JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 6, MARCH 15, 2014

1177

Parametric Gain and Conversion Efficiency in
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Abstract—Nanophotonic waveguides can be engineered in order
to exhibit slow mode propagation thereby enhancing the nonlinear
responses. In such waveguides, loss and nonlinear coefficients are
strongly wavelength dependent, a property that must be consid-
ered when the signal to pump detuning is large. Exact formulas for
the parametric gain and conversion efficiency, accounting for the
dispersion of losses and nonlinearity, are derived here. They can
be applied to any waveguide presenting such features; in particu-
lar they have been calculated for a III-V semiconductor photonic
crystal waveguide, where narrow- and broad-band amplification
are predicted. The asymmetry of losses causes major asymmetries
in the gain and conversion efficiency, which are no longer simply
related as in the case of waveguides in which loss do not depend on
the wavelength.

Index Terms—Optical parametric amplifiers, optical propaga-
tion in dispersive media, optical propagation in nonlinear media,
optical waveguides, semiconductor waveguides.

1. INTRODUCTION

IGHT-MATTER interactions in a photonic crystal wave-
guide (PhCW) can be highly enhanced in the slow-mode
(SM) propagation regime [1]-[4]. In particular, due to the
huge increase of nonlinear optical phenomena PhCWs are very
promising, compact and reliable devices for the realization on
chip of nonlinear processors [5] and sources [6]. Among nonlin-
ear effects four-wave mixing (FWM) has been experimentally
demonstrated and theoretically modelled [7]-[12]. Parametric
gain has been also measured [13] with a record of about 11 dB
for a 1.3-mm PhCW pumped by less than 1-W peak power [14].
The key feature to effectively enable FWM in waveguides is
the dispersion profile tailoring, which has a crucial impact on the
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parametric gain, as it determines the phase-matching condition.
The target is to design PhCWs in which the group index is
large, to enhance the effective nonlinear coefficients, but almost
constant in wavelength, to limit the group velocity dispersion
(GVD). Several of such designs have been developed [15], [16];
here, without loss of generality we will resort to the design
presented in [17].

In SM dispersion engineered structures, the Bloch mode field
distribution is highly wavelength dependent and this feature has
several consequences. It was soon observed, in fact, that mode
reshaping impacts losses, in particular those due to scattering
[18], which are the dominating ones when material losses are
minimal, e.g., for wavelengths corresponding to less than half
the semiconductor bandgap, a condition that minimizes both
linear and nonlinear losses and that can be achieved in III-
V semiconductor by means of a proper choice of the alloy
[19]. So, in SM PhCWs, losses depend in a non trivial way
on the wavelength [20]. Moreover, the nonlinear coefficients
characterizing the nonlinear Kerr interactions, like self-phase
modulation (SPM), cross-phase modulation (XPM) and FWM
[9], [21] also become dispersive, as highlighted in [22].

When a nonlinear interaction, like for example FWM, oc-
curs among weakly detuned waves the linear and nonlinear
dispersion can be neglected because coefficients are nearly
the same and averaged loss and nonlinear coefficients can be
used [8], [10], [23]. However, when the detuning between the
waves is large, like in the case of Raman scattering [24] and
of narrowband optical parametric amplification (NBOPA) [25],
these differences must be accounted for, because the use of
averaged coefficients lead to wrong results.

For a full understanding of the nonlinear dynamics, spatio-
temporal simulations are to be used [26], [27]. However, those
simulations are time consuming and so the continuous wave ap-
proximation is still an irreplaceable tool for waveguide design,
in particular if exact formulas can be derived. An exact formula
for the parametric gain in presence of losses was derived in [28]
for optical fibers, where the wavelength dependence of loss and
nonlinear coefficients is absent. A more comprehensive and very
detailed account of exact formulas for parametric interactions in
optical fibers can be also found in the book by Marhic [29]. In
optical fibers, the effects on FWM due to a difference between
the signal and idler loss coefficients were studied in [30]; how-
ever, only approximate, perturbative solutions were found and
the loss difference was artificially induced in the experiments
by Brillouin scattering.
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In this paper, we present a detailed calculation and derive ex-
act formulas for the parametric gain and the FWM conversion
efficiency valid for waveguides in which both losses and non-
linearity are highly dispersive, so extending the results of [25].
Though the example of calculations will refer to a particular
set of III-V semiconductor PhCWs, the results can be actually
applied to any guiding structure in which loss and nonlinearity
are both dispersive and so the formulas have a broader field of
application.

II. PARAMETRIC GAIN IN WAVEGUIDES WITH DISPERSIVE
L0OSS AND NONLINEARITY

The interaction among a (degenerate) pump, a signal and
an idler wave (at wavelengths 1, ; ; = 2mcy/w, 5.;) satisfying
the degenerate FWM (DFWM) frequency matching condition
wy —w; =ws —w, = Aw, in a PhCW with dispersive losses
and nonlinearity is governed by the following propagation equa-
tions for the slowly varying envelopes A;, where the pedice [ is
respectively p for the pump, s for the signal and 7 for the idler:

dA (6] 2
(TZP _ {_71’ 0y [Ap [P + 20 [ps] A2 +’Y])¢|Ai|2]}AP

+ 22'prA;‘,A5 A; exp(1ABz),

w5

U2
+ Z'yFSAgA; exp(—1ALz),

+ Vs |As|2 + 2 ['ysplAp‘Z + Vsi ‘A1|2] } As

dAl - (6% 2 9 9
= {2 AP+ 20 |4 P+ AP | A
+Z’yFiA12)Af, exp(—1ApBz). (1)

In (1), oy are the power loss coefficients, ~; the effective SPM
nonlinear coefficients, v;; (I # h) the XPM effective nonlin-
ear coefficients, yr; the effective FWM nonlinear coefficients
(I,h=p,s,i) and finally AS = G, + 8; — 20, is the linear
phase mismatch.

The nonlinear effective coefficients for DFWM have the same
definitions as in [9], [22], so they depend on the group indices of
the waves involved in the interaction (SM enhancement factor)
and on the mode field distribution though normalized overlap
integrals. The calculation and wavelength dependence of non-
linear coefficients has been studied in detail in [9], [22]; here
we only recall that their estimated value is about 3 W mm!,
large enough to enable on chip nonlinear processing.

In the undepleted pump approximation, i.e. by neglecting all
the nonlinear terms that depend on the signal and idler powers
in (1), an exact formula of the parametric gain and conversion
efficiency for the PhCWs can been derived by extending the
results of ref. [29]. The final formulas are given in (9) and (10);
their derivation, which follows below, entails several changes
of variables and the solution of special equations; so, a reader
not interested in all the details can go directly to those equations
and the discussion that will follow.

From (1), the solution for the pump wave can be obtained:

A, (z) = v/ Pyexpl—a,z/2 4+ 1y, Py L, (2)],
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where P, is the input pump power and
Ly(2) = a5, ' [1 = exp(—ay2)]

is the attenuation effective length for the pump. By substituting
the expression for the pump wave into the second and third of
(1), neglecting the SPM and XPM terms of the signal and the
idler, and through a change of variables:

As,y’, = As.i eXp[Oés’iZ/z - Zz'Ysp,ipPOLp(Z)]

one gets:

= F,(2)A} L = Fi(2) A 2)

where
Fyi(2) = vyrs,riPo exp{—(o, = Aa)z
+ Z[Q’Ypm POLp(Z) — Aﬁz]} 3)

The coefficient Ac = (o; — s ) /2 accounts for the loss disper-
sion (the plus sign applies for the signal and the minus sign for
the idler) and the nonlinear coefficient v,,, = v, — Vsp — Vip
sets the strength of the contribution of the nonlinearity to the
phase matching condition. From (2)—(3), the effects due to the
loss terms can be highlighted: 1) the gain decreases and 2) the
phase matching condition depends on the coordinate z through
the effective attenuation length L, (z).

By differentiating (2) with respect to z and through another
change of variables,

Byi=As,; exp{1/2[(a, £ Aa)z =127,y Py L, (2) —AB2]]}
equations for B, ; are obtained:

d? By ;
7;7 —92:(2)Bsi =0 “4)

where g7 ;(z) = P exp(—20a,2)+Qs,; exp(—ay, 2)+ Ry ;, with

P = (yrsvii = om [ FS,
Qs.i = (Ao + 1AB)Ypm Po
and
R = (a, £ Aa +1AB)% /4.

where the plus sign applies for the signal equation and the
minus sign for the idler equation. In the absence of losses, (4)
reduce to the well known formula obtained in the context of
optical fibers [29], in which the parametric gain coefficient g is
not a function of z. Let us highlight that, from the definitions
of the parameters P, (), and R, ;, one can expect that loss
dispersion can make the gain coefficient GG and the conversion
efficiency 7 asymmetric with respect to the pump wavelength.
In fact moving the signal to be amplified from the Stokes to the
anti-Stokes side of the pump wavelength (or viceversa) causes
a change of the sign of A« and so the gain coefficient g(z) will
be different. In practice a change of the sign of the signal to
pump detuning AX = Ay — A, corresponds to exchanging the
roles (and the governing equations) between the signal and the
idler. Remarkably, the dispersion of the nonlinear coefficients
does not lead to a gain asymmetry; in fact exchanging the signal
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and idler coefficients (Yrs <> Yri, Ysp < 7ip) there is no effect
on the values of P and Q) ;.
By performing another set of variable changes:
z = exp(—ayz), B,; =x'"B,;,
Y =Y, yo = 2P'? /ay,.
Equation (4) can be cast in the following form:
d*B, ; 1 kg 1 9 1] 5
: —= : - — ] =1 Bs; =0 5
dy? +{4+y+<4 m)zﬂ] B ®

that is the Whittaker equation of complex parameters

ksﬁi = —QSJ'/(QO[],PI/Q) and mm = Rl/»Q/OZp

whose solutions are the Whittaker confluent hypergeomet-
ric functions Mg (v), Wi (y) (K = ksi, M = my ;) [29],
[31].
The general solution of (5) for the signal is
Bs (y) - UsMks M (y) + V;Wks M (y)

where Uy, V, are constants of integration.
For z =0 (i.e., x = 1,y = yp) from the previous changes of
variables, one gets:

Bs (yO) = Us‘ Mks JMg (yO) + ‘/sVVkS Mg (yO) = As (Z == O)
(6)
To calculate the gain a second relation can be obtained by dif-
ferentiating the general solution and evaluating the resulting
expression for y = yy, also considering that A;(z = 0) = 0:

UéMlés M (yO) + ‘/SWILS M (yO) = CA& (Z = 0) (7)

where My . (y), W) ,, (y) are the derivatives of the Whit-
taker confluent hypergeometric functions, that are recursively
related to My . (y), Wi, .m. (y) [31] and

C={1+ a;l[zQ'yI,mPg — (0 + A+ 1AL}/ (2y0)

is a constant.
By solving the linear system of (6) and (7), U;, V; are deter-
mined and the solution for B, reads:

B.(y) = Az = 0) [Wa(w)] '
X L Wi, . W0) = CWi, i, (%0)] Mig, m. (y)
+ [C M, ., (y0) = My, . (90)] Wi, m, ()} (8)
where
W (yo) =M, m, W)W . W0) = Mp. . (40) Wi, m. (40)-

Finally the signal gain for a PhCW of length L can be deter-
mined:

Go(L) = |As(z = L)/As(z = 0)|
= exp(—a, L)W (yo)|
<[ Wi, . 90) =CWi, i, (%0)] Mie, . (y1)
+ [CMi, o, (90) =M (00)] Wiy, (w)|” 9)

where v, = (o; + as)/2 and y, = yo exp(—a, L). With the
same assumption and steps, by calculating the solution for the
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idler ((5) for B;), a formula for the conversion efficiency is
obtained:

n=14i(z = L)/A(z = 0)]
= exp(—a, L) [Wi(yo)| ™% x |[vriPo /o]
X Wi, o, W0) M, . (y2) =My, (90) Wi, m, (yr))] 2
(10)

where

VT/?(yO) = Mkf,:.mr, (yO)WA,T,,TH,I (yo) - Mlgz my (yO)Wkiﬂm (yO)

Note that (9) and (10) cannot be used for lossless waveguides,
because «, appears at the denominator of several of the con-
stants previously defined. However it has been verified that for
negligible, but not zero losses, Equations (9) and (10) yield the
same results of lossless waveguides [9].

Similarly, when Py — 0 then ¢y — 0 and (9) cannot be used
because the constant C' diverges to infinity. This is not a problem
for the conversion efficiency formula, (10), that can be calculated
also for Py — 0 because Py /yy has a finite limit.

III. CASE StUDY: III-V SEMICONDUCTOR WAVEGUIDES

As mentioned before, dispersion engineered PhCWs for en-
hancing FWM can be designed in many ways. As an example
to test the obtained formulas, we consider the two-dimensional
structure that has been proposed in [17]. In particular, the results
presented here refer to a membrane PhCW having the air-holes
in a triangular lattice with parameters a = 484 nm (crystal pe-
riod), d = 0.25a (hole diameter), and i = 185 nm (slab height).
The air holes of the innermost row have a diameter d; = 0.24a
and are shifted outward by 0.18a. The GVD is tailored by means
of a structural modification that consists in a shift of an amount
T of the innermost air-holes rows along the propagation axis
but with opposite directions on each side of the PhnCW. Here,
the translation parameter is set to 7" = 0.08a. Such structural
shift of air-holes couples an even and an odd mode resulting
in a well confined quasi-even mode which nurtures nonlinear
effects [9]. The waveguide, of length L = 1.3 mm, was realized
in GalnP and the group index and the losses were experimen-
tally measured. Following [20], a fitting relation to determine
the propagation loss has been obtained as a function of group
index. In particular for the PhCW considered here losses in
decibel are given by

a(ng) = [7.897 tanh(n, — 20.25) + 0.2998n, + 6.319]dB.

To determine nonlinear coefficients consistent with the losses,
the mode field distribution and the group index have been calcu-
lated through a full vectorial analysis with the MPB code [32].
In Fig. 1 the calculated group index, n,, and the loss fitting
function are represented as a function of wavelength, respec-
tively by the blue solid and green dotted line. In Fig. 2 the
GVD coefficient 3y = d?3/dw? (red curve) and the fourth-
order dispersion coefficient 3; = d*3/dw* (blue curve) are also
plotted as a function of wavelength. The PhCW presents two
zero dispersion wavelengths (ZDW, A¢; ~ 1572 nm and X2 ~
1578 nm). For Ag; < XA, < Ap2 the GVD and fourth-order
dispersion coefficients are respectively positive and negative
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Fig.1.  Group index (n, solid blue curve) and propagation loss (dashed dotted
green curve) as a function of wavelength for the case study.
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Fig. 2. Second- (red curve) and fourth-order (blue curve) dispersion coeffi-
cients as functions of wavelength for the case study.
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Fig. 3. Parametric gain (G) for an input pump power of 1 W as a function
of signal to pump wavelength detuning and for several values of the pump
wavelength in the SM regime.

and so NBOPA can be expected [26]. For A, < Ay; and
Ap > Ap2 where GVD is anomalous, broad band optical para-
metric amplification (BBOPA) can be expected.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we present the results of the calculation of the
parametric gain and the conversion efficiency in the engineered
PhCW described in the previous section. For these calculations
the pump wavelengths are tuned from 1570 to 1580 nm, i.e.,
in the flat band of the dispersion curve of Fig. 1, in steps of
1 nm. The gain is presented in Fig. 3 for an input pump power
of 1 W, and for different pump wavelengths and several signal
to pump detunings AX. The expected NBOPA regime can be
easily recognized and the wavelength of maximum gain can be
tuned by modifying the pump wavelength. Noticeably, a BBOPA
regime can be also achieved, as expected, for pump wavelengths
in the negative GVD regime.

Choosing the same parameters and in the same range of pump
wavelengths, we have estimated the corresponding conversion
efficiency (1) using (10). The results are plotted in Fig. 4. In [25]
it was shown that the loss dispersion cannot be neglected in the
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Fig. 4. Conversion efficiency (1) for an input pump power of 1 W as a func-
tion of signal to pump wavelength detuning for several values of the pump
wavelength in the SM regime.
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Fig. 5. Comparison of the conversion efficiency as a function of the signal-
to-pump detuning (Py = 1.0 W, L = 1.3 mm). Dotted curve no losses (a,,, =
0, Aa = 0); solid curve with dispersive losses (a,, # 0, Aa # 0); dashed
curve with constant losses (o, # 0, Aa = 0).

G, 1 [dB]

-10 -5 0 5 10

Fig. 6. Parametric gain (solid curve) and the conversion efficiency (dashed
curve) for A, = 1575.5nm, input pump power 1W.

calculation of the gain for large detunings. The same conclusion
must be taken for the conversion too, as shown in Fig. 5 where the
predicted conversion efficiency without losses (dotted curve),
with constant losses (dashed curve) and with dispersive losses
(solid curve) are compared.

To highlight the main results characterizing parametric gain
and conversion efficiency in highly linear and nonlinear disper-
sive waveguide, in Fig. 6 we have plotted both the gain and
the conversion efficiency for A, = 1575.5 nm, a value yielding
NBOPA with the maximum pump to signal detuning. Let us first
explain how Fig. 6 is to be read, to avoid any misunderstanding,
in particular for the conversion efficiency. The abscissa of the
plot is the signal to pump wavelength detuning AA = A, — A,,.
The gain plot represents the ratio between the output and in-
put power for a signal shifted by AA with respect to the pump
wavelength. The conversion efficiency represents the power ra-
tio between the output idler at wavelength A; and the input signal
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at wavelength A, = A, + AX. Given that the abscissa in Fig. 6
is the signal to pump wavelength detuning, the value of the
conversion efficiency at AX actually refers to the idler which is
generated on the other side of the pump wavelength. Note that
conversion efficiency is larger than 1 in the best case. This can
be explained as follows: the input signal is initially amplified
and so the final idler power can be larger than the initial signal
amplitude.

The large wavelength asymmetry of gain has been already
pointed out in [25]. In fact, a net gain can be achieved only if the
signal is placed on the anti-Stoke (blue shifted) side. The reason
for this behaviour, as explained in Section I, is that losses (see
Fig. 1) are smaller on that side of the pump, while increase on
the Stokes (red shifted) side, up to suppress gain completely.

The conversion efficiency is highly asymmetric for the same
reason. In particular, the highest conversion is achieved when
the signal is placed on the Stokes (red shifted) side, which
corresponds to low loss propagation conditions for the idler
(that is generated on the anti-Stokes, blue shifted side). This
can be also explained by observing the parameters Q) ;, R, ;
that define the gain coefficient g(z) in Section II. For the signal
+Ac« must be used and the largest gain coefficient is found for
A < 0 that implies Aa = (o; — «s)/2 > 0 (idler losses are
larger than signal losses). For the idler, the gain coefficient is
determined by using —Aq in the formulas. So, if the idler is on
the anti-Stokes side (A; — A, < 0= Al = A, — A, > 0) then
A« < 0 and since there are two changes of sign in the formulas
the highest gain coefficient can be expected.

The conclusion to be taken is that both gain and conversion
efficiency spectral behaviours are dominated by losses and loss
engineering [20] is a crucial issue, as important as dispersion
engineering, to the quest of realizing on chip parametric devices.
The amplification/conversion take place in the initial stage of
the propagation, where the pump is sufficiently powerful; the
amplified/generated wave is then maintained only if losses are
minimal. Finally let us remark that for small signal to pump
detunings, as already observed, the asymmetry is negligible and
thus averaged coefficients and formulas can be effectively used.

The loss induced asymmetry has an additional, remarkable
effect that makes this case different from previously studied
parametric interactions. In absence of losses the conserva-
tion of the number of photons (Manley—Rowe relations) im-
plies that P;(L) — P;(L) = P;(0), since P;(0) = 0. Therefore
P,(L)/P.(0) — P,(L)/P,(0) = Gy — n = 1. When a # 0, but
losses are not function of wavelength, the previous relation be-
comes: exp(aL)(Gys —n) = 1[29]. Here, this relation does not
hold any longer, even taking into consideration a wavelength
dependent loss coefficient. This is due to the fact that the signal
and the idler are governed by different equations, as remarked in
the discussion about (4). To show this behaviour the parameter
D = |exp(asL) Gy — exp(a; L) n| has been calculated and it
is presented in Fig. 7. Note that D ~ 1 only when the FWM
is not phase-matched, i.e., when gain and conversion efficiency
are negligible; however, close to phase-matching conditions D
is very different from 1. This is similar to what occurs when
Raman gain, which is also a term causing a Stokes/anti-Stokes
asymmetry, is included in the parametric equations [29].
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Fig.7. Parameter D = |exp(asL) G — exp(a; L) n| asafunction of wave-
length detuning for A, = 1575.5 nm and for an input pump power of 1W.
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0 0.2 0.4 0.6 0.8 1
Power [W]

Fig. 8. Maximum conversion efficiency (1) as function of pump power
at different pump wavelengths (empty circle marker, A, = 1570 nm; plus
marker, A, = 1572 nm; cross marker, A, = 1573 nm; filled circle marker,
Ap = 1576 nm; empty diamond marker, A, = 1577 nm; asterisk marker, A, =
1579 nm).

Finally we have studied the power dependence of the con-
version efficiency. In Fig. 8, we have presented the maximum
conversion efficiency as a function of the input pump power for
several pump wavelengths. For A, = 1570 nm (empty circles),
the phase matching condition is satisfied in a high loss regime
(see Fig. 1) and therefore, the maximum conversion efficiency
is relatively poor. Increasing the pump wavelengths ensures a
larger 7 value. For 1573 nm < A, < 1576 nm, the conversion
efficiency is larger than 1 if Py > 0.7W.

V. CONCLUSION

In conclusion, a detailed study of the parametric interactions
in photonic crystal waveguides, specially engineered for en-
hancing degenerate four wave mixing, was carried out. It is
fundamental to stress that both the losses and the nonlinear-
ity are highly dispersive in such waveguides, due to the strong
wavelength dependence of the Bloch mode field distribution.
Therefore, for large values of the signal to pump detuning, stan-
dard gain and conversion efficiency formulas, in which only
one (average) value of the loss and nonlinear coefficients is
used, give uncorrect results. Under the undepleted pump ap-
proximation, exact formulas has been derived for determining
the parametric gain and the conversion efficiency accounting for
the dispersive loss and the dispersive nonlinearity.

The formulas were applied to the case of III-V semiconductor
photonic crystal waveguides. For a selected structure the nonlin-
ear overlap integrals that define the nonlinear coefficients have
been calculated. The loss coefficient as a function of the wave-
length have been derived by an interpolation of the experimental
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characterization of the waveguide manufactured with that de-
sign. In particular the engineered waveguide presented two zero
dispersion wavelengths and a regime of positive GVD in be-
tween and it was expected to show both narrow and broad band
parametric gain.

In fact, the theoretical and numerical analyses predict that
both regimes can be achieved by properly tuning the pump
wavelength. The main feature of gain and conversion efficiency
is represented by the large spectral asymmetry, solely due to
the loss dispersion. This asymmetry also breaks the relation
between gain and conversion efficiency which is an intrinsic
property of parametric interaction, due to the conservation of
the number of photons.

The exact formulas derived here, though applied to a specific
photonic crystal waveguide, are actually very general and can
find application to any waveguide in which loss and nonlinearity
are highly dispersive.

As for the specific results, the narrow band regime is particu-
larly interesting for applications since it can be used as a tool to
achieve tunable material slow light, in addition to the structural
slowing down effect, and to realized tunable optical parametric
oscillators.
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