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a b s t r a c t

The present paper studies the entropy generation in a micropolar fluid flow through an inclined channel
with slip and convective boundary conditions. The governing equations are linearized using quasi-
linearization and then solved using Chebyshev spectral collocation method. The velocity, micro-
rotation and temperature profiles are obtained and utilized to compute entropy generation and Bejan
number. The effects of the angle of inclination, coupling number, slip parameter, Biot number and
Brinkman number on the velocity, microrotation, temperature, entropy generation and Bejan number are
studied and presented graphically. The results reveal that the entropy generation number increases with
the increase of angle of inclination and Brinkman number while the increase of coupling number and
Reynolds number causes the entropy generation to reduce. It is observed that the heat transfer irre-
versibility dominates at the centre of the channel.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The optimal design criteria for thermal systems by minimizing
their entropy generation have recently been a topic of great inter-
est. Efficient utilization of energy is themain objective in the design
of thermal devices. The performance of thermal devices is always
affected by irreversible losses that lead to an increase of entropy
and reduce the thermal efficiency. Therefore, in the energy opti-
mization problems and design of many traditional heat removal
engineering devices, it is necessary to minimize the entropy gen-
eration or destruction of available work due to heat transfer and
fluid friction as a function of the design variables selected for the
optimization analysis. The entropy generation is encountered in
many energy related applications, such as solar power collectors,
geothermal energy systems and the cooling of modern electronic
systems. Entropy generation analysis provides a useful tool to
identify the irreversibilities in any thermal system as well as to
determine the optimum condition for any process. A variety of fluid
flow systems have been analyzed and optimized using the EGM
(entropy generation minimization) method. Several investigations
dsrinivasacharya@yahoo.com
([1e6]) were carried on entropy generation under various flow
configurations.

Fluid flow and heat transfer inside channels with simple ge-
ometry and different boundary conditions is one of the funda-
mental areas of research in engineering. It has wide range of
thermal engineering applications in electronics cooling, thermal
insulation engineering, water movement in geothermal reservoirs,
heat pipes and thermal insulation. Recently, a wide literature on
fluid flow and entropy generation in various channels has been
developed. Havzali et al. [7] investigated the effect of entropy
generation on a laminar, viscous, incompressible flow between two
inclined, parallel, isothermal plates. They observed that the entropy
generation in a small section is dominant on the total entropy
production. Kamisli and Oztop [8] examined the entropy genera-
tion in two immiscible incompressible fluid flows under the in-
fluence of pressure difference in thin slit of constant wall heat
fluxes. Cimpean and Pop [9] studied the entropy generation for a
mixed convection flow of a fluid saturated porous medium through
an inclined channel with uniform heatedwalls. Komurgoz et al. [10]
investigated the magnetic effect on heat-fluid and entropy gener-
ation interactions in an inclined channel consisting of two regions:
one filled with clear fluid and the second with porous medium.
Damseh et al. [11] studied the local entropy generation due to
steady fully developed laminar forced convection channel flow in
the presence of a transverse magnetic field. Eegunjobi andMakinde
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Nomenclature

aj microinertia parameter
Be Bejan number
Bi Biot number
Br Brinkman number
Cp specific heat
f dimensionless velocity
Gr Grashof number
2h channel width
Kf thermal conductivity
m2 micropolar parameter
N coupling number
Nh entropy generation due to heat transfer
Nw entropy generation due to viscous dissipation
Ns dimensionless entropy generation number
Re Reynolds number

T Dimensional Temperature
T1 ambient Temperature
T2 fluid Temperature
u dimensional axial velocity
X horizontal axis (direction of flow)
Y coordinate perpendicular to the plate

Greek Symbols
a inclined angle
a1 slip parameter
b,g gyration viscosity coefficients
q dimensionless temperature
k vortex viscosity
m viscosity of the fluid
r density of the fluid
s dimensionless microrotational component
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[12] presented combined effects of variable viscosity and asym-
metric convective boundary conditions on the entropy generation
rate in MHD porous channel flow. Das and Jana [13] investigated
the combined effects of magnetic field, suction/injection and Navier
slips on entropy generation in an MHD flow through a porous
channel under a constant pressure gradient. Mahdavi et al. [14]
investigated the entropy generation and convective heat transfer
of a pipe partially filled with a porous material by numerical
simulation. Torbabi et al. [15] studied the heat transfer and entropy
generation in a channel partially filled with porous media using
local thermal non-equilibrium model. They discussed about the
effects of many thermophysical parameters on the velocity, tem-
perature, Nusselt number and entropy generation rates. Torabi and
Zhang [16] analyzed the local and total entropy generation in MHD
porous channel with thick walls.

The fluids with slip velocity have many applications at both
macro and micro scales in technology such as polishing of surfaces
and in micro devices. Navier [17] proposed a slip boundary condi-
tion where the slip velocity depends linearly on the shear stress. At
macro level, wall slip is encountered in polymer extrusion pro-
cesses where it is caused by instabilities at high stress levels [18].
Denn [19] presented a review of mechanisms of slip in non-
Newtonian fluids and also explores the relation between slip and
extrusion instabilities. Also the study of convective heat transfer
has much importance in high-temperature processes like gas tur-
bines, nuclear plants, thermal energy storage, etc. The effects of slip
velocity and convective heat transfer on entropy generation for any
fluid flow of different geometries have been studied by several
authors. Iman [20] investigated the importance of thermal
boundary conditions of the heated/cooled walls in the develop-
ment of flow, heat transfer, and observed the characteristics of
entropy generation in a porous enclosure. Hooman [21] presented
the effect of velocity slip, temperature jump, and duct geometry on
heat transfer and entropy generation through a micro duct of
rectangular cross-section. Butt et al. [22] presented the effects of
hydrodynamic slip on entropy generation in a viscous flow over a
vertical plate with convective boundary condition. Chinyoka and
Makinde [23] investigated the entropy generation rate in an un-
steady porous channel flow with Navier slip subjected to asym-
metrical convective boundary conditions. Anand [24] discussed the
effect of slip on the entropy generation and heat transfer charac-
teristics of the fully developed flows of power law fluids in a micro
channel. Mostafa and Ali [25] presented the analytical solution for
non-Newtonian fluid flows between parallel-plates in micro scale
subject to iso-flux and isothermal wall boundary conditions, while
taking the effects of wall slip and viscous dissipation into consid-
eration. Ibanez [26] studied the combined effects of hydrodynamic
slip, magnetic field and suction/injection Reynolds number on the
global entropy generation rate under convective boundary
conditions.

Most of the researchers have reported their study on entropy
generation pertaining to viscous fluid. The study of viscous fluid
does not adequately describe the flow properties of polymeric
fluids, animal blood, coal slurries, Mine tailings and mineral sus-
pensions. Such properties are described in non-Newtonian fluid
flow model. Many fluids in nature and industrial processes show a
non-Newtonian fluid behavior. One among those models is
micropolar fluid introduced by Eringen [27] which exhibit certain
microscopic effects arising from the local structure and micro-
rotations of fluid elements. The Micropolar fluids have been shown
to accurately simulate the flow characteristics of polymeric addi-
tives, geomorphological sediments, colloidal suspensions, haema-
tological suspensions, liquid crystals, lubricants, etc. The main
advantage of using micropolar fluid model compared to other non-
Newtonian fluids is that it takes care of the rotation of fluid parti-
cles by means of an independent kinematic vector called the
microrotation vector.

The majority of the studies reported in the literature on entropy
generation analysis for micropolar fluid flows deal with horizontal
channel subject to thermal and/or wall flux boundary conditions.
However, in the present analysis an attempt is made to analyze the
effect of angle of inclination of the channel, slip velocity and
convective boundary conditions on entropy generation in a
micropolar fluid flow through an inclined channel. The velocity,
microrotation and the temperature distribution are determined by
solving the momentum, angular momentum and energy equations
with Spectral Quasi linearization method. The obtained velocity,
microrotation and the temperature distribution are utilized to
compute the entropy generation and Bejan number.

2. Mathematical formulation

Consider a steady laminar incompressible fully developed
micropolar fluid flow bounded by two infinite inclined parallel
plates separated by a distance 2h. The channel is inclined at an
angle a. Choose the cartesian coordinate systemwith x-axis aligned
at the center of the channel in the direction of the flow and the y-
axis perpendicular to the plates (as shown in Fig. 1). Since the



Fig. 1. Schematic diagram of the problem.
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boundaries in the x direction are of infinite dimensions. Without
loss of generality, we assume that the physical quantities depend on
y only. The fluid properties are assumed to be constant except for
density variations in the buoyancy force term. The fluid velocity
vector q ¼ ðu; vÞ is assumed to be parallel to the x-axis, so that only
the x component u of the velocity vector does not vanish but the
transpiration cross-flow velocity v0 remains constant, where v0 < 0
is the velocity of suction and v0 > 0 is the velocity of injection.

With the above assumptions and Boussinesq approximations,
the equations governing the flow of steady incompressible micro-
polar fluid are:

v ¼ v0 (1)

mþ kð Þ d
2u

dy2
� rv0

du
dy

þ k
ds
dy

þ rg�b T � T1ð Þsin að Þ � vp
vx

¼ 0 (2)

g
d2s
dy2

� rj�v0
ds
dy

� 2ks� k
du
dy

¼ 0 (3)

Kf
d2T
dy2

� rCpv0
dT
dy

þ ðmþ kÞ
�
du
dy

�2

þ 2k
�
s2 þ s

du
dy

�
þ g

�
ds
dy

�2

¼ 0

(4)

where u is velocity component in the x direction, s is microrotation,
r and j* are the fluid density and gyration parameter, m, k and g are
the material constants (viscosity coefficients), g* is the acceleration
due to gravity, p is pressure, b is the coefficient of thermal expan-
sion, Kf is the thermal conductivity.

The following slip, no-spin and convective boundary conditions
are proposed

u ¼ �a01

�
ðmþ kÞ du

dy
þ ks

�
; s ¼ 0; Kf

dT
dy

þ h1ðT � T1Þ

¼ 0; at y ¼ h (5a)
u ¼ a01

�
ðmþ kÞdu

dy
þ ks

�
; s ¼ 0; Kf

dT
dy

� h2ðT � T2Þ

¼ 0; at y ¼ �h (5b)

where a01 is the slip length of the upper and lower plates of the
channel, T is the temperature, T1 is the ambient temperature, T2 is
the hot fluid temperature, Kf fluid thermal conductivity and h1,h2
are the convective heat transfer coefficients for each plate.

Introducing the following dimensionless quantities:

h ¼ y
h
; u ¼ U0f ðhÞ; s ¼ U0

h
gðhÞ; qðhÞ ¼ T � T1

T2 � T1
; a1 ¼ a01

h
(6)

in Equations (1)e(4), we get the following non-linear system of
differential equations:

1
1� N

f
00 � Rf 0 þ N

1� N
g0 þ Gr

Re
sinðaÞq ¼ A (7)

2� N
m2 g

00 � ajR
�
1� N
N

�
g0 � 2g � f 0 ¼ 0 (8)

q
00 �RPrq0 þ Br

1�N

�
f 02þ2N

�
g2þg f 0

�
þNð2�NÞ

m2 g02
�
¼0 (9)

where primes denote differentiation with respect to h, Pr ¼ mCp

Kf
is

the Prandtl number, Re ¼ rU0h
m is the Reynolds number, R ¼ rv0h

m is
the suction/injuction parameter, N ¼ k

kþm is the coupling number,

Gr ¼ r2gbðT2�T1Þh3

m2 is the Grashof number, A ¼ h2

mU0
dp
dx is the constant

pressure gradient, m2 ¼ h2kð2mþkÞ
gðmþkÞ is the micropolar parameter,

aj ¼ j�

h2 is the micro-inertia parameter, Br ¼ mU2
0

Kf ðT2�T1Þ is the Brinkman

number.
The corresponding boundary conditions are:

f ¼ � a1

1� N
f 0; g ¼ 0; q0 þ Bi1q ¼ 0; at h ¼ 1 (10a)

f ¼ a1

1� N
f 0; g ¼ 0; q0 � Bi2q ¼ �Bi2; at h ¼ �1 (10b)

where a1 ¼ a1m is the slip coefficient, Bii ¼ hhi
Kf

is the Biot number
for each plate. Subindexes i ¼ 1,2 refer to the lower and upper
plates, respectively. In general Biot number assumed to be same for
the lower and upper plates.
3. Method of solution

The system of Equations (7)e(9) along with the boundary con-
ditions (10) are solved using the quasilinearization method. This
quasilinearization method (QLM) is a generalization of the New-
toneRaphson method and was proposed by Bellman and Kalaba
[28] for solving nonlinear boundary value problems. In this method
the iteration scheme is obtained by linearizing the nonlinear
component of a differential equation using the Taylor series
expansion.

Let the fr, gr and qr be an approximate current solution and frþ1,
grþ1 and qrþ1 be an improved solution of the system of Equations
(7)e(9). By taking Taylors series expansion of non-linear terms in
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(7)e(9) around the current solution and neglecting the second and
higher order derivative terms, we get the linearized equations as:

1
1� N

f
00
rþ1 � Rf 0rþ1 þ

N
1� N

g0rþ1 þ
Gr
Re

sinðaÞqrþ1 ¼ A (11)

2� N
m2 g

00
rþ1 � ajR

�
1� N
N

�
g0rþ1 � 2grþ1 � f 0rþ1 ¼ 0 (12)

q
00
rþ1 � RPrq0rþ1 þ a1;rf

0
rþ1 þ a2;rg

0
rþ1 þ a3;rgrþ1 ¼ a4;r (13)

where the coefficients as,rs ¼ 1,2,… are known functions calculated
from previous iterations and are defined as
a1;r ¼
2Br
1� N

f 0r þ Ngr

 �

; a2;r ¼
2Br
1� N

N 2� Nð Þ
m2 g0r ; a3;r ¼

2BrN
1� N

f 0r þ 2gr

 �

;

a4;r ¼
Br

1� N
f 02r þ 2N g2r þ grf 0r

� �
þ N 2� Nð Þ

m2 g02r

� �

9>>>>>=
>>>>>;

(14)
The above linearized Equations (11)e(13) are solved using the
Chebyshev spectral collocation method [29]. The unknown func-
tions are approximated by the Chebyshev interpolating poly-
nomials in such a way that they are collocated at the Gauss-Lobatto
points defined as

xj ¼ cos
pj
J
; j ¼ 0;1;2;…; J (15)

where J is the number of collocation points used.
The functions frþ1, grþ1 and qrþ1 are approximated at the collo-

cation points by

frþ1ðxÞ ¼
XJ
k¼0

frþ1ðxkÞTk
�
xj
	
; grþ1ðxÞ ¼

XJ
k¼0

grþ1ðxkÞTk
�
xj
	
;

qrþ1ðxÞ ¼
XJ
k¼0

qrþ1ðxkÞTk
�
xj
	

j ¼ 0;1;2;……; J

9>>>=
>>>;

(16)

where Tk is the kth Chebyshev polynomial defined by

TkðxÞ ¼ cos
h
kcos�1x

i
(17)

The derivatives of the variables at the collocation points are
represented as

dafrþ1

dha
¼

XJ
k¼0

Da
kjfrþ1ðxkÞ;

dagrþ1

dha
¼

XJ
k¼0

Da
kjgrþ1ðxkÞ;

daqrþ1

dha
¼

XJ
k¼0

Da
kjqrþ1ðxkÞ; j ¼ 0;1;2;……; J:

9>>>>>>=
>>>>>>;

(18)

where a is the order of differentiation and D being the Chebyshev
spectral differentiation matrix. Substituting Equations (16)e(18)
into Equations (11)e(13) leads to the matrix equation
ArXrþ1 ¼ Br; (19)
In Equation (19), Ar is a (3Jþ 3)� (3Jþ 3) squarematrix andXrþ1
and Br are (3J þ 3) � 1 column vectors defined by

Ar ¼
2
4A11 A12 A13
A21 A22 A23
A31 A32 A33

3
5; Xrþ1 ¼

2
4 Frþ1
Grþ1
Qrþ1

3
5; Rr ¼

2
4 r1;r
r2;r
r3;r

3
5

(20)

where
Frþ1 ¼ frþ1 x0ð Þ; frþ1 x1ð Þ;……; frþ1 xJ�1
� 	

; frþ1 xJ
� 	
 �T

;

Grþ1 ¼ grþ1 x0ð Þ; grþ1 x1ð Þ;……; grþ1 xJ�1
� 	

; grþ1 xJ
� 	
 �T

;

Qrþ1 ¼ qrþ1 x0ð Þ; qrþ1 x1ð Þ;……; qrþ1 xJ�1
� 	

; qrþ1 xJ
� 	
 �T

;

A11 ¼ 1
1� N

D2 � RD; A12 ¼ N
1� N

� �
D; A13 ¼ Gr

Re
sinaI;

A21 ¼ �D; A22 ¼ 2� N

m2 D2 � ajR
1� N
N

� �
D� 2I; A23 ¼ 0;

A31 ¼ a1;rD; A32 ¼ a2;rDþ a3;rI; A33 ¼ D2 � RPrD;

r1;r ¼ A; r2;r ¼ 01; r3;r ¼ a4;r:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;
(21)

Here I, 0 represents (J þ 1) � (J þ 1) identity matrix, zero matrix
respectively.

The corresponding boundary conditions

frþ1ðx0Þ ¼ � a1

1� N

XJ
k¼0

D0k frþ1ðxkÞ; grþ1ðx0Þ ¼ 0;

PJ
k¼0

D0kqrþ1ðxkÞ þ Biqrþ1ðx0Þ ¼ 0

frþ1
�
xJ
	 ¼ a1

1� N

XJ
k¼0

DJk frþ1ðxkÞ; grþ1
�
xJ
	 ¼ 0;

PJ
k¼0

DJkqrþ1ðxkÞ � Biqrþ1
�
xJ
	 ¼ �Bi

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(22)

After modifying the matrix system (19) to incorporate boundary
conditions (22), the solution is obtained as

Xrþ1 ¼ A�1
r Br (23)

The initial approximations f0, g0 and q0 are chosen to be func-
tions that satisfies the boundary conditions (22) i.e.
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f0ðhÞ ¼ 0; g0ðhÞ ¼ 0; q0ðhÞ ¼ 0:5� 0:5
Bi

1þ Bi
h (24)
4. Entropy generation

The volumetric rate of entropy generation for incompressible
micropolar fluid given as

SG ¼ Kf

T21

�
dT
dy

�2

þ mþ k

T1

�
du
dy

�2

þ 2k
T1

�
s2 þ s

du
dy

�
þ g

T1

�
ds
dy

�2
Fig. 2. Effect of coupling number on velocity, microrotation, temperature, entropy generation
m ¼ 1, Gr ¼ 2, Tp ¼ 1, R ¼ 1.
According to Bejan [3], the dimensionless entropy generation
number Ns is the ratio of the volumetric entropy generation rate to
the characteristic entropy generation rate. Thus the entropy gen-
eration number is given by

Ns ¼ q02 þ Br
Tp

�
1

1� N
f 02 þ 2N

1� N

�
g2 þ g f 0

�
þ Nð2� NÞ
m2ð1� NÞg

02
�

(25)

where Tp ¼ DT
T1

is the dimensionless temperature difference, and the

characteristic entropy generation rate is Kf ðDTÞ2
h2T2

1
. The Equation (25)

can be expressed alternatively as follows
and Bejan number for Pr¼ 1, aj¼ 0.001, Bi¼ 10, A¼�1, a1¼0.05, Re¼ 1, Br¼ 1, a¼ p/6,
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Ns ¼ Nh þ Nv (26)
The first term on the right hand side of this equation denotes the
entropy generation due to heat transfer irreversibility and the
second term represents the entropy generation due to viscous
dissipation.

To evaluate the irreversibility distribution, the parameter Be
(Bejan number), which is the ratio of entropy generation due to
heat transfer to the overall entropy generation (26) is defined as
follows

Be ¼ Nh
Nh þ Nv

(27)
Fig. 3. Effect of angle of inclination on velocity, microrotation, temperature, entropy generat
Br ¼ 1, m ¼ 1, Gr ¼ 2, Tp ¼ 1, R ¼ 1.
The Bejan number varies from 0 to 1. Subsequently, Be ¼ 0 re-
veals that the irreversibility due to viscous dissipation dominates,
whereas Be¼ 1 indicates that the irreversibility due to heat transfer
is dominant. It is obvious that the Be ¼ 0.5 is the case in which the
irreversibility due to heat transfer is equal to viscous dissipation.
5. Results and discussion

The solutions for the dimensionless velocity, microrotation,
temperature, entropy generation and Bejan number are computed
and shown graphically in Figs. 2 to 7. The effects of coupling
number N, angle of inclination a, slip parameter a1, Brinkman
ion and Bejan number for Pr ¼ 1, N ¼ 0.5, aj ¼ 0.001, Bi ¼ 10, A ¼ �1, a1 ¼ 0.05, Re ¼ 1,
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number Br, Reynolds number Re and Biot number Bi on the non-
dimensional velocity, microrotation, temperature, entropy gener-
ation and Bejan number of the fluid flow through an inclined
channel have been discussed.

In order to assess the accuracy of our method, we have
compared our results with the analytical solution of Ariman and
Cakmak [30] in the absence of R, a and a1 with the fixed values of
N ¼ 0.1, m ¼ 1 and A ¼ �1. The comparison in the above case is
found to be in good agreement, as shown in Table 1.

The effect of the coupling number on velocity, microrotation,
temperature, entropy generation and Bejan number of the fluid
Fig. 4. Effect of slip parameter on velocity, microrotation, temperature, entropy generation a
m ¼ 1, Gr ¼ 2, Tp ¼ 1, R ¼ 1.
flow through an inclined channel is plotted in Fig. 2(a)e(e). The
coupling number N characterizes the coupling of linear and rota-
tional motion arising from the micromotion of the fluid molecules.
Hence N signifies the coupling between the Newtonian (m) and
rotational viscosities (k) and hence 0� N < 1. Largest value of N, the
effect of microstructure becomes significant and for the smallest
value of N, the individuality of the substructure is less. As k/0 i.e.
N/0, the micropolarity is lost and the fluid behaves as non-polar
fluid. Hence, N/0 corresponds to viscous fluid. Generally a para-
bolic velocity profile is observed, with maximum velocity along the
channel centreline and minimum velocity at the plates.
nd Bejan number for Pr ¼ 1, N ¼ 0.5, aj ¼ 0.001, Bi ¼ 10, A ¼ �1, Re ¼ 1, Br ¼ 1,a ¼ p/6,
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It is observed from Fig. 2(a) that the velocity decreases with the
increase of coupling number N. The peak velocity decreases in
amplitude with an increase of N. The velocity for micropolar fluid
case is less compared to viscous fluid case. It is seen from Fig. 2(b)
that the microrotation component increases near the lower plate
and decreases near the upper plate with increase in the value of
coupling number N. It is observed from Fig. 2(c) and (d) that the
temperature and entropy generation decreases with increase in
the value of coupling number. It is clear from Fig. 2(e) that the
Bejan number increases with increase in the value of N. We
observe that heat transfer irreversibility dominates around the
Fig. 5. Effect of Reynolds number on velocity, microrotation, temperature, entropy generati
a ¼ p/6, m ¼ 1, Gr ¼ 2, Tp ¼ 1, R ¼ 1.
centreline region of the channel, and the fluid friction dominates
at the lower plate.

Fig. 3 present the effect of angle of inclination a on velocity,
microrotation, temperature, entropy generation and Bejan number.
It is noticed from Fig. 3(a) that the velocity increases with the angle
of inclination, due to increase in forces acting upon the fluid flow. It
is shown from Fig. 3(b) that the microrotation component de-
creases near the lower plate and increases near the upper plate
with an increase in the value of angle of inclination, showing a
reverse rotation near the two boundaries. It is observed from
Fig. 3(c) and (d) that the temperature and entropy generation
on and Bejan number for Pr ¼ 1, N ¼ 0.5, aj ¼ 0.001, Bi ¼ 10, A ¼ �1, a1 ¼ 0.05, Br ¼ 1,
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increases with increase in the value of angle of inclination. We
observe that the entropy-generation rate is less in the region
around the channel centreline and increases quite rapidly to its
maximum values at the upper plate of the channel for all the
parameter variations. It is observed from Fig. 3(e) that the Bejan
number decreases with increase in the value of a.

The variation of slip parameter on velocity, microrotation,
temperature, entropy generation and Bejan number is displayed in
Fig. 4. It is observed that the increase in slip parameter increases the
velocity and decreases the microrotation as shown in Fig. 4(a) and
(b). It is clear from Fig. 4(c) and (d) that there is no effect of slip
Fig. 6. Effect of Brinkman number on velocity, microrotation, temperature, entropy generat
a ¼ p/6, m ¼ 1, Gr ¼ 2, Tp ¼ 1, R ¼ 1.
parameter on temperature and entropy generation. The effect of
slip parameter on Bejan number is shown in Fig. 4(e). It is observed
that there is no significant effect up to center of the channel, but it
increases near the upper plate.

The influence of Reynolds number on velocity, microrotation,
temperature, entropy generation and Bejan number is shown in
Fig. 5. From Fig. 5(a)e(d), we observe that as the Reynolds number
increases, decreasing nature of velocity, microrotation (numeri-
cally), temperature and entropy generation is seen. Entropy gen-
eration number is high in magnitude near the upper plate due to
the presence of high temperature and velocity gradients. Fig. 5(e)
ion and Bejan number for Pr ¼ 1, N ¼ 0.5, aj ¼ 0.001, Bi ¼ 10, A ¼ �1, a1 ¼ 0.05, Re ¼ 1,
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shows that as Reynolds number increases, Bejan number increases.
This implies that in the entire flow region, as Re increases the
relative increase of dissipation of energy dominates the fluid
friction.

The effect of Brinkman number on velocity, microrotation,
temperature, entropy generation and Bejan number is displayed
in Fig. 6. The parameter Br determines a relative importance of
viscous effects and has a significant effect on entropy generation.
Fig. 6(a) depicts that the non-dimensional velocity increases
with increase in the value of Brinkman number. It is seen
from Fig. 6(b) that the microrotation component decreases
Fig. 7. Effect of Biot's number on velocity, microrotation, temperature, entropy generation an
Gr ¼ 2, Tp ¼ 1, R ¼ 1.
near the lower plate and increases near the upper plate with an
increase in the value of Brinkman number. It is observed
from Fig. 6(c) and (d) that the temperature and entropy gener-
ation increases with increase in the value of Brinkman
number. The Brinkman number Br is indicative of the rate at
which energy is dissipated by the viscous forces within the
fluid. The reason for this effect entropy generation becomes
significant in the region close to the channel walls. An increase in
Brinkman number increases the fluid temperature (Fig. 6(c)) as
well as temperature gradient within the channel. Consequently,
as shown in Fig. 6(e), the dominance of fluid friction
d Bejan number for Pr ¼ 1, N ¼ 0.5, aj ¼ 0.001, A ¼ �1, a1 ¼ 0.05, Re ¼ 1, a ¼ p/6, m ¼ 1,



Table 1
Comparison analysis for the velocity and microrotation calculated by the present method and that of analytical solution [30] for R ¼ 0, a ¼ 0 and a1 ¼ 0.

Velocity f(h) Microrotation g(h)

h Analytical solution [30] Present Analytical solution [30] Present

�1 0 0 0 0
�0.8090 0.1557 0.1557 �0.0204 �0.0204
�0.6129 0.2817 0.2817 �0.0275 �0.0275
�0.4258 0.3696 0.3696 �0.0248 �0.0248
�0.2181 0.4302 0.4302 �0.0147 �0.0147
0 0.4518 0.4518 0 0
0.2181 0.4302 0.4302 0.0147 0.0147
0.4258 0.3696 0.3696 0.0248 0.0248
0.6129 0.2817 0.2817 0.0275 0.0275
0.8090 0.1557 0.1557 0.0204 0.0204
1 0 0 0 0
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irreversibility over heat transfer irreversibility decreases with
increase in Br.

The variation of velocity, microrotation, temperature, entropy
generation and Bejan number with Biot's number is displayed in
Fig. 7. The Biot number Bi is the ratio of internal thermal resistance
of a solid to boundary layer thermal resistance. When Bi ¼ 0 the
plate is totally insulated internal thermal resistance of the plate is
extremely high and no convective heat transfer to the cold fluid on
the upper part of the plate takes place. Fig. 7(a) depicts that the
non-dimensional velocity decreases with increase in the value of
Biot's number. It is seen from Fig. 7(b) that the microrotation
component increases near the lower plate and decreases near the
upper plate with an increase in the value of Biot's number. It is
observed from Fig. 7(c) that the temperature decreases with in-
crease in the value of Biot's number. It is noticed from 7(d) that the
entropy generation Ns decreases slightly with increase in the Biot's
number. Ns profiles are similar in shape and are almost parallel to
one another, for all the parameters, but they vary in magnitude. As
the Bi increases the Bejan number increases as depicted in Fig. 7(e).
Generally the Bejan number is highest along the channel center line
regionwith irreversibility due to heat transfer dominating the flow,
while near the channel walls the fluid friction irreversibility
dominate.

6. Conclusions

Entropy generation in a micropolar fluid flow in an inclined
channel with slip and convective boundary conditions is analyzed.
The solutions are obtained numerically by applying spectral qua-
silinearization method. Some of the results obtained can be sum-
marized as follows.

1. The velocity profiles increases with increase in a, a1 and Br. The
velocity decreases with increase in N, Re and Bi.

2. Fluid temperature increases with increasing a and Br and de-
creases with N, Re and Bi. There is no effect of slip parameter on
fluid temperature.

3. The entropy generation rate increases at both the plates with
increase in a and Br and it decreases at both the plates with
increase in N, Re.

4. There is no change in the entropy generation at the center of the
channel with increase in N, a, Br and Re.

5. All the Bejan number profiles show a minimum value at the
lower plate and maximum value at the center of the channel.
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