
IEEE International Conference on Advances in Engineering & Technology Research (ICAETR - 2014),
August 01-02, 2014, Dr. Virendra Swarup Group of Institutions, Unnao, India

978-1-4799-6393-5/14/$31.00 ©2014 IEEE

C-based Predictor for Scoreboard in Universal
Verification Methodology

Srikanth Konale, N.Bheema Rao
Department of Electronics and Communication Engineering

National Institute of Technology Warangal
Warangal, India

konalesrikanth@gmail.com, nbr.rao@gmail.com

Abstract—Universal Verification Methodology (UVM) is a
standardized hybrid methodology for verifying complex
integrated circuit designs in the semiconductor industry.
Predictor is a component in UVM based test bench that
represents a golden model of the design under test (DUT), which
generates an expected response against which the actual response
of the DUT is compared in scoreboard. Predictors are mostly
written in C or C++ for modelling the correct functionality of the
DUT. It is provided in the form of compiled object code to the
testbench and acts as a verification component. UVM uses
SystemVerilog Direct Programming Interface (DPI) for
communicating components written in C with other components
of the test bench. This paper describes implementation of a UVM
testbench consisting of a C based predictor, in the form of a
complied object code for verification of a fused floating-point
add-subtract design unit.

Keywords- Predictor; UVM; C; System Verilog; Testbench;
Functional Verification

I. INTRODUCTION
Universal Verification Methodology (UVM) represents the

latest member of a family of methodologies and their
associated base class libraries for using SystemVerilog for
constrained random verification. UVM test benches are
complete verification environments composed of reusable
verification components. Scoreboard is a verification
component in test bench that determines whether or not the
design under test (DUT) is functioning correctly. The
scoreboard predicts the expected response and then compares
the expected response with the actual response form DUT. The
prediction task is implemented by the predictor.

Predictors are written in C, C++ or SystemC which is a
foreign language to the system Verilog based testbench. Using
DPI the foreign language code functionality is included in the
system Verilog. It is made available to the test bench in the
form of a compiled object code .The created object code needs
to be loaded to integrate the foreign language code into a
SystemVerilog testbench. The rest of the paper describes the
components of UVM based testbench and inclusion of foreign
language code as a verification component.

II. DESIGN UNDER TEST
The design under test (DUT) which is to be verified is fused

floating-point add-subtract unit [7]. It produces the sum and
difference of the two input floating point single precision
numbers simultaneously represented in IEEE-754 format.

III. DUT-TESTBENCH COMMUNICATION
A UVM testbench has a top level SystemVerilog module

which is a container for both the test bench and the DUT with
its associated connection and support logic (such as clock
generation). Virtual interfaces are used for communication
because a class based test bench cannot reference Verilog/Vhdl
ports and hence cannot directly connect to a Verilog or VHDL
DUT. Instead a SystemVerilog interface instance is connected
to the ports of the DUT and the test bench communicates with
the DUT through the interface instance.

IV. UVM TESTBENCH ARCHITECTURE
A UVM test bench is composed of reusable verification

environments called verification components. There are two
main collective component types used to enable reuse- the
agent and the environment. Fig. 3 shows a typical UVM
testbench architecture consisting of test, environment, agent
and its connection with the DUT.

Figure 1. Fused Floating-Point Add-Subtract unit

Figure 2. DUT- Testbench Communication

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 09:33:18 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Advances in Engineering & Technology Research (ICAETR - 2014),
August 01-02, 2014, Dr. Virendra Swarup Group of Institutions, Unnao, India

978-1-4799-6393-5/14/$31.00 ©2014 IEEE

A. Agent
The agent class is a top level container class for a driver, a

sequencer and a monitor, and monitors. The components of an
agent are described below.

1) Sequence item: Data items also called as sequence item
are the basic data objects which are passed to device under test
(DUT). In a typical test, many data items are generated and
sent to the DUT. By intelligently randomizing data item fields
many large number of meaningful tests can be created.
Sequence item (here simple_item) which is used for passing
the input to DUT is extended from uvm_sequence item.

2) Driver: The driver is responsible for sending the data
inside the sequence_items into pin level transactions to the
DUT. The driver drives the inputs to the DUT through the
virtual interface.

3) Sequence: Sequences are responsible for the stimulus
generation flow and send sequence_items to a driver via a
sequencer component. The sequencer is an intermediate
component which implements communication channels to
facilitate interactions between sequences and driver.

4) Sequencer: A sequencer is a component that runs
sequences. The role of the sequencer is to route
sequence_items from a sequence where they are generated
to/from a driver.

5) Monitor: A monitor is a passive entity that samples
DUT signals but does not drive them. It observes pin level
activity and converts its observations into sequence_items
which are sent to components such as scoreboards which use
them to analyze what are happening in the test bench.

B. Environment
The environment (env) is the top-level component of the

verification component. Environment can contain one or more
agents. In a test bench consisting of multiple agents the
environment (env) is used to collect together the agents needed
to communicate with the DUT's interfaces together in one
place. In addition to the agents, the environment will also
contain components like scoreboard and monitors.

1) Scoreboard: The Scoreboard's job is to determine
whether or not the DUT is functioning properly. The best
scoreboard architecture is to separate the prediction task from
the evaluation task (comparator). The prediction task is
implemented by predictor whose response is compared with
the actual response from DUT to verify the correct
functionality of the design.

V. C-BASED PREDICTOR
A Predictor is a verification component that represents a

golden model of the DUT. It takes the same input stimulus
that is sent to the DUT and produces expected response data
that is by definition correct. Predictors can be written in C,
C++ or SystemC. The predictor model for verification of the
fused floating point add-subtract unit design is written in C.
SystemVerilog provides the Direct Programming Interface
(DPI), an easier way to interface with C, C++, or any other
foreign language. A pair of matching type definitions is
required to pass a value through DPI, the SystemVerilog
definition and the C definition. Table I shows the
SystemVerilog types which are directly compatible with C
types. First the C file implementing the float_add and
float_sub functions is compiled using gcc -c -fpic filename.c
command. It produces create a filename.o object file. The test
bench is developed on opensuse OS having Questa simulator,
which supports UVM from mentor graphics installed on it.

Figure 3. Testbench Architecture

Figure 4. Agent Architecture

Figure 5. UVM Sequence Based Stimulus Generation Architecture

Figure 6. Scoreboard Architecture

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 09:33:18 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Advances in Engineering & Technology Research (ICAETR - 2014),
August 01-02, 2014, Dr. Virendra Swarup Group of Institutions, Unnao, India

978-1-4799-6393-5/14/$31.00 ©2014 IEEE

The object file is later converted to shared object file
libc.so using gcc -shared -o libc.so filename.o command. This
object file is included into a system Verilog testbench using –
sv_lib switch. The command –sv_lib libc adds shared object
file to the UVM library so it is accessible to testbench. The
sv_predictor is user defined which is extended from
uvm_subscriber class. It sends the two inputs A and B to the C
code and receives the sum and difference using DPI.
Sv_predictor class together with the shared object file is
referred to as C-based Predictor.

Table I. System Verilog and C types

System Verilog Type C Type
Byte Char
Int Int

Longint Long long
Shortint Short int

Real Double
String Const char*

Chandle Void*

It is performing the prediction task of the scoreboard. C

file must include the header file which defines all basic types,
and all interface functions. The size of the Int data type is 32-
bit in C so we are passing the two inputs a, b which is of 32
bits as Int. By applying masking on the 32bit data in C the
sign, exponent and fraction bit is extracted and addition,
subtraction are implemented and result are returned using
return statement in C which are assigned to sum_result and
diff_result respectively. These results are sent to the
comparator using analysis ports, and are compared against the
responses received from the DUT in the scoreboard.

Figure 7. C-based Predictor Architecture

Figure 8. Inclusion of foreign language code

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 09:33:18 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Advances in Engineering & Technology Research (ICAETR - 2014),
August 01-02, 2014, Dr. Virendra Swarup Group of Institutions, Unnao, India

978-1-4799-6393-5/14/$31.00 ©2014 IEEE

VI. THE STANDARD UVM PHASES
In order to have a consistent test bench execution flow, the

UVM uses phases to order the major steps that take place
during simulation. There are three groups of phases, which are
executed in the following order:

a) Build phases - where the test bench is configured and
constructed

b) Run-time phases - where time is consumed in
running the test case on the test bench

c) Clean up phases – where results of the test case are
collected and reported

VII. TESTBENCH BUILD
The UVM test bench is activated when the run_test()

method is called in an initial block in the top level test module.
This method is an UVM static method, and it takes a string
argument that defines the test to be run and constructs it via
the factory. Then the UVM starts the build phase by calling
the test class build method. During the build_phase of test, the
test bench component configuration objects are prepared and
assignments to the test bench module interfaces are made to
the virtual interface handles in the configuration objects.

The build phase works top-down and so the process is
repeated for each successive level of the test bench hierarchy
until the bottom of the hierarchical tree is reached. The test
class build method is the first to be called during the build
phase. It is responsible for configuring the test bench, initiating
the construction process by building the next level down in the
hierarchy and by initiating the stimulus by starting the main
sequence.

VIII. SIMULATION RESULTS
In the developed testbench, all testbench files are first

compiled for any errors. Test which we want to run is
specified with +UVM_TESTNAME=NAMEOFTEST in the
command line. To run a test named random_test which is
extended from uvm_test and which is registered with
uvm_factory +UVM_TESTNAME= random_test is used.
Once random_test starts running, first the build phase is
started. It can be seen that the base_test which is extended
from uvm_test is starting point for the test bench build
followed by the environment, agent.

Figure 11. Build and Connect Phases in Testbench

Figure 9. UVM Phases

Figure 10. UVM build flow in Testbench

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 09:33:18 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Advances in Engineering & Technology Research (ICAETR - 2014),
August 01-02, 2014, Dr. Virendra Swarup Group of Institutions, Unnao, India

978-1-4799-6393-5/14/$31.00 ©2014 IEEE

Figure 12. Output Waveform

Once all the components of the test bench are built the

build phase is completed. The next phase is the connect phase,
which is bottom up. First, the child components starting from
agent, predictor, scoreboard and environment are connected
during the connect phase.

The screenshots were taken when random_test is run on
the developed testbench in Questa Simulator from Mentor
Graphics supporting UVM. The uvm_report_info and $display
are used in the build, connect and run phase of the components
for getting the information, as to know what is happening in
the test bench. It is advisable to use uvm_debug in the
command line option to get more detailed information which
is stored in transcript file, generated by the simulator when the
test is completed. A waveform file (.wlf) is generated
automatically by the simulator once the test finishes. The
wave file which consists of the signals from the DUT can be
used for debugging the cause of the failure.

ACKNOWLEDGMENT
The proposed work was carried out in Stealth mode

Company working on ASIC based designs. This work was

greatly supported by National Institute of Technology,
Warangal.

REFERENCES
[1] Sharon Rosenberg and Kathleen A Meade, “A Practical Guide to

Adopting the Universal Verification Methodology(UVM)”, Cadence
Design Systems, 2010

[2] IEEE Computer Society. IEEE Standard for System Verilog-Unified
Hardware Design, Specification, and Verification Language - IEEE
1800-2009.

[3] Young-Nam Yun, Jae-Beom Kim, Nam-Do Kim,Byeong Min ,” Beyond
UVM for practical Soc Verification” , year 2011,pp 158-162.

[4] Accellera Organization, Inc. Universal Verification Methodology
(UVM) May 2012

[5] J. Bergeron, “Writing Testbenches: Functional Verification of HDL
models”, Kluwer Academic Publishers, 2003.

[6] www.uvmworld.org
[7] Jongwook Sohn and E. E. Swartzlander, Jr., "Improved Architectures for

a Fused Floating-Point Add-Subtract Unit," IEEE Trans. on Circuits and
Systems-I, vol 59, pp. 2285-2291, Oct. 2012

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 09:33:18 UTC from IEEE Xplore. Restrictions apply.

