ =  max

0≤i≤N
{|xi|}.

roof. Let Lh(.) denote the difference operator on the
eft-hand side of Eq. (27) and wi be any mesh function
atisfying

h(wi) =  f

By rearranging the difference scheme (27) and using
on-negativity of the coefficients Ei, Fi and Gi, we obtain

i |wi| ≤ |Hi| +  Ei |wi−1| +  Gi |wi+1|
Now, on the assumption (ε  −  δa(x)) > 0 and

(x) ≥  M  > 0, the definition of l∞-norm and manipulating
he above inequality, we obtain

ε −  δM)

( |wi+1| −  2 |wi| + |wi−1|
h2

)

+ ‖a‖h,∞
( |wi+1| − |wi−1|

2h

)
+  bi |wi| + |fi| ≥0

(42)

To prove the uniqueness and existence, let {ui} , {vi}
e two sets of solution of the difference equation (27)
atisfying boundary conditions. Then, wi =  ui −  vi sat-
sfies

h(wi) =  fi

here fi =  0 and w0 =  wN =  0.

Summing (42) over i = 1, 2, .  . ., N  −  1, we obtain

(ε  −  δM)
2

|w1| − (ε  −  δM)
2

|wN−1|

h h

− ‖a‖h,∞
( |w1| − |wN−1|

2h

)
+

N−1∑
i=1

bi |wi| ≥0 (43)
ersity for Science 8 (2014) 289–300 293

Since (ε  −  δM) >  0, ‖a‖h,∞≥0,  bi <  0 and
|wi| ≥0 ∀i,  i =  1,  2,  .  . ., N  −  1,  for inequal-

ity (43) to hold, we must have wi =  0 ∀i,  i =
1, 2,  . .  ., N  −  1.

This implies the uniqueness of the solution of the tri-
diagonal system of difference equations (27). For linear
equations, the existence is implied by uniqueness. Now,
to establish the estimate, let

wi =  yi −  li,

where yi satisfies difference equations (27), the boundary
conditions and

li =  (1 −  ih)φ0 +  (ih)β,

then w0 =  wN =  0 and wi, i =  1,  2, . . ., N  − 1 satis-
fies

Lh(wi) =  fi

Now, let

|wn| = ‖w‖h,∞≥ |wi| , i =  0,  1,  .  . ., N.

Then, summing (42) from i = n  to N  −  1 and using the
assumption on a(x), gives

− (ε  −  δM)

h2 (|wn| − |wn−1| + |wN−1|)

− M

2h
(|wn−1| − |wN−1|) − M

2h
|wn|

+
N−1∑
i=n

bi |wi| +
N−1∑
i=n

|fi| ≥0 (44)

Inequality (44), together with the condition on b(x),
implies that

M

2
|wn| ≤ h

N−1∑
i=n

|fi| ≤ h

N∑
i=0

|fi| ≤ ‖f‖h,∞,

i.e., we have

|wn| ≤ 2M−1‖f‖h,∞ (45)

We also have
h,∞
0≤i≤N

i

≤ ‖w‖h,∞ + ‖l‖h,∞
≤ |wn| + ‖l‖h,∞.

(46)
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Table 1
Numerical results for Example 5.1, ε = 10−3, δ = 0.5ε.

x tp = 20 tp = 15 tp = 10 tp = 5 Exact solution
y(x) y(x) y(x) y(x)

0.0000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.0010 0.3171426 0.4528503 0.4533947 0.4538989 0.4538692
0.0020 0.3603879 0.3792739 0.3798923 0.3804652 0.3803509
0.0030 0.3666117 0.3697083 0.3703373 0.3709202 0.3707303
0.0040 0.3678324 0.3687953 0.3694263 0.3700112 0.3697488
0.0050 0.3683816 0.3690566 0.3696884 0.3702742 0.3699358
0.0100 0.3708603 0.3714947 0.3721293 0.3717605
0.0150 0.3733556 0.3739937 0.3736230
0.0200 0.3758674 0.3754949
0.1000 0.4071563 0.4071563 0.4071563 0.4071563 0.4067525
0.2000 0.4499552 0.4499552 0.4499552 0.4499552 0.4495085
0.4000 0.5495225 0.5495225 0.5495225 0.5495225 0.5489761
0.6000 0.6711221 0.6711221 0.6711221 0.6711221 0.6704540
0.8000 0.8196300 0.8196300 0.8196300 0.8196300 0.8188125

rminal
0.9000 0.9057869 0.9057869 

1.0000 1.0000000 1.0000000 

Underline is used to indicate the numerical solutions obtained at the te

To complete the estimate, we have to find the bound
on li

‖l‖h,∞ =  max
0≤i≤N

{|li|} ≤ max
0≤i≤N

{|(1 −  ih)|  |φ0|

+ |ih| |β|} ≤ max
0≤i≤N

{(1 −  ih) |φ0| +  (ih) |β|} ,
i.e., we have

‖l‖h,∞ ≤ |φ0| + |β| .  (47)

Table 2
Numerical results for Example 5.1, ε = 10−4, δ = 0.5ε.

x tp = 20 tp = 15 

y(x) y(x) 

0.00000 1.0000000 1.0000000 

0.00010 0.3181581 0.4709184 

0.00020 0.3612116 0.3873736 

0.00030 0.3670360 0.3711528 

0.00040 0.3678237 0.3689013 

0.00050 0.3679338 0.3685967 

0.00100 0.3682020 0.3685541 

0.00150 0.3684702 0.3685541 

0.00200 0.3687384 

0.10000 0.4066914 0.4066914 

0.20000 0.4494485 0.4494485 

0.40000 0.5489215 0.5489215 

0.60000 0.6704094 0.6704094 

0.80000 0.8187855 0.8187855 

0.90000 0.9048674 0.9048674 

1.00000 1.0000000 0.0000000 

Underline is used to indicate the numerical solutions obtained at the terminal
0.9057869 0.9057869 0.9048827
1.0000000 1.0000000 1.0000000

 points.

From Eqs. (45)–(47), we obtain the estimate

‖y‖h,∞ ≤  2M−1‖f‖h,∞ + (|φ0| + |β|)
This theorem implies that the solution to the system

of difference equations (27) is uniformly bounded, inde-
pendently of mesh size h and the perturbation parameter

ε. Thus, the scheme is stable for all step sizes.

Corollary  1. Under  the  conditions  of  Theorem 1,
the error  ei = y(xi) −  yi between  the  solution  y(x) of  the

tp = 10 tp = 5 Exact solution
y(x) y(x)

1.0000000 1.0000000 1.0000000
0.4707524 0.4705484 0.4534718
0.3871895 0.3869631 0.3795465
0.3709686 0.3707419 0.3695746
0.3687171 0.3684904 0.3682570
0.3684126 0.3681859 0.3681105
0.3683699 0.3682659

0.3684501
0.3686343

0.4066914 0.4066914 0.4065880
0.4494485 0.4494485 0.4493469
0.5489215 0.5489215 0.5488281
0.6704094 0.6704094 0.6703334
0.8187855 0.8187855 0.8187389
0.9048674 0.9048674 0.9048420
0.0000000 0.0000000 1.0000000

 points.
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Table 3
Numerical results for Example 5.2, ε = 10−3, δ = 0.5ε.

x tp = 20 tp = 15 tp = 10 tp = 5
y(x) y(x) y(x) y(x)

0.0000 1.0000000 1.0000000 1.0000000 1.0000000
0.0010 0.3716997 0.3719800 0.3723023 0.3725916
0.0020 0.2869179 0.2872367 0.2876031 0.2879317
0.0030 0.2756975 0.2760220 0.2763947 0.2767291
0.0040 0.2744568 0.2747825 0.2751564 0.2754918
0.0050 0.2745652 0.2748914 0.2752659 0.2756018
0.0100 0.2762854 0.2766135 0.2769902
0.0150 0.2780575 0.2783891
0.0200 0.2797985
0.1000 0.3038107 0.3038107 0.3038107 0.3038107
0.2000 0.3383586 0.3383586 0.3383586 0.3383587
0.4000 0.4267997 0.4267997 0.4267997 0.4267997
0.6000 0.5516247 0.5516247 0.5516247 0.5516248
0.8000 0.7323793 0.7323793 0.7323793 0.7323793
0.9000 0.8531665 0.8531665 0.8531665 0.8531665
1

U
t

c
p

‖
w

|

T
N

x

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

U
t

Table 5
Numerical results for Example 6.1, ε = 10−3, δ = 0.5ε.

x tp = 20 tp = 15 tp = 10 tp = 5
y(x) y(x) y(x) y(x)

0.00000 1.0000000 1.0000000 1.0000000 1.0000000
0.00100 0.4596118 0.4582375 0.4568711 0.4554691
0.00200 0.3864810 0.3849208 0.3833696 0.3817777
0.00300 0.3765825 0.3749970 0.3734207 0.3718032
0.00400 0.3752426 0.3736535 0.3720739 0.3704530
0.00500 0.3750651 0.3734757 0.3718956 0.3702742
0.01000 0.3753012 0.3737106 0.3721293
0.01500 0.3755843 0.3739937
0.02000 0.3758674
0.10000 0.4071563 0.4071563 0.4071563 0.4071563
0.20000 0.4499552 0.4499552 0.4499552 0.4499552
0.40000 0.5495225 0.5495225 0.5495225 0.5495225
0.60000 0.6711221 0.6711221 0.6711221 0.6711221
0.80000 0.8196300 0.8196300 0.8196300 0.8196300
0.90000 0.9057869 0.9057869 0.9057869 0.9057869
1.00000 1.0000000 1.0000000 1.0000000 1.0000000

τi =  (ε  −  δa(x))
h2 −  yi
.0000 1.0000000 1.0000000 1.0000000 1.0000000

nderline is used to indicate the numerical solutions obtained at the
erminal points.

ontinues  problem  and  the  solution  yi of  the  discretized
roblem, with  boundary  conditions,  satisfies  the  estimate

e‖h,∞ ≤  2M−1‖τ‖h,∞ (48)

here {
h2a(x) ∣∣ ∣∣}
τi| ≤ max
xi−1≤x≤xi+1 6

∣y(3)(x)∣

+  max
xi−1≤x≤xi+1

{
εh2

12
(ε  −  δa(x))

∣∣∣y(4)(x)
∣∣∣
}

(49)

able 4
umerical results for Example 5.2, ε = 10−4, δ = 0.5ε.

 tp = 20 tp = 15 tp = 10 tp = 5
y(x) y(x) y(x) y(x)

.00000 1.0000000 1.0000000 1.0000000 1.0000000

.00010 0.3313265 0.3425767 0.3544611 0.3668457

.00020 0.2408234 0.2535924 0.2670812 0.2811385

.00030 0.2290035 0.2420007 0.2557299 0.2700383

.00040 0.2292476 0.2423802 0.2562526 0.2707104

.00050 0.2315017 0.2447798 0.2588054 0.2734225

.00100 0.2446982 0.2587352 0.2735594

.00150 0.2588526 0.2736963

.00200 0.2738332

.10000 0.3027937 0.3027937 0.3027937 0.3027937

.20000 0.3372552 0.3372553 0.3372553 0.3372553

.40000 0.4255062 0.4255062 0.4255062 0.4255062

.60000 0.5501304 0.5501304 0.5501304 0.5501304

.80000 0.7307238 0.7307238 0.7307238 0.7307238

.90000 0.8514816 0.8514816 0.8514816 0.8514816

.00000 1.0000000 1.0000000 1.0000000 1.0000000

nderline is used to indicate the numerical solutions obtained at the
erminal points.
Underline is used to indicate the numerical solutions obtained at the
terminal points.

Proof.  Truncation error τi is given by

{(
yi+1 −  2yi +  yi−1

)
′′
}

+ a(x)

{(
yi+1 −  yi−1

2h

)
−  y′

i

}

Table 6
Numerical results for Example 6.1, ε = 10−4, δ = 0.5ε.

x tp = 20 tp = 15 tp = 10 tp = 5
y(x) y(x) y(x) y(x)

0.00000 1.0000000 1.0000000 1.0000000 1.0000000
0.00010 0.4710844 0.4709184 0.4707524 0.4705484
0.00020 0.3875577 0.3873736 0.3871895 0.3869631
0.00030 0.3713371 0.3711528 0.3709686 0.3707419
0.00040 0.3690856 0.3689013 0.3687171 0.3684904
0.00050 0.3687811 0.3685967 0.3684126 0.3681859
0.00100 0.3687384 0.3685541 0.3683699
0.00150 0.3687384 0.3685541
0.00200 0.3687384
0.10000 0.4066914 0.4066914 0.4066914 0.4066914
0.20000 0.4494485 0.4494485 0.4494485 0.4494485
0.40000 0.5489215 0.5489215 0.5489215 0.5489215
0.60000 0.6704094 0.6704094 0.6704094 0.6704094
0.80000 0.8187855 0.8187855 0.8187855 0.8187855
0.90000 0.9048674 0.9048674 0.9048674 0.9048674
1.00000 0.0000000 1.0000000 1.0000000 1.0000000

Underline is used to indicate the numerical solutions obtained at the
terminal points.



296 G. File, Y.N. Reddy / Journal of Taibah University for Science 8 (2014) 289–300

 for ε = 
Fig. 1. Inner layer solutions of Example 5.1

|τi| ≤ max
xi−1≤x≤xi+1

{
h2a(x)

6

∣∣∣y(3)(x)
∣∣∣
}

+  max
xi−1≤x≤xi+1

{
εh2

12
(ε  −  δa(x))

∣∣∣y(4)(x)
∣∣∣
}

(50)

One can easily show that the error ei satisfies

Lh(e(xi)) =  Lh(y(xi)) −  Lh(yi) =  τi,

i =  1,  2,  .  . ., N  −  1 (51)
and e0 = eN = 0.
Then, Theorem 1 implies that

‖e‖h,∞ ≤  2M−1‖τ‖h,∞. (52)

Fig. 2. Inner layer solutions of Example 5.1 for ε = 0
0.001, δ = 0.1ε  and different terminal points.

Estimate (48) establishes the convergence of the dif-
ference scheme for the fixed values of the parameter
ε.

5.  Numerical  examples

To validate the efficiency of the method, we applied
it to two linear examples and one nonlinear example.
Example  5.1.  Consider the singularly per-
turbed delay differential equation with left layer
εy′′(x) + y′(x  −  δ) −  y(x) = 0 ; x  ∈  [0, 1], with y(0) = 1 and
y(1) = 1.

.0001, δ = 0.1ε and different terminal points.
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for ε = 0

y

w
m

ε

E
t
d

Fig. 3. Inner layer solutions of Example 5.2 

The exact solution is given by

(x) = (1 −  em2 )em1x +  (em1 −  1)em2x

em1 −  em2

here m1 =  (−1 − √
1 +  4(ε  −  δ))/(2(ε  −  δ)) and

2 =  (−1 + √
1 +  4(ε  −  δ))/(2(ε −  δ)).

Numerical results are presented in Tables 1 and 2 for
 = 10−3 and ε = 10−4, respectively.
xample 5.2.  Consider the following singularly per-
urbed variable coefficient and non-homogenous delay
ifferential equation:

Fig. 4. Inner layer solutions of Example 5.2 for ε = 0
.001, δ = 0.1ε  and different terminal points.

εy′′(x) +  e−0.5xy′(x  −  δ) −  y(x) =  0,  0 ≤  x ≤  1

with boundary conditions y(0) = 1, −  δ  ≤  x  ≤  0, y(1) = 1.
The exact solution of the problem is not known.

Numerical results are presented in Tables 3 and 4 for
ε = 10−3 and ε  = 10−4, respectively.
6.  Nonlinear  problems

To solve nonlinear singular perturbation problems,
we used the method of quasi-linearization.

.0001, δ = 0.1ε and different terminal points.
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 for ε =0
Fig. 5. Inner layer solutions of Example 6.1

Example  6.1.  Consider the following non-linear sin-
gularly perturbed delay differential equation:

εy′′(x) +  y(x)y′(x  −  δ) −  y(x) =  0

under the interval and boundary conditions

y(x) =  1,  −  δ  ≤ x  ≤  0,  y(1) =  1
The quasilinear form of this example is

εy′′(x) +  y′(x  −  δ) −  y(x) =  0; y(x) =  1,

−  δ ≤  x ≤  0,  y(1) =  1

Fig. 6. Inner layer solutions of Example 6.1 for ε = 0
.001, δ = 0.1ε and different terminal points.

The exact solution of the problem is not known.
Numerical results are presented in Tables 5 and 6 for
ε = 10−3 and ε  = 10−4, respectively.

7.  Discussion  and  conclusions

A terminal boundary-value technique has been pre-
sented for solving singularly perturbed delay differential

equations whose solutions exhibits boundary layer
behaviour. The method is iterative on the terminal point
xp and the process is to be repeated for different values
of xp (the terminal point which is not unique), until the

.0001, δ = 0.1ε and different terminal points.
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olution profile stabilizes in both the inner and outer
egions. The present method has been implemented on
wo linear and one nonlinear problem with left-end
oundary layer, by taking δ  = 0.1ε, δ  = 0.5ε  and different
alues of ε. The numerical results have been tabulated
nd compared with the exact solutions. Although the
olutions are computed at all the points with mesh size h
nly a few values have been reported. It can be observed
rom the tables (Tables 1–6) and figures (Figs. 1–6) that
he present method approximates the exact solution very
ell. In fact, the method helps us not only to get good

esults but also to know the behaviour of the solution
n the boundary layer/inner region with h ≥  ε  where the
xisting numerical methods fail to give good results (See
igs. 1–6). The method is simple, easy and efficient tech-
ique for solving singularly perturbed delay differential
quations.
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