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Abstract-- Detecting communities is of great importance in 
various disciplines such as social media, biology and telephone 
networks, where systems are often represented as graphs. 
Community is formed by individuals such that those within a 
group interact with each other more frequently than with those 
outside the group. The communities have different properties 
such as node degree, betweenness, centrality, cluster coefficient 
and modularity. Discovering communities from social networks 
of big data scale on a single sequential machine is a tedious task.  
In this paper, we present a Scalable Community Detection 
Algorithm which relaxes the performance issues due to many 
I/Os.  

We adopt Girvan–Newman’s modularity based hierarchical 
community detection algorithm in bottom up approach and 
proposed an approximation algorithm   for community detection 
in a distributed environment. We developed our approach using 
MapReduce and Giraph computing platforms. Experimental 
results demonstrate that the proposed approach is more efficient 
than standard MapReduce approach and easily scaled to graph 
of any size. 

Index Terms— Community Detection, MapReduce, Giraph 

I. INTRODUCTION 
Analyzing social graphs plays a big role in extracting 

relevant and personalized information for users, such as 
results from a search engine or news in an online social 
networking site. Due to increased use of social media and 
networks in a massive scale, the size of social graphs is also 
increasing at the same pace. Moreover, the businesses are 
demanding newer relationships and interactions through web 
and on-line social platforms. Many real-life applications (such 
as the telephone networks, the world-wide web, Internet, 
transportation networks, citation network and social 
interactions) produce a large amount of data which can be 
modeled as a graph. A large graph usually has millions of 
vertices with billions of edges. 

Existing clustering algorithms and theory on graphs are only 
suitable for small graphs. With massive amounts of data 
continuously being collected and stored, many industries and 
researchers are becoming interested in finding community 
from large social graphs. The cost of time and space for 
processing large-scale graphs usually exceed the ability of a 
concentrated computing system. This necessitates parallel and 
distributed computing strategies for accelerating algorithms 
performance in order to discover communities from large 
graphs. 

Most graph algorithms need iterative computations, which 
needs a chain of MapReduce (MR) jobs. In chain of MRs, 
transferring the graph data between two consecutive jobs 
during each iteration degrade the performance. In order to 
resolve this problem, Google developed a parallel graph 
processing system called Pregel [1] based on bulk 
synchronous parallel (BSP) model [2]. Two open source 
projects namely Giraph [3] and Hama [4] based on BSP are 
also developed. Apache Giraph is a large-scale graph 
processing platform, which is implemented on top of existing 
hadoop cluster. It uses MapReduce job without the reduce 
stage. Apache Hama is distributed computing framework for 
massive scientific computation. 

To the best of our knowledge, the only Scalable Community 
Detection Algorithm was described in [5] which targets at 
web-scale graph data. Their motive is to relax scalability 
bottleneck with the help of cloud computing, more 
specifically, MapReduce programming model. For graph 
processing, the standard MapReduce programming model 
suffers from performance issues because the graph state has to 
be passed from one phase to the other in every iteration 
generating a lot of I/Os. This is because standard MapReduce 
lacks built-in support for the iterative process. To achieve 
better performance, we developed an efficient algorithm with 
the use of Giraph in this work. 

In the literature, community detection approaches are 
broadly categorized into four: node-centric, group-centric, 
network-centric and hierarchy-centric [6]. In Node-Centric 
Community Detection technique, each node in a group 
satisfies certain properties such as Complete Mutuality, 
Reachability of members, Nodal degrees and Relative 
frequency of Within-Outside Ties. Finding cliques from graph 
falls under this technique. Clique Percolation Method (CPM) 
[7] allows overlap between the communities. Here, two k-
cliques are adjacent if they share k-1 nodes, and a community 
is equivalent to a percolation cluster of k-cliques, in which any 
k-clique can be reached from any other k-clique via sequences 
of k-clique adjacency. 

Group-Centric Community Detection techniques require 
whole group to satisfy certain properties. Network-Centric 
Community Detection techniques partition the whole network 
into different disjoint sets. Clustering based on vertex 
similarity, Latent space models, Block model approximation, 
Spectral clustering and Modularity maximization are the 
approaches of this technique [6].  
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Hierarchy-Centric Community Detection technique 
constructs a hierarchical structure of communities. Girvan–
Newman [8] algorithm is well known agglomerative algorithm 
for finding hierarchical community from graph dataset. 
Initially, the algorithm considers that all the nodes in a graph 
are single stand-alone communities. Then it calculates the 
modularity between every node pairs and repeatedly merges 
pair of two communities with largest modularity which results 
in single community. This algorithm follows greedy strategy 
and the community structures are built in a bottom-up fashion. 
The complexity of algorithm is O(n³), where n is the number 
of nodes. So, it is not scalable for large graphs which include 
millions of edges.  Another limitation of Girvan–Newman 
bottom-up approach is with respect to its too much processing 
time, since every iteration of the algorithm merges only one 
node pair. To address this issue, in this work, we propose an 
approximation algorithm for the same. In approximation 
approach, instead of merging single node pair during every 
iteration, it merges top K node pairs during every iteration. 

In this paper, we develop a scalable and efficient community 
detection algorithm (SE-CDA) by extending the Girvan-
Newman algorithm. We followed BSP model to design 
parallel algorithm. We considered Hadoop platform 
(hadoop.apache.org) along with MapReduce [9] and Giraph 
[3] in order to process massive data with better fault-tolerance 
and scalability.  

The rest of the paper is organized as follows. In section II, 
we present the related work. Section III presents our scalable 
community detection algorithm. Experimental results are 
discussed in section IV and the paper concludes with section V. 

II. RELATED WORK 
Varamesh et al [10] proposed Distributed Clique Percolation 

based Community Detection algorithm using MapReduce. 
Chen et al [5] proposed a parallel and distributed algorithm for 
the modularity based Girvan-Newman's community detection 
algorithm using MapReduce. Their approach has four 
MapReduce jobs in chain. MapReduce Job-1 and 2 calculates 
the modularity between every node pairs and finds the node 
pairs with highest modularity. Job-3 and 4 merges the node 
pair with the highest modularity and updates the edge weights 
of affected edges due to merging.  

Community Detection by computing edge betweenness is 
described by Moon et al [11]. They proposed a Shortest Path 
Betweenness MapReduce Algorithm (SPB-MRA) which goes 
through four stages. Stage-1 calculates all the pairs with 
shortest path. This stage executes multiple times, and rest of 
the stages execute once during every iteration. Stage-2 finds 
edge betweenness of every pair of nodes. Stage-3 selects edges 
to be removed and stage-4 removes the selected edges. All four 
stages are implemented in Map Reduces and run in parallel. 

Fast modularity optimization algorithm by Blondel et al [12] 
is an iterative multi-step method of identifying partitions and 
modularizing them so as to attain smaller weighted network 
with Newman Girvan modularity method. This method 
provides compromise between accuracy of the modularity 

maximum technique and computational complexity, 
essentially linear in the number of links of the graph. 

Local resolution-limit-free Potts model by Ronhovde and 
Nussinov's approach [13] is based on Potts-like spin model 
where the spin state represents the membership of the node in 
a community. By different initial conditions, with the same 
resolution parameter, similarity of partitions is identified and 
thus been arrived at relevant scales. Stable/Relevant partitions 
are identified by peaks in similarity spectrum thus attained. 
The method being fast has slightly super-linear complexity.  

All the above discussed approaches are not scalable and 
efficient for the data of big data scale mainly because of many 
IOs. In our proposed approach, we break down Girvan-
Newman algorithm in such a way that it fits in Giraph 
programming model. Further, our approach takes advantage of 
localization and takes only few IOs during whole computation 
as Giraph keeps the graph state in memory during the whole 
computation.  

III. SE-CDA DESIGN 
In this section, we first discuss the sequential algorithm 

given by Girvan-Newman to detect communities from a graph 
and then describe our proposed algorithm.  

The steps in Newman algorithm's for community detection 
are: 

1. Calculate modularity of every edge. 

2. Edge with the highest modularity is merged into single 
node. 

3. Update affected edge weights due to merging. 

4. Repeat steps 1 to 4. 

 
Modularity of edge is given by  
 

𝑄𝑖𝑗  =  2 (𝑎𝑖  ∗  𝑎𝑗 – 𝑒𝑖𝑗) 
 
where, ai and aj are the sum of all the edge weights connected 
to node i and j respectively and eij is edge weight between 
node i and j. Here, ai = Σ j eij . This is a greedy algorithm.  

For given large dataset of graph, our goal is to find 
community on the basis of the relationships connecting those 
specific individuals. As Giraph is a vertex centric approach, in 
the proposed algorithm every step runs at available worker 
nodes in parallel. 

The input data for this approach is in JSON format as given 
below:  

[1, 4.3, [ [2, 2.1], [3, 0.7] ] ] 

[2, 0.0, [ ] ] 

[3, 1.8, [ [1, 0.7] ] ] 

 
Giraph takes a directed/undirected graph and a user defined 

function Compute() as the input. Computation proceeds as a 
sequence of iterations, called supersteps in Giraph. During a 
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superstep, Compute() function is invoked for every active 
vertex in parallel. Initially, every vertex is active. Each vertex 
is described in its own record, like vertex ID, vertex value and 
list of adjacency nodes with connecting edge weights. Vertex 
cannot access the values of other vertices. Vertex can send 
message to other vertices that will be received in the next 
super step, set/get the value of vertex, set/get edge weights 
from adjacency list and add/remove vertex from adjacency 
list. A vertex will de-active itself by voting to halt and keeps 
inactive until it receives a message. The execution stops if all 
vertices are inactive and no messages are in transit.  

We used utility functions namely combiners and 
aggregators for message reduction and global communication. 
During a superstep, all vertices provide values to the 
aggregator. In the end of superstep, all these values aggregated 
by aggregator and available to all the vertices by next 
superstep.  

Our merging scheme requires three parameters namely ai, aj 
and eij to calculate modularity between every node pair. Every 
vertex has adjacency list with edge weights. Below we 
describe our procedure along with algorithms. 

 

𝑺𝒖𝒑𝒆𝒓𝑺𝒕𝒆𝒑 − 𝟎: 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆  𝒂𝒊 
 

𝑰𝒏𝒑𝒖𝒕 : 
 〈𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦  𝑙𝑖𝑠𝑡〉 

 
𝑶𝒖𝒕𝒑𝒖𝒕: 

 𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 , 〈𝑉𝑒𝑡𝑒𝑥𝐼𝐷 , 𝑎𝑖〉) 
 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 : 
 

  1:  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒  𝑎𝑖  =  0 
  2:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑑𝑔𝑒  𝑖𝑛 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝐿𝑖𝑠𝑡  𝑑𝑜 
  3:      𝑎𝑖  = 𝑎𝑖 + 𝑒𝑑𝑔𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ;      
  4:  𝑒𝑛𝑑  𝑓𝑜𝑟 
  5:  𝑆𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝑉𝑎𝑙𝑢𝑒  (𝑎𝑖) 
  6:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑑𝑔𝑒  𝑖𝑛 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝐿𝑖𝑠𝑡  𝑑𝑜 
  7:     𝑖𝑓 𝑒𝑑𝑔𝑒 . 𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥  𝑙𝑒𝑠𝑠  𝑡ℎ𝑎𝑛  𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷  𝑡ℎ𝑒𝑛  
  8:        𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑒𝑑𝑔𝑒. 𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥 , 〈𝑉𝑒𝑡𝑒𝑥𝐼𝐷 , 𝑎𝑖〉) 
  9:     𝑒𝑛𝑑  𝑖𝑓 
10:  𝑒𝑛𝑑  𝑓𝑜𝑟 
 

 
In the superstep-0, first all the vertices compute ai = Σ j eij  

(step-3), and then set ai  as their vertex value (step-5). Vertex 
value retain across barriers. It requires modularity calculation 
during next iteration. Next, it propagates ai  to its neighbors 
(steps 6 to 8). Here to avoid an overlapping of computation, it 
sends ai to only those target nodes whose VertexID is lesser 
than its own VertexID. 

As noticed, there is a barrier between consecutive 
supersteps. That is, the message sent in current superstep will 
be delivered to the destination vertices in the next superstep. 

 

𝑺𝒖𝒑𝒆𝒓𝑺𝒕𝒆𝒑 − 𝟏: 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒔  𝑴𝒐𝒅𝒖𝒍𝒂𝒓𝒊𝒕𝒚  
 

𝑰𝒏𝒑𝒖𝒕 : 
        〈𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦  𝑙𝑖𝑠𝑡〉 , 𝐿𝑖𝑠𝑡〈𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 , 𝑎𝑖 〉 

 
𝑶𝒖𝒕𝒑𝒖𝒕: 
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒〈i, 𝑗, Modularity〉 

 
𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 : 
   
1:  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒  𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  0. 
2:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  𝑚𝑒𝑠𝑠𝑎𝑔𝑒  𝑑𝑜 
3:      𝑎𝑖  =  𝑚𝑒𝑠𝑠𝑎𝑔𝑒 . 𝑎𝑖 
4:      𝑎𝑗  =  𝑣𝑒𝑟𝑡𝑒𝑥 .𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒 () 
5:      𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦  =  2 ∗  (𝑎𝑖  ∗  𝑎𝑗  −  𝑒𝑖𝑗 ); 
6:      𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑀𝑂𝐷_𝑀𝐴𝑋, 〈𝑖 , 𝑗,𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦〉) 
7:   𝑒𝑛𝑑  𝑓𝑜𝑟 
 

 

In the superstep-1, all vertices receive ai  from adjacent 
vertices. Vertex also has eij  in adjacency list and aj, which is 
computed and set as vertex value during previous superstep. In 
step-5, it calculates modularity Q and sends < i, j, Q >  to 
aggregator to find node pair with highest modularity. 

 

𝑨𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒐𝒓  (𝑴𝑶𝑫_𝑴𝑨𝑿): 𝑭𝒊𝒏𝒅 “𝑻𝒐𝒑𝑳𝒊𝒔𝒕” 
 

𝑰𝒏𝒑𝒖𝒕 : 
〈𝑖, 𝑗,𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦〉  

𝑶𝒖𝒕𝒑𝒖𝒕: 
𝑆𝑒𝑛𝑑𝑇𝑜𝐴𝑙𝑙(𝑇𝑜𝑝𝐿𝑖𝑠𝑡〈𝑖 , 𝑗〉) 

 
𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 : 

 
1:  𝑆𝑒𝑡  𝐾  𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . 
2:  𝐶𝑟𝑒𝑎𝑡𝑒  𝐴𝑟𝑟𝑎𝑦𝐿𝑖𝑠𝑡  𝑇𝑜𝑝𝐿𝑖𝑠𝑡 ; 
3:  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒  𝑡𝑜𝑝𝑙𝑖𝑠𝑡  𝑤𝑖𝑡ℎ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝐿𝑖𝑠𝑡  
4:  𝑖𝑓 𝑐ℎ𝑒𝑐𝑘 (𝑖 , 𝑗,𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 )  ==  𝑡𝑟𝑢𝑒  𝑡ℎ𝑒𝑛  
5:     𝐴𝑑𝑑(𝑇𝑜𝑝𝐿𝑖𝑠𝑡 , 〈𝑖, 𝑗,𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦〉) 
6:  𝑒𝑛𝑑  𝑖𝑓 
7:  𝑈𝑝𝑑𝑎𝑡𝑒  𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝐿𝑖𝑠𝑡  
 

 

Aggregator receives < i, j, Q >   pairs from every vertex. In 
step-1, it initializes K with constant, which indicates the 
number of pairs in TopList. For standard approach the value 
of K is 1. In our approximation approach, we consider K > 1, 
in order to find top node pairs with highest modularity. The 
results of aggregator will become available to all vertices in 
the following superstep-2. 
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𝑺𝒖𝒑𝒆𝒓𝑺𝒕𝒆𝒑 − 𝟐: 𝑴𝒆𝒓𝒈𝒆  𝒏𝒐𝒅𝒆  𝒑𝒂𝒊𝒓𝒔 𝒊𝒏 “𝑻𝒐𝒑𝑳𝒊𝒔𝒕” 
 

𝑰𝒏𝒑𝒖𝒕 : 
〈𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝐿𝑖𝑠𝑡〉 , 𝑇𝑜𝑝𝐿𝑖𝑠𝑡〈𝑖 , 𝑗〉 

 
𝑶𝒖𝒕𝒑𝒖𝒕: 

𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒〈𝐼, 〈 𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐸𝑑𝑔𝑒  𝑊𝑒𝑖𝑔ℎ𝑡〉  〉 
 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 : 
 

 1:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑖𝑡𝑒𝑚  𝑖𝑛 𝑇𝑜𝑝𝐿𝑖𝑠𝑡  𝑑𝑜  
 2:     𝑖𝑓 𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷  ==  𝑗 𝑡ℎ𝑒𝑛          
 3:        𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑑𝑔𝑒 𝑖𝑛  𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝐿𝑖𝑠𝑡  𝑑𝑜 
 4:           𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒  (𝑖, 〈𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡〉)  
 5:        𝑒𝑛𝑑  𝑓𝑜𝑟           
 6:        𝑣𝑜𝑡𝑒𝑇𝑜𝐻𝑎𝑙𝑡  (); 
 7:     𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛𝑜𝑑𝑒  𝑗 𝑖𝑛 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝐿𝑖𝑠𝑡  𝑡ℎ𝑒𝑛  
 8:        𝑟𝑒𝑚𝑜𝑣𝑒𝐸𝑑𝑔𝑒𝑠  (𝑗); 
 9:     𝑒𝑛𝑑  𝑖𝑓 
10:  𝑒𝑛𝑑  𝑓𝑜𝑟 
 

Superstep-2 receives the node pairs with highest modularity. 
It reads one by one node pair from TopList and merges this 
node pair into a single node. Then, it makes other nodes in 
node pair inactive permanently (step-6) and also removes all 
the edges connected to that node (step-8). These merging of 
nodes affect the weight edges of nearby edges. Finally, 
Superstep-2 sends update to affected nodes and makes it 
available to vertices during next Superstep.  

𝑺𝒖𝒑𝒆𝒓𝑺𝒕𝒆𝒑 − 𝟑: 𝑼𝒑𝒅𝒂𝒕𝒆  𝑬𝒅𝒈𝒆 𝑾𝒆𝒊𝒈𝒉𝒕𝒔 − 𝟏 
 

𝑰𝒏𝒑𝒖𝒕 : 
〈 𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡〉  ,

𝐿𝑖𝑠𝑡〈 𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡〉  
 

𝑶𝒖𝒕𝒑𝒖𝒕: 
𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒〈 𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥 , 〈 𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡〉〉 
𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 : 

 
1:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  𝑚𝑒𝑠𝑠𝑎𝑔𝑒  𝑑𝑜 
2:     𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒  𝑤𝑒𝑖𝑔ℎ𝑡  =  0 
3:     𝑖𝑓 𝑔𝑒𝑡𝐸𝑑𝑔𝑒𝑉𝑎𝑙𝑢𝑒  (𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ) ! =  𝑛𝑢𝑙𝑙  𝑡ℎ𝑒𝑛  
4:        𝑤𝑒𝑖𝑔ℎ𝑡  =  𝑔𝑒𝑡𝐸𝑑𝑔𝑒𝑉𝑎𝑙𝑢𝑒  (𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ) 
5:        𝑤𝑒𝑖𝑔ℎ𝑡  = 𝑤𝑒𝑖𝑔ℎ𝑡 +  𝑚𝑒𝑠𝑠𝑎𝑔𝑒 .𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡  
6:        𝑠𝑒𝑡𝐸𝑑𝑔𝑒𝑉𝑎𝑙𝑢𝑒  (𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝑤𝑒𝑖𝑔ℎ𝑡 ) 
7:        𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒  (𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝑤𝑒𝑖𝑔ℎ𝑡) 
8:      else 
9:         𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝑚𝑒𝑠𝑠𝑎𝑔𝑒 .𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡) 
10:        𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒  (𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝑤𝑒𝑖𝑔ℎ𝑡 ) 
11:     𝑒𝑛𝑑  𝑖𝑓 
12:  𝑒𝑛𝑑  𝑓𝑜𝑟 

In the superstep-3, vertices receive list of <TargetVertexID, 
EdgeWeight >. It updates the weights of affected edges (steps 
3-11). As input graph is undirected graph, it needs to update 
the weight at other end. So in step-7 and 10, updated weights 
are sent to vertices with TargetVertexID, which will be 
available at vertices during next superstep. 

 
Fig. 1. Data flow of proposed approach  
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𝑺𝒖𝒑𝒆𝒓𝑺𝒕𝒆𝒑 − 𝟒: 𝑼𝒑𝒅𝒂𝒕𝒆  𝑬𝒅𝒈𝒆 𝑾𝒆𝒊𝒈𝒉𝒕 − 𝟐 
 

𝑰𝒏𝒑𝒖𝒕 : 
〈𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡 〉,     
    𝐿𝑖𝑠𝑡〈𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 ,𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡〉 

 
𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆 : 

 
1:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  𝑚𝑒𝑠𝑠𝑎𝑔𝑒  𝑑𝑜 
2:     𝑖𝑓 𝑔𝑒𝑡𝐸𝑑𝑔𝑒𝑉𝑎𝑙𝑢𝑒  (𝑖) ! =  𝑛𝑢𝑙𝑙  𝑡ℎ𝑒𝑛  
3:        𝑠𝑒𝑡𝐸𝑑𝑔𝑒𝑉𝑎𝑙𝑢𝑒  (𝑖 ,𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡 ) 
4:     𝑒𝑙𝑠𝑒 
5:        𝑣𝑒𝑟𝑡𝑒𝑥 . 𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑖 ,𝑚𝑒𝑠𝑠𝑎𝑔𝑒 .𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡 ) 
6:  𝑒𝑛𝑑  𝑓𝑜𝑟 

 

 
The updated List <TargetVertexID, EdgeWeight > during 

superstep-3 is input to the superstep-4. If TargetVertexID 
exists in adjacency list then it will update the weight, 
otherwise it adds new edge into adjacency list. Then, the 
procedure starts execution again from superstep-0. 

Here, described algorithm is direct translation of Girvan-
Newman algorithm which runs in parallel in a distributed 
environment. It takes gigantic processing time to generate 
complete hierarchical clustering tree, since every iteration of 
algorithm merges only one node pair. To address this issue, 
we proposed an approximation algorithm for the same. As we 
know, in case of detecting community structure from large 
graph, sequence of merging nodes is not important. Instead of 
merging single node pair during every iteration, our 
approximation approach merges top K nodes with highest 
modularity during every iteration so as to improve the 
performance significantly. 

Figure 1 shows the data flow for our approach. As shown in 
the figure, input graph splits and load into available workers. 
Here, we took five vertices and two workers. So vertices 1 and 
2 load into worker-1, and vertices 3, 4 and 5 load into worker-
2. 

As stated earlier, we require three parameters ai, aj and eij to 
calculate modularity. Every vertex has adjacency list with 
edge weights of all its connected nodes.  

First, superstep-0 calculates ai = Σ j eij and set as vertex value 
as shown . Now to calculate modularity vertices require aj. 
So it sends ai  to all neighbor nodes whose node ID lesser than 
its own node ID. All these values are available to vertices 
during next superstep. So ai, aj and eij available at superstep-1. 
So it calculates modularity and send <i, j, Modularity>  to 
aggregator, which is shown as . Aggregator finds top-k 
pairs with highest modularity and distribute to every vertex. 
So list with top-K highest modularity are available at every 
vertex during next superstep. Here, in figure 1, we set K as 1 
for simplicity. As shown,  is pair in TopList with 
highest modularity. It saves the selected pairs into file as 
output.  

Now, superstep-2 merges the node pairs in TopList. So, as 
shown in figure, it merges 2 and 3 and sends adjacency list of 
3 to node 2 and deactivate the node-3 and its connected edges, 
which highlighted with red color.  

Superstep 3 and 4 updates the edge weights of affected 
edges. So, here, node pair 1-3 and 1-2 merges and final weight 
of 1-2 node pair updates to 2. After superstep-4, execution 
starts again from superstep-0. 

 

IV. EXPERIMENTS 

A. Dataset & Environment 
Proposed algorithm experimented on system with 64-core 

2.13 GHz CPU (64-bit architecture, 128 Hyper threading), 512 
GB RAM, 3 TB hard drive space. We have conducted 
experiments on sample of 1,189K unique users collected by 
Breadth-First-Search traversal on Facebook, released by [14]. 

B. Standard Approach 
The performance of different datasets is analyzed with 

above mentioned environment. Datasets are tested for sizes up 
to 2 million vertices to demonstrate the performance of the 
algorithm. Figure 2 shows the performance graph of Hadoop 
versus Giraph. 

 

C. Approximation Approach 
 The performance of approximation algorithm on 
different number of node pairs merged during every 
iteration is also experimented. Figure 2 shows the 
performance comparison of Standard and Approximation 
approaches with K = 6 and K = 10. The results illustrate 
that approximation approach gives better performance 
over standard approach for the same dataset.  
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V. CONCLUSION 
In this paper, we addressed discovery of community 

structures from a given large size graph. We adopted Girvan–
Newman’s modularity based hierarchical community 
detection algorithm in bottom up approach and extended it to 
distributed environment. We also proposed an approximation 
algorithm to detect the community structures. We performed 
experiments with a dataset with varying sizes.  Our results 
show the viability of the proposed approach. 
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