
FPGA Implementation of 160- bit Vedic Multiplier
Ravi Kishore Kodali, Sai Sourabh Yenamachintala and Lakshmi Boppana

Department of Electronics and Communication Engineering
National Institute of Technology, Warangal

WARANGAL 506004, INDIA
E-mail: ravikkodali@gmail.com

Abstract—The rapid growth of technology influenced the need
for the design of highly efficient digital systems. Multipliers have
been playing a crucial role in every digital design. It is necessary
to make use of an efficient multiplier. Many algorithms came
into existence aiming at the reduction of execution time and area.
Taking us back to the Vedic (ancient Indian) era, the sutras or
algorithms described in Vedic mathematics rendered high degree
of efficiency. Vedic mathematics describes 16 different sutras
which involve multiplication operation. This work discusses one
of the 16 sutras, urdhva tiryakbhyam sutra for multiplication. Two
other multiplication algorithms namely, Booth and Karatsuba
have been considered for the purpose of performance compari-
son. Elliptic Curve Cryptographic applications require repeated
application of higher key size multiplication operation. All the
three algorithms have been implemented using Xilinx FPGA and
a resource utilization and timing summary comparison has been
made.

Index Terms—Vedic multiplication, FPGA, ECC

I. INTRODUCTION

Multipliers constitute a vital block of hardware used in
many applications like design of various signal, image and
cryptographic processors. Speed, area and configuration are
the factors determining the efficiency of multipliers. Many
algorithms have been proposed to improve the speed and
reduce the area occupied by multipliers. Dadda and Wallace
tree multipliers, array multipliers, Sunar-Koc multipliers [1],
[2] are some of them.

The multiplier architecture can be divided into serial
multipliers, parallel multipliers, serial parallel multipliers and
details of each are described in [3].

Recent investigations have focussed into the application
of Vedic (ancient Indian) mathematics for the design of
components of various mathematical computations. Vedic
mathematics can be deemed as a tool to simplify most of the
highly complex mathematical computations.

Using the techniques described in Vedic mathematics,
even a cube of a number can easily be calculated [4]. The
multipliers designed based on Vedic mathematics techniques
have been extensively used in arithmetic/ logic unit (ALU)
and multiply and accumulate (MAC) units which proved to
be highly efficient than the conventional multipliers [5].

Many digital signal processing operations such as convo-
lution, correlation require the use of multipliers, wherein the

speed of computation can be increased by using high speed
multipliers. Vedic multipliers, which are used for multipli-
cation of floating point numbers, have greatly reduced the
time delay and the area occupied [6]. This work introduces
a multiplication algorithm based on Vedic mathematics and
compares the results with Booth and Karatsuba multiplication
algorithms for larger key lengths.

II. LITERATURE REVIEW

The basic operations involved in any multiplication
are (i) generation of partial products (ii) accumulation of
these partial products. Reduction in the number of partial
products generated or increase in the speed of accumulation
improves the speed of multiplication. Booth multiplication
algorithm is implemented using state machine approach.
Booth multiplication algorithm reduces the number of
partial products generated but fails at minimizing the circuit
complexity.

Karatsuba algorithm allows multiplication of two large
numbers by splitting of the given numbers and performing
certain shifting and addition operations. The Vedic multiplier
algorithm and Karatsuba algorithm possess a close
resemblance. The most fundamental operation of signal
processing, convolution can be performed easily by Vedic
multiplication algorithm [7].

Booth multiplication algorithm is designed using data path
and controller technique. The data path utilizes shift registers,
accumulator and a counter. The flow of data among the
various components of data path is controlled by means of a
controller. For every one clock cycle the controller generates
appropriate signals required for next operation depending on
the outputs of the present state. After a particular number of
clock cycles, final product is obtained. A power dissipation
based comparison of Booth multiplier, array and column
bypass multiplier is given [8].

In Karatsuba algorithm any n- digit number is split into
two n

2 - digit numbers and this process continues recursively
until a lower limit is reached on which the multiplication
is performed by direct application of the algorithm. These
recursive terms are then combined to produce the final result.

978-1-4799-6052-1/14/$31.00 ©2014 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 07:16:31 UTC from IEEE Xplore. Restrictions apply.

If a number is split into two and is multiplied by the other
number which is also split into two parts then usually four
partial products are expected and addition of these products
produces the final result.

But Karatsuba algorithm reduces the number of partial
products to three by using simple addition and shifting
operations. This reduction in the number of partial product
generation increases the speed. If n represents the number of
operands and T(n) represents number of one bit operations
then for normal multiplication algorithm T(n) is n2, whereas
for Karatsuba algorithm it is n1.58 [9].

Let X and Y represent two numbers and X = XH + XL,
Y = YH + YL.

X.Y = (XH + XL).(YH + YL)
= XH .YH + XL.YL + XH .YL + XL.YH (1)

According to Karatsuba algorithm, the term XH .YL +
XL.YH can be computed by using equation (2) and reducing
the number of partial products from 4 to 3 [10].

XH .YL + XL.YH = (XH + XL).(YH + YL)
−XH .YH −XL.YL (2)

In the design of analog and digital filters, non-linear circuit
analysis, and various interpolation techniques make use of
Chebyshev polynomials. In order to multiply two Chebyshev
polynomials Karatsuba algorithm is used [11] and it is proved
to be more efficient after comparing with direct multiplication
and direct cosine form techniques.

The Vedic multiplier sutra or algorithm is proved to
be more efficient in terms of area as well as speed when
compared to Karatsuba algorithm. The Sanskrit word veda
is derived from the root word vid meaning to know without
limit. The veda is a repository of all knowledge, fathomless,
ever revealing as it is delved deeper.

Swami Bharati Krishna Tirtha, former Jagadguru
Sankaracharya of Puri compiled a set of 16 sutras and 13
sub-sutras, which together are known as Vedic mathematics.
Using Vedic mathematics multiplication of numbers, which
are nearest to powers of 10 can be achieved easily without
following the lengthy conventional form of multiplication [12].

Application of these sutras to various complex mathematical
problems renders a simplified solution which is quick and eas-
ily implementable. This work deals with one of these 16 sutras
called URDHVA TRIYAKBHYAM and its implementation using
FPGA.

III. AN OVERVIEW OF VEDIC ALGORITHM

URDHVA TRIYAKBHYAM literally means vertically and
crosswise. In this method bits of multiplicand and multiplier

are multiplied either vertically or crosswise and the result
is added to obtain the corresponding product bit. This
procedure can be applied over any radix system. An example
of multiplication performed for numbers using radix- 10
utilizing this sutra is given in [13].

The Vedic multiplication procedure for two 5- bit numbers
is shown in Figure 1.

step 1:

0
a a a a a

234 1

2 134

a a a a a

a a a a a

b b b b b
0

b b b b b

b b b b b

a a a a a

4

4

4

4

4

3

3

3

3

2

2

22

2

3

1

1

1

1

0

0

00

0

step 2:

step 3: step 4:

a a a a a

a a a a a

a a a a a

a a a a a

b b b b b

4 4

4

4

4

3 3

33

3

2 2

2

2

1 1

1

1

0

012

0

0

0

b b b b b4 3 2 1 0

1

b b b b b
4 3 2

b b b b b
4 3 2 1 0

1 0 4 3 2 1 0
b b b b b

s0
b1

a1+= ac1s1 b0

step 5: step 6:

c2s
2= a0 2b c s3 b +a b +a2b1+a b33

step 7: step 8:

+

+c1 +c
2

+ b2 + c

s6= a4b + a2b6c 3 + a3b4 + c6
= a

step 9:

a a a a a4 3 2 01

b b b b b4 3 2 1 0

9 = a + c8

c7s7

b3
c4s4 b0 1+a3 b c5 s5= a4b1 a b4+ a+ a2b2 a0b4+ c3

8 8bc s9

= a

= a
3

a
2

4
=a

+ a 4 5 + cb332
b

+ a
23

0b0

0
b

0

0 1 2 0

13

4

+ a
1
b

+ ab
1 1+

4

Fig. 1: Steps in 5- bit Vedic multiplication

step-1 the least significant bits (LSB) of both the operands
are multiplied resulting in the LSB of the product.

step-2 the bits a0 and a1 are multiplied crosswise with the
bits b0 and b1 and the resulting products are added
together with their carry being forwarded to step3.
The sum bit becomes the corresponding bit of the
product.

step-3 the above procedure is repeated using the bits a0, a1, a2

and b0, b1, b2 generating a0b2, a1b1, a2b0. These terms
are added together with the carry generated during

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 07:16:31 UTC from IEEE Xplore. Restrictions apply.

step2 and sum and carry are obtained.

step-4 the first four bits of both the operands are multiplied
resulting in the terms a0b3, a1b2, a2b3, a3b0, which are
added with the carry generated during step3.

step-5 In a similar manner all the 5- bits are used for vertical
and crosswise multiplication.

step-6 the terms multiplied are a4, a3, a2, a1 with b4, b3, b2, b1

in vertical and crosswise manner.

step-7 multiply the bits a4, a3, a2 with b4, b3, b2 generating
the product terms a4b2, a3b3, b4a2 whose sum is added
with the carry generated during step6.

step-8 only two bits a4, a3 and b4, b3 from each operand are
used in multiplication.

step-9 the bits a4 and b4 are multiplied and the result is
added with the carry of step8. The sum generated will
be the 9th bit of the product term. The carry forms
the most significant bit (MSB) of the final product.

Algorithm 1 VEDIC ALGORITHM
INPUT: 5- bit Multiplicand and Multiplier
OUTPUT: 10- bit product
k ← 0
S(k): 10- bit vector initialized to 0
for i = 0 to 4 do

for j = 0 to i do
S(k) = S(k) + a(i)× b(i− j)

end for
k = k + 1

end for
for i = 4 to 1 do

for j = 4 to i do
S(k) = S(k) + a(i)× b(5− (i− j))

end for
k = k + 1

end for
for i = 0 to (k − 1) do

P = P + S(i)
end for

The procedure for 5- bit multiplication is illustrated
in figure 1, where si and ci represent the sum and
carry bits respectively. The final product obtained is
c8s8s7s6s5s4s3s2s1s0. This sutra is also known by the name
Mental Multiplication technique [14].

Based on the Algorithm-1, a 5- bit multiplier has
been designed. Using this 5- bit multiplier as a building
block, a 160- bit multiplier is built in a recursive manner.

A structural view of this N- bit multiplier is shown in figure 2.

The multiplier and the multiplicand are split into two
parts (i) lower N

2 bits and (ii) upper N
2 bits. In figure 2

XL represents the lower N
2 - bits and XH represents the

upper N
2 - bits. Four N

2 bit multipliers are used and input to
these multipliers are all possible combinations of XL and XH .

The first two multipliers taking inputs XL, YH and YH ,XL

give their outputs to a N - bit adder. The lower N
2 bits of

the output of multiplier with inputs XH , YH and upper N
2 -

bits of the output of the multiplier with inputs XL, YL are
concatenated together and the resulting N -bits are given to
N -bit adder, the other input being the output of the first
adder. The output produced from this adder gives the middle
n-terms of the final product.

The lower N
2 bits obtained from the product of the

multiplier with inputs XL, YL gives the lower N
2 bits of

the final product. The carry term generated from two N- bit
adders are provided as inputs to the half adder. The resultant
sum and carry term are concatenated together with N

2 -2
zeroes on the lower side and the result is given as input to an
N
2 - bit adder. The other input of this adder being the upper
N
2 bits of the multiplier with input XH , YH . The output of

this N
2 - bit adder gives the upper N

2 - bits of the final product.

Internally every N
2 bit multiplier used in the above process

utilizes Vedic multiplication algorithm similar to the one
described above.

The fundamental block used to construct this multiplier is
a 5 × 5 Vedic multiplier. The N - bit adders used are ripple
carry adders which take N - bit inputs with a carry-in which
is zero in for all adders in this algorithm and generates a
N - bit sum and a carry- out bit. The above algorithm also
utilizes a half adder circuit. Thus a 160- bit Vedic multiplier
circuit is constructed using simple full adder and half adder
components along with lower order Vedic multipliers.

IV. RESULTS AND SIMULATION

The Vedic multiplier algorithm is synthesized using
6vlx760ff1760-2 a device in Xilinx Virtex-6 family.

The synthesis results, device utilization summary and time
delay for Vedic, Karatsuba and Booth multipliers for a key
length of 160- bits are presented in Table -I.

Table -I gives a comparison between Vedic multiplier and
Karatsuba multiplier and it reveals that Vedic multiplier
occupies less number of resources and has higher speed
than the latter. Thus Vedic multiplier is more efficient than
Karatsuba multiplier.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 07:16:31 UTC from IEEE Xplore. Restrictions apply.

N− bit adder

N− bit adder

Half
adder

Multiplier

N|

2
Multiplier Multiplier

N N||

2 − bit − bit − bit

|

2

2

N|
2 − bit

adder

P(2N−1). . . .P(|

2)
). . . .P(0)−1N|

2P(

Y XX Y X Y

N− bits

2
N

− bits

N
− bits

N− bitsN− bits

N− bitsN− bits
N
2 − bits

N
− bits − bits

Vedic Vedic

|

|

N|

2

Y

2)−1). . . .P(

− bits

X

&− concatenation

&

&

N
N3

|P(3

2

|

N|

2

LH L H H H L L

cout

cout

cout

L

N|

2
− bit
Vedic

Multiplier
Vedic

sum

(N

||

|

| −22)0s

|

2
N

Fig. 2: Block diagram of 160- bit Vedic multipler

(a) Booth multiplier

(b) Karatsuba Multiplier

(c) Vedic Multiplier

Fig. 3: Simulation results for 160- bit multiplication using three algorithms

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 07:16:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I: DEVICE UTILIZATION AND TIMING SUMMARY

LOGIC UTILISATION VEDIC MULTIPLIER KARATSUBA MULTIPLIER BOOTH MULTIPLIER
No. of slice LUTs 51761 103246 1937
No. of LUT FF 51761 103246 2442
pairs used
No. of IOBs 640 640 643
No. of fully used 0 0 662
LUT-FF pairs
No. of slice registers 0 0 1167
Time Delay 27.172 ns 34.123 ns 287.840 ns

Even though Booth multiplier utilizes less number of com-
ponents, each component occupies more area and takes the
longest execution time, it cannot be used in most of the
applications.

V. CONCLUSIONS

Vedic multiplier, Karatsuba multiplier and Booth multiplier
have been synthesized on Xilinx Virtex-6 FPGA device for a
key length of 160- bits. In Karatsuba multiplier, for smaller
number of bits a shift and add multiplier is used as a terminat-
ing condition for a recursive algorithm and for higher number
of bits, Karatsuba algorithm has been used recursively. In
contrast, in Vedic multiplier, the basic multiplier utilizes Vedic
multiplication algorithm and no other multiplier is needed. The
synthesis results show that Vedic multiplier is more efficient
in terms of speed and the area occupied. In the construction
of Vedic multiplier the ripple carry adders have been used. In
order to improve the speed further, high speed adders such as
carry look ahead adders, carry save adders, carry skip adders
may be used.

REFERENCES

[1] B. Sunar and C. Koc, “An efficient optimal normal basis type ii
multiplier,” Computers, IEEE Transactions on, vol. 50, no. 1, pp. 83–87,
2001.

[2] R. Kodali, P. Gomatam, and L. Boppana, “Implementations of Sunar-
Koc multiplier using FPGA platform and wsn node,” in TENCON 2013
- 2013 IEEE Region 10 Conference (31194), Oct 2013, pp. 1–4.

[3] V. Kunchigi, L. Kulkarni, and S. Kulkarni, “High speed and area efficient
Vedic multiplier,” in Devices, Circuits and Systems (ICDCS), 2012
International Conference on, March 2012, pp. 360–364.

[4] M. Ramalatha, K. Thanushkodi, K. Deena Dayalan, and P. Dharani,
“A novel time and energy efficient cubing circuit using Vedic mathe-
matics for finite field arithmetic,” in Advances in Recent Technologies
in Communication and Computing, 2009. ARTCom ’09. International
Conference on, Oct 2009, pp. 873–875.

[5] M. E. Paramasivam and R. S. Sabeenian, “An efficient bit reduction
binary multiplication algorithm using Vedic methods,” in Advance
Computing Conference (IACC), 2010 IEEE 2nd International, Feb 2010,
pp. 25–28.

[6] A. Kanhe, S. Das, and A. Singh, “Design and implementation of
floating point multiplier based on Vedic multiplication technique,” in
Communication, Information Computing Technology (ICCICT), 2012
International Conference on, Oct 2012, pp. 1–4.

[7] A. Itawadiya, R. Mahle, V. Patel, and D. Kumar, “Design a DSP
operations using Vedic mathematics,” in Communications and Signal
Processing (ICCSP), 2013 International Conference on, April 2013, pp.
897–902.

[8] A. S. Prabhu and V. Elakya, “Design of modified low power Booth
multiplier,” in Computing, Communication and Applications (ICCCA),
2012 International Conference on, Feb 2012, pp. 1–6.

[9] M. Ramalatha, K. Dayalan, P. Dharani, and S. Priya, “High speed
energy efficient ALU design using Vedic multiplication techniques,” in
Advances in Computational Tools for Engineering Applications, 2009.
ACTEA ’09. International Conference on, July 2009, pp. 600–603.

[10] G. Chow, K. Eguro, W. Luk, and P. Leong, “A Karatsuba-based
Montgomery multiplier,” in Field Programmable Logic and Applications
(FPL), 2010 International Conference on, Aug 2010, pp. 434–437.

[11] J. Lima, D. Panario, and Q. Wang, “A Karatsuba-based algorithm
for polynomial multiplication in Chebyshev form,” Computers, IEEE
Transactions on, vol. 59, no. 6, pp. 835–841, June 2010.

[12] V. Dave and C. Coulston, “Multiplication by complements,” in Elec-
trical Communications and Computers (CONIELECOMP), 2012 22nd
International Conference on, Feb 2012, pp. 153–156.

[13] A. Kumar and A. Raman, “Low power ALU design by ancient mathe-
matics,” in Computer and Automation Engineering (ICCAE), 2010 The
2nd International Conference on, vol. 5, Feb 2010, pp. 862–865.

[14] A. Gupta, U. Malviya, and V. Kapse, “Design of speed, energy and
power efficient reversible logic based Vedic ALU for digital proces-
sors,” in Engineering (NUiCONE), 2012 Nirma University International
Conference on, Dec 2012, pp. 1–6.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 27,2024 at 07:16:31 UTC from IEEE Xplore. Restrictions apply.

