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Abstract. Stokes viscous flow past a partially contaminated fluid sphere with no slip condition
is considered. No mass transfer for the entire sphere, no slip condition on contaminated part,
shear stress continuity on clear part and regularity condition at far away from the body are
considered for boundary conditions for evaluation of stream function.

1. Introduction
Study of flow in drops has wide applications in natural and engineering such as nuclear
reactors, internal combustion engines, sediment and pollutant transport processes. Stokes [1]
solved the creeping flow problem past a sphere neglecting inertial terms in the Navier Stokes
equations. Basset [2] calculated drag over a sphere in terms of slip parameter s (Trostel number),
s = % (defined as slip parameter). Creeping flow over a fluid sphere was studied analytically
independently by Rybczynski [3] and Hadamard [4]. Happel and Brenner [5] discussed creeping
flow past a sphere with no slip boundary condition. Clift et al. [6] and Michaelides [7] in their
monographs discussed about viscous flow past a fluid sphere with no slip boundary condition.
Sadhal and Johnson [8] derived exact solution of drag force for a fluid sphere in terms of cap
angle with stagnation cap over its boundary along the rear of the fluid drop. Stagnation cap is
the collection of surfactant at the rear side the fluid sphere. Saboni [9] numerically discussed
about the contamination effects on a fluid sphere for Reynolds numbers from 0.1 to 400 and
viscosity ratio ranging from 0 to 10 at different stagnation cap angle. Feng et al. [10] has
discussed about the viscous flow past a viscous drop with interfacial condition at small but
finite Reynolds numbers. Feng derived a formula for drag coefficient. As special cases he
derived an expression for drag for solid sphere with interfacial slip condition, solid sphere with
no slip boundary condition.

In this paper, stokes viscous flow over a contaminated fluid sphere is considered with the
continuous shear stresses over the clear part. Velocity is represented in terms of stream function.
The stream lines are drawn for different values of viscosity ratio p, contamination cap lengths.

2. Formulation of the problem
A fluid sphere of radius a with contamination at rear end, which is held fixed in an uniform
viscous flow, is considered. The fluid within the sphere and fluid flowing past the sphere are
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assumed to be immiscible. The flow is steady, incompressible, axi symmetric, with uniform
velocity Up. A spherical polar coordinate system is considered with origin at the center of the
sphere and Z-axis along the direction of uniform flow. p;, e, pi, pe are viscosity, density of

interior and exterior fluids. The viscosity ratio is taken as u = % L p= %.
frez surface
\ X0= Cos By
contaminated cap

U

L1t 1

Figure 1. Geometry of the problem.

The viscous fluid is assumed to flow from left to right. In the fluid sphere the clear part
(no cap region) is considered for —1 < x < xy and contaminated part (cap region) is for
xg < x < 1, where x = cosf . xq is the position of cap or cosine angle of contamination. The
velocity components in radial direction U and transverse direction V can be expressed in terms
of stream function as

1 ov -1 ov

U(R,Q)_ V(Rae):mﬁa

" R2sinf 90’ (2.1)

Any physical (dimensional or non dimensional) quantity for internal flow is represented by fi
and external flow by fe. The following non-dimensional scheme is used to obtain equations of
motion.

R=ar, Q=Uyg, U=Uu, V="Vw, ¥=dUy.

Reynolds number for external flow is Re = % and for internal flow Rei = %.
The equation of motion in terms of stream function for the internal flow is

E*i = 0. (2.2)
The equation of motion in terms of stream function for the external flow is

E*e =0, (2.3)

where

2 —x2) 92 .
E? = % + (1; )%: Stokes stream function operator.

Equations (2.2), (2.3) are solved for v, 1; using the following boundary conditions (2.4) - (2.9):
at 0 =0, m(zx=1x=-1) on r=1, Ye=1hi=0, (2.4)

Tangential velocity is zero along the contaminated part

ove(l)  Ovi(l
T/J;:): 1/)6275)20 for xg <2 < 1. (2.5)
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The shear stress is continuous along the clear surface at the interface, which implies

1 Ove 0 1 oy
=p—|(—=——] for —1 2.6
8r<r2 67“) 'uar(ﬂ 81") or < T < o, (2.6)
Far away from the sphere, regularity condition is taken
1
lim ¢e = —r2(1 — %), (2.7)
r—00 2

The physical condition, that velocity at the origin is finite, can be taken as

lim i < co(it is taken as zero).
T—00

3. Solution of the problem
The Stream function v for stokes flow is taken in the form

[e.9]

b= Fu(r)Gnl(r
n=1

Hence (2.2) or (2.3) takes the form given by

E' =" DhFu(r)Gn(r), (3.1)
where ( D
2 o n{n —
D;F,=F, — TFn

For external flow the solution for ¢ of (3.1) which satisfies the regularity condition (2.7) at
infinity is given by

Velr,z) = (Agr? +Ei+p2 Z( + 3)G (), (3.2)

Using the boundary condition (1, z) = 0, stream function in (3.2) reduces to
1
Ve(r,z) = (r? —T—FBQ(*—T —I—ZB ( i 3)G (z), (3.3)

Similarly for internal flow, the solution for ¢ of (3.1) that vanishes at r = 1 (i.e ¢;(1,2) =0 ) is
given by

r) = Z Ap(r"T? — r™)Go(x). (3.4)
n=2
The solution of (3.1) for cap and free regions is assumed to be in the form

Ye(r,x) = {f€n(r) Ga(z), for—1 <z <

fec(r) Ga(z), for zp <z <1,

fin(r) Ga(z), for—1<z<xg

fic(r) Go(z), for mog<z<1. (3.5)

Ye(r,x) = {
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Again solving (3.1) for the region of free flow (z¢9 < = < 1), the solutions for the coefficient of
Go(x) which satisfy the continuity of interfacial stress for the external and internal flows are
given by P
9 2+43u w1 Tt —r

fealr) =17 = 5"+ ahraur T = 5o
Similarly for the region of contaminated cap (—1 < x < zg) , the solutions for the coefficient of
G2(x) which satisfy the no-slip condition for the external and internal flows are given by

Feolr) = 1% %r + 2% Fio(r) = 0. (3.7)

Hence, for external flow, LHS of condition (2.6) takes the form

(3.6)

" / (fe, o(r) = 2fe, o(r)Ga(z), for—1 <z < xg
1) —2¢.(1) = " ’ 3.8
Ve ) = 20e(1) {fec(r) Ga(z), for zp <z <1, (38)
Substituting (3.6) and (3.7) in (3.8) we get
" / (ﬁ—“)Gg(m), for—1 <z <uxo
1) —2¢,(1) = N 3.9
Ve ) = 20.(1) {3G2(:U), for zp <z <1, (3:9)
Substituting (3.3) for ¢, in (3.9) we get
(££)Go(x), for—1 <z <z
682G dn — 2)B,Gp(x) = th 3.10
2Ga(@) + Z( n=2) @) {3G2(x), for xo <z <1 (3.10)

By using the orthogonal property of Gegenbauer polynomials, the constants in (3.10) are
obtained as below

(4m —2)B (2m —1)m(m — 1) [/IO 3 Ga(2)Gm(2) , + /1 3G2(2)Gm(z) dm}- (3.11)

m 2 o l4p 1-a? 1— 22

0

This on simplification gives
mm—1)(1 p 3 /1 Ga(x)Gp ()
B,, = { B d } 3.12
" 4 1+ p 2’m—’_l—i—,u vy L—a? * (3.12)

where 625, is kronecker delta which takes value 1 if m=2 and 0 if m# 2.
For internal flow, by substituting (3.4) in RHS of (2.6), the condition of continuity of interfacial
stress is expressed as:

Py O o«
u( 52 2 B ) = unzz(éln —2)A,Gp(2), (3.13)
02 O; B > (ufi;;z(r) - 2fi;12(7'))G2(a:), for—1<z<umx
M(8r2 _267')7:1_”;2{0, for zo<x <1,

(3.14)

02, 0Y; - (%)Gg(m), for—1 <z <xg
— u
C iy )| Z{

a 0, for xp <z <1,
Using the orthogonal property of Gegenbauer polynomials, the constants A, are obtained as
below
3n(n—1) /IO Ga(x)Gp(z)
n = dx.
Al+p) Jo 1-2a?

Now substituting the values of the constants A, and B, from (3.15) and (3.12) in (3.3) and
(3.4), the flow pattern for external and internal flows can be obtained.

(3.15)
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4. Results and discussions

The stream function v for external flow and for internal flow is taken in the infinite series
of Gegenbauer polynomials as in (3.3) and (3.4). This function is to satisfy the discontinuity
condition at the junction point of free and contaminated cap regions. Previously this was
accomplished by using double series proposed by Collins [11]. By using the present procedure,
this infinite series can be obtained easily by taking solutions in the free and cap regions and
matching them with the series solution. When the number of terms in the series are limited to
twenty (i.e. N = 20) the error in the solution is about 1073. Hence we did not take N > 20.
The following figure 2, for different values of cap lengths z, illustrates variation in the original
curve and truncated series solution. The wavy curve represents the stream function represented
by infinite series at the boundary and the smooth curve is the stream function at the boundary.
We can observe that the difference between these two curves is very small i.e, the series satisfies
the boundary condition, within the reasonable tolerance. Both the external and internal stream
functions represented by infinite series satisfy the viscous stream function differential equation
(3.1). Hence we have obtained exact solution for this contaminated cap problem.

xp = - .85 mp =035
curve For bBoundasr crandLT Lon curve for PEoundary conditcion
cuE ST Bous Y o0
0. 5
-
.3
|
] - -
| -
1
j oI 5.1
.+|r - H. " e e e B e e - T P
-1 W =0, . 8 1 35 1

(a) (b)

xy =065
curve for boundary condition

Figure 2. Stress at boundary for various values of cap length xg.
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Now by taking N = 20 terms in the stream function, stream line pattern for different values
of cap lengths x( is obtained. It can be clearly observed from the figure 3 below that when x is
near to -1 flow in the internal region of the fluid sphere is very low. As the value of z( increases,
internal circulation also increases. These flow patterns are similar to the results obtained by
Feng and Michaelides [12] for low Reynolds numbers. These results are reasonably in very good
agreement with the numerical results of Feng et al. [10]. The difference between the values of
stream function at the boundary and the values of stream function obtained by infinite series
is very small or insignificant (¢» = 1 — 0.000001) for zp < —0.85 i.e when contaminated cap
is almost covering the fluid sphere. When the cap size is decreasing, i.e when xg is nearing 1,
we can find more circulations within the sphere in the negative direction to the flow direction
outside the sphere. The values of the stream function are decreasing and numerically increasing
as xg is increasing. We can also observe that as Peclet number Pe is increasing, these circulations
within the sphere are also increasing. When p the ratio of viscosities increases, it implies that
that the fluid is becoming thick and as y — oo, the sphere will be impermeable and the internal
circulations will be absent.

L '/—’_,"'—'_-__ ﬁ\_\\\‘ 1.75 //’—\\-
1.§ 1.5
y am /"—_\ 1.3‘5‘//_\
| i
.75 0.75
[+ -
-0.000001 B-3F 2
0.2% (’/—/ s.aal 0.001
0
y 5 O
- o ° : . -z -1 o 1 2
Etream lines at P==25, U=36, =y =005 Stream lines at Pe=2.5, u=56, x,= -0.85

Btream lines at Pe=2.5, U=56, xp= -0.63 Stream lines at Pe=2.3, u=36, == 033

(c) (d)

Figure 3. Stream lines for internal and external flows for various cap lengths xg.
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