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Abstract-- Detecting communities is of great importance in
various disciplines such as social media, biology and telephone
networks, where systems are often represented as graphs.
Community is formed by individuals such that those within a
group interact with each other more frequently than with those
outside the group. The communities have different properties
such as node degree, betweenness, centrality, cluster coefficient
and modularity. Discovering communities from social networks
of big data scale on a single sequential machine is a tedious task.
In this paper, we present a Scalable Community Detection
Algorithm which relaxes the performance issues due to many

I/Os.

We adopt Girvan—Newman’s modularity based hierarchical
community detection algorithm in bottom up approach and
proposed an approximation algorithm for community detection
in a distributed environment. We developed our approach using
MapReduce and Giraph computing platforms. Experimental
results demonstrate that the proposed approach is more efficient
than standard MapReduce approach and easily scaled to graph
of any size.

Index Terms— Community Detection, MapReduce, Giraph

I. INTRODUCTION

Analyzing social graphs plays a big role in extracting
relevant and personalized information for users, such as
results from a search engine or news in an online social
networking site. Due to increased use of social media and
networks in a massive scale, the size of social graphs is also
increasing at the same pace. Moreover, the businesses are
demanding newer relationships and interactions through web
and on-line social platforms. Many real-life applications (such
as the telephone networks, the world-wide web, Internet,
transportation networks, citation network and social
interactions) produce a large amount of data which can be
modeled as a graph. A large graph usually has millions of
vertices with billions of edges.

Existing clustering algorithms and theory on graphs are only
suitable for small graphs. With massive amounts of data
continuously being collected and stored, many industries and
researchers are becoming interested in finding community
from large social graphs. The cost of time and space for
processing large-scale graphs usually exceed the ability of a
concentrated computing system. This necessitates parallel and
distributed computing strategies for accelerating algorithms
performance in order to discover communities from large
graphs.
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Most graph algorithms need iterative computations, which
needs a chain of MapReduce (MR) jobs. In chain of MRs,
transferring the graph data between two consecutive jobs
during each iteration degrade the performance. In order to
resolve this problem, Google developed a parallel graph
processing system called Pregel [1] based on bulk
synchronous parallel (BSP) model [2]. Two open source
projects namely Giraph [3] and Hama [4] based on BSP are
also developed. Apache Giraph is a large-scale graph
processing platform, which is implemented on top of existing
hadoop cluster. It uses MapReduce job without the reduce
stage. Apache Hama is distributed computing framework for
massive scientific computation.

To the best of our knowledge, the only Scalable Community
Detection Algorithm was described in [5] which targets at
web-scale graph data. Their motive is to relax scalability
bottleneck with the help of cloud computing, more
specifically, MapReduce programming model. For graph
processing, the standard MapReduce programming model
suffers from performance issues because the graph state has to
be passed from one phase to the other in every iteration
generating a lot of I/Os. This is because standard MapReduce
lacks built-in support for the iterative process. To achieve
better performance, we developed an efficient algorithm with
the use of Giraph in this work.

In the literature, community detection approaches are
broadly categorized into four: node-centric, group-centric,
network-centric and hierarchy-centric [6]. In Node-Centric
Community Detection technique, each node in a group
satisfies certain properties such as Complete Mutuality,
Reachability of members, Nodal degrees and Relative
frequency of Within-Outside Ties. Finding cliques from graph
falls under this technique. Clique Percolation Method (CPM)
[7] allows overlap between the communities. Here, two k-
cliques are adjacent if they share £-/ nodes, and a community
is equivalent to a percolation cluster of k-cliques, in which any
k-clique can be reached from any other k-clique via sequences
ofk-clique adjacency.

Group-Centric Community Detection techniques require
whole group to satisfy certain properties. Network-Centric
Community Detection techniques partition the whole network
into different disjoint sets. Clustering based on vertex
similarity, Latent space models, Block model approximation,
Spectral clustering and Modularity maximization are the
approaches of'this technique [6].
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Hierarchy-Centric Community  Detection  technique
constructs a hierarchical structure of communities. Girvan—
Newman [8] algorithm is well known agglomerative algorithm
for finding hierarchical community from graph dataset.
Initially, the algorithm considers that all the nodes in a graph
are single stand-alone communities. Then it calculates the
modularity between every node pairs and repeatedly merges
pair of two communities with largest modularity which results
in single community. This algorithm follows greedy strategy
and the community structures are built in a bottom-up fashion.
The complexity of algorithm is O(n?®), where n is the number
of nodes. So, it is not scalable for large graphs which include
millions of edges. Another limitation of Girvan—Newman
bottom-up approach is with respect to its too much processing
time, since every iteration of the algorithm merges only one
node pair. To address this issue, in this work, we propose an
approximation algorithm for the same. In approximation
approach, instead of merging single node pair during every
iteration, it merges top K node pairs during every iteration.

In this paper, we develop a scalable and efficient community
detection algorithm (SE-CDA) by extending the Girvan-
Newman algorithm. We followed BSP model to design
parallel algorithm. We considered Hadoop platform
(hadoop.apache.org) along with MapReduce [9] and Giraph
[3] in order to process massive data with better fault-tolerance
and scalability.

The rest of the paper is organized as follows. In section II,
we present the related work. Section III presents our scalable
community detection algorithm. Experimental results are
discussed in section IV and the paperconcludes with section V.

II. RELATED WORK

Varamesh et al [10] proposed Distributed Clique Percolation
based Community Detection algorithm using MapReduce.
Chen et al [5] proposed a parallel and distributed algorithm for
the modularity based Girvan-Newman's community detection
algorithm using MapReduce. Their approach has four
MapReduce jobs in chain. MapReduce Job-1 and 2 calculates
the modularity between every node pairs and finds the node
pairs with highest modularity. Job-3 and 4 merges the node
pair with the highest modularity and updates the edge weights
of affected edges due to merging.

Community Detection by computing edge betweenness is
described by Moon et al [11]. They proposed a Shortest Path
Betweenness MapReduce Algorithm (SPB-MRA) which goes
through four stages. Stage-1 calculates all the pairs with
shortest path. This stage executes multiple times, and rest of
the stages execute once during every iteration. Stage-2 finds
edge betweenness ofevery pair of nodes. Stage-3 selects edges
to beremoved and stage-4removes the selected edges. All four
stages are implemented in Map Reduces and run in parallel.

Fast modularity optimization algorithm by Blondel et al [12]
is an iterative multi-step method of identifying partitions and
modularizing them so as to attain smaller weighted network
with Newman Girvan modularity method. This method
provides compromise between accuracy of the modularity

maximum  technique and  computational complexity,
essentially linear in the number of links of the graph.

Local resolution-limit-free Potts model by Ronhovde and
Nussinov's approach [13] is based on Potts-like spin model
where the spin state represents the membership of the node in
a community. By different initial conditions, with the same
resolution parameter, similarity of partitions is identified and
thus been arrived at relevant scales. Stable/Relevant partitions
are identified by peaks in similarity spectrum thus attained.
The method being fast has slightly super-linear complexity.

All the above discussed approaches are not scalable and
efficient for the data of big data scale mainly because of many
I0s. In our proposed approach, we break down Girvan-
Newman algorithm in such a way that it fits in Giraph
programming model. Further, our approach takes advantage of
localization and takes only few IOs during whole computation
as Giraph keeps the graph state in memory during the whole
computation.

III. SE-CDA DESIGN

In this section, we first discuss the sequential algorithm
given by Girvan-Newman to detect communities from a graph
and then describe our proposed algorithm.

The steps in Newman algorithm's for community detection
are:

Calculate modularityof every edge.

2. Edgewith the highestmodularityis merged into single
node.

Update affected edge weights due to merging.
4. Repeatsteps 110 4.

Modularity of edge is given by
Qij = 2(a; * a; - ¢;)

where, a; and a; are the sum of all the edge weights connected
to node i and j respectively and e;; is edge weight between
node i and j. Here, a; =% e;; This is a greedy algorithm.

For given large dataset of graph, our goal is to find
community on the basis of the relationships connecting those
specific individuals. As Giraph is a vertex centric approach, in
the proposed algorithm every step runs at available worker
nodes in parallel.

The input data for this approach is in JSON format as given
below:

Giraph takes a directed/undirected graph and a user defined
function Compute() as the input. Computation proceeds as a
sequence of iterations, called supersteps in Giraph. During a
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superstep, Compute() function is invoked for every active
vertex in parallel. Initially, every vertex is active. Fach vertex
is described in its own record, like vertex ID, vertex value and
list of adjacency nodes with connecting edge weights. Vertex
cannot access the values of other vertices. Vertex can send
message to other vertices that will be received in the next
super step, set/get the value of vertex, set/get edge weights
from adjacency list and add/remove vertex from adjacency
list. A vertex will de-active itself by voting to halt and keeps
inactive until it receives a message. The execution stops if all
vertices are inactive and no messages are in transit.

We used utility functions namely combiners and
aggregators for message reduction and global communication.
During a superstep, all vertices provide values to the
aggregator. In the end of superstep, all these values aggregated
by aggregator and available to all the vertices by next
superstep.

Our merging scheme requires three parameters namely a;, a;
and e;; to calculate modularity between every node pair. Every
vertex has adjacency list with edge weights. Below we
describe our procedure along with algorithms.

SuperStep — 1: Calculates Modularity

Input:
(VertexID, Adjacency list), List{VertexID, a;)

Output:
Aggregate(i, j, Modularity)

Procedure:

1: Initialize Modularity = 0.
2: for each received message do
a; = message.aq;
a; vertex.getValue ()
Modularity = 2 * (a; * a; — e;);
Aggregate (MOD_MAX, (i, j,Modularity))
end for

N G w

SuperStep — 0: Calculate q;

Input:
(VertexID, Adjacency list)

Output:
sendMessage (TargetVertexID,{VetexID, a;))

Procedure:

Initialize a; = 0

for each edge in AdjacencyList do
a; =a; +edge.weight;

end for

SetVertexValue (a;)

for each edge in Adjacencylist do
if edge.TargetVertex less than VertexID then

sendMessage (edge.TargetVertex,{VetexID,a;))
end if
: end for

SV PIDU R W

—_

In the superstep-1, all vertices receive a; from adjacent
vertices. Vertex also has e; in adjacency list and a;, which is
computed and set as vertex value during previous superstep. In
step-5, it calculates modularity @ and sends < i, j, @ > to
aggregator to find node pair with highest modularity.

Aggregator (MOD_MAX): Find “TopList’

In the superstep-0, first all the vertices compute a; = 2 e;;
(step-3), and then set a; as their vertex value (step-5). Vertex
value retain across barriers. It requires modularity calculation
during next iteration. Next, it propagates a; to its neighbors
(steps 6 to 8). Here to avoid an overlapping of computation, it
sends a; to only those target nodes whose VertexID is lesser
than its own VertexID.

As noticed, there is a barrier between consecutive
supersteps. That is, the message sent in current superstep will
be delivered to the destination vertices in the next superstep.

Input:

(i, j, Modularity)
Output:

SendToAll(TopList(i, )

Procedure:

Set K with constant.

Create ArraylList ToplList;

Initialize toplist with AggregatedList

if check(i,j, Modularity) == true then
Add(ToplList, (i, j, Modularity))

end if

Update AggregatedList

N wh e

Aggregator receives < i, j, @ > pairs from every vertex. In
step-1, it initializes K with constant, which indicates the
number of pairs in TopList. For standard approach the value
of K is 1. In our approximation approach, we consider K > 1,
in order to find top node pairs with highest modularity. The
results of aggregator will become available to all vertices in
the following superstep-2.
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SuperStep — 2: Merge node pairs in “ToplList’

SuperStep — 3: Update Edge Weights — 1

Input:
(VertexID, AdjacencyList), TopList(i, j)

Output:
SendMessage(l,{ TargetVertexID,Edge Weight) )

Procedure:

1: for each item in TopList do
if VertexID j then
foreach edge in Adjacencylist do
sendMessage (i,{TargetVertexID,EdgeWeight))
end for
voteToHalt ();
else if node j in AdjacencyList then
removeEdges (j);
end if
0: end for

=

Superstep-2 receives the node pairs with highest modularity.
It reads one by one node pair from TopList and merges this
node pair into a single node. Then, it makes other nodes in
node pair inactive permanently (step-6) and also removes all
the edges connected to that node (step-8). These merging of
nodes affect the weight edges of nearby edges. Finally,
Superstep-2 sends update to affected nodes and makes it
available to vertices during next Superstep.

Input:
(VertexID, Adjacency list) ,
List{ TargetVertexID, EdgeW eight)

Output:
SendMessage( TargetVertex,{ VertexID,EdgeWeight))

Procedure:

1: for each received message do

2: Initialize weight = 0

3: if getEdgeValue (TargetVertexID) ! = null then
4: weight = getEdgeValue (TargetVertexID)

5: weight = weight + message.EdgeWeight

6: setEdgeValue (TargetVertexID,weight)

7: sendMessage (TargetVertexID,weight)

8 else

9: addEdge (TargetVertexID, message.EdgeWeight)
10: sendMessage (TargetVertexID,weight)

11: end if

12: end for

In the superstep-3, vertices receive list of <TargetVertexID,
EdgeWeight >. It updates the weights of affected edges (steps
3-11). As input graph is undirected graph, it needs to update

the weight at other end. So in step-7 and 10, updated weights
are sent to vertices with TargetVertexID, which will be

available at vertices during next superstep.
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Fig. 1. Data flow of proposed approach
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SuperStep — 4: Update Edge Weight — 2

Input:
(VertexID, Adjacency list ),
List{TargetVertexID, EdgeW eight)

Procedure:

: for each received message do
if getEdgeValue (i) ! = null then
setEdgeValue (i, message.EdgeWeight)
else
vertex.addEdge (i, message.EdgeWeight)
end for

A e

The updated List <TargetVertexID, EdgeWeight > during
superstep-3 is input to the superstep-4. If TargetVertexID
exists in adjacency list then it will update the weight,
otherwise it adds new edge into adjacency list. Then, the
procedure starts execution again from superstep-0.

Here, described algorithm is direct translation of Girvan-
Newman algorithm which runs in parallel in a distributed
environment. It takes gigantic processing time to generate
complete hierarchical clustering tree, since every iteration of
algorithm merges only one node pair. To address this issue,
we proposed an approximation algorithm for the same. As we
know, in case of detecting community structure from large
graph, sequence of merging nodes is not important. Instead of
merging single node pair during every iteration, our
approximation approach merges top K nodes with highest
modularity during every iteration so as to improve the
performance significantly.

Figure 1 shows the data flow for our approach. As shown in
the figure, input graph splits and load into available workers.
Here, we took five vertices and two workers. So vertices 1 and
2 load into worker-1, and vertices 3, 4 and 5 load into worker-
2.

As stated earlier, we require three parameters a;, ajand e;; to
calculate modularity. Every vertex has adjacency list with
edge weights of all its connected nodes.

First, superstep-Ocalculates a;= 2 e;; and set as vertexvalue
as shown (J. Now to calculate modularity vertices require a;.
So it sends a; to all neighbor nodes whose node ID lesser than
its own node ID. All these values are available to vertices
during next superstep. So a;, a;and e;; available at superstep-1.
So it calculates modularity and send <i, j, Modularity> to
aggregator, which is shown as OOCJ. Aggregator finds top-k
pairs with highest modularity and distribute to every vertex.
So list with top-K highest modularity are available at every
vertex during next superstep. Here, in figure 1, we set K as 1
for simplicity. As shown, is pair in TopList with
highest modularity. It saves the selected pairs into file as
output.

Now, superstep-2 merges the node pairs in TopList. So, as
shown in figure, it merges 2 and 3 and sends adjacency list of
3 to node 2 and deactivate the node-3 and its connected edges,
which highlighted with red color.

Superstep 3 and 4 updates the edge weights of affected
edges. So, here, node pair 1-3 and 1-2 merges and final weight
of 1-2 node pair updates to 2. After superstep-4, execution
starts again from superstep-0.

IV. EXPERIMENTS

A. Dataset & Environment

Proposed algorithm experimented on system with 64-core
2.13 GHz CPU (64-bit architecture, 128 Hyper threading), 512
GB RAM, 3 TB hard drive space. We have conducted
experiments on sample of 1,189K unique users collected by
Breadth-First-Search traversal on Facebook, released by [14].

B. Standard Approach

The performance of different datasets is analyzed with
above mentioned environment. Datasets are tested for sizes up
to 2 million vertices to demonstrate the performance of the
algorithm. Figure 2 shows the performance graph of Hadoop
versus Giraph.
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Fig 2. Performance Graph Hadoop vs Giraph

C. Approximation Approach

The performance of approximation algorithm on
different number of node pairs merged during every
iteration is also experimented. Figure 2 shows the
performance comparison of Standard and Approximation
approaches with K = 6 and K = 10. The results illustrate
that approximation approach gives better performance
over standard approach for the same dataset.
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Fig. 3. Performance Graph: Standard vs Approximation
Approaches

V. CONCLUSION

In this paper, we addressed discovery of community
structures from a given large size graph. We adopted Girvan—
Newman’s modularity based hierarchical community
detection algorithm in bottom up approach and extended it to
distributed environment. We also proposed an approximation
algorithm to detect the community structures. We performed
experiments with a dataset with varying sizes. Our results
show the viability of the proposed approach.
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