
A High Throughput Diamond Search Architecture
with Shift Mechanism for 720p Motion Estimation

Gaurav Srivastava
Dept. of ECE, NIT Warangal

Warangal, India
srivastavag89@gmail.com

Muralidhar P.
Dept. of ECE, NIT Warangal

Warangal, India
pmurali@nitw.ac.in

Dr.C.B.Rama Rao
Dept. of ECE, NIT Warangal

Warangal, India
cbrr@nitw.ac.in

Abstract— The paper implements a shift based diamond
search architecture, for HDTV videos. High resolution frames
like 720p need large memory to store the pixel data. This large
pixel data is stored on an external memory and an internal local
memory is updated with the pixel data on the reference frame
and current frame required for particular diamond search
iterations. This is done as internal memory is expensive.
However, accessing pixel data from external memory incurs high
timing latency. This paper implements a shift based DS
architecture to shift data in internal local memory and update
from external memory only the pixels which are new to search
area. This reduces the redundant operation of accessing same
pixel data for successive searches.

Even when considering equal latency for internal and
external memory access, when simulation was performed on the
same sample 720p frame, architectures with no shift block took
173.170ms vs with shift block took 90.564ms. When considering
the latency of external memory access this difference in timing
becomes largely significant.

Keywords— Motion estimation, macro block, video
compression, fast algorithm, 720p, Sum of Absolute Differences
(SAD)

I. INTRODUCTION
Block matching algorithms are used for motion estimation

(ME) in video processing. Implementing these algorithms in
hardware requires hardware resources to make these
operations parallel. Minimum use of these resources and yet
keeping the motion estimation fast is a challenge and trade off.
Diamond Search (DS) algorithm [3] is a motion estimation
algorithm close in accuracy to Full Search (FS) algorithm. DS
reduces the number of Sum of Absolute Differences (SAD)
operations performed per macro block, hence requiring less
hardware resources and making computation fast, while
keeping the accuracy close to Full Search.

In 2008, Porto M and et. el. [5] implemented a high
throughput and low cost DS architecture. The architecture has
three types of internal memories on the chip. The Local
Memory (LM) which stores the search area on reference frame
needed for nine candidate block for the Large Diamond Search
Pattern (LDSP), Small Diamond Search Pattern (SDSP) and
all the possible blocks for the next step on DS. There are
thirteen Candidates Block Memory (CBM) for storing
reference frame. There is one Current Block (CB) memory to
store the macro block from the current frame. The blocks

stored are all 2:1 sub sampled blocks 8*16. For the calculation
of SAD, Processing Units (PUs) were used which can process
8 samples at a time, hence one line of the sub sampled block
will be processed in parallel. Comparator is used to compare
the candidates and select the candidate with minimum SAD
and pass on the information regarding vector with minimum
SAD and minimum SAD value to Control Unit (CU).

This paper has introduced a shift operation block which
performs shift operation within LM. This shift operation is
controlled by CU. The synthesis results in this paper are for
720p HDTV frame. Also CBM has a provision to read and
write at the same time and hence the SAD calculations start
even when CBM is not fully filled and the pixels needed for
SAD computation for the particular step on DS have been
added. This helps reduce the number of read access needed
from external memory.

II. PROPOSED ARCHITECTURE
External to the chip a ROM is assumed to have stored

current frame data (for which the vectors are to be computed)
and reference frame data (to which the current frame will be
compared). The interface of these memory blocks to the
internal memory is through demultiplexer DMUX. DMUX
gets 8 bit pixel data as input form external ROM. The pixel
data was assumed to be 8 bit monochrome for the purpose of
analysis and synthesis. However the architecture can be
extended for pixels with color data. DMUX passes the pixel
data to CB or LM depending on whether the pixel is from
current frame and reference frame respectively. The
architecture deals with single macro block in a frame at a
time. The architecture considers a macro block of 16*16
pixels. Architecture computes Minimum SAD and the Vector
with minimum SAD for each macro block. Search area is
considered to be 100*100 thereby covering large movements
within the frame. The block from current frame for which the
vector is computed is stored in Current Block (CB) memory.
The architecture performs 2:1 sub sampled SAD computation
hence only 8*16 pixels are stored in CB, storing only alternate
pixels in a row. CB is a RAM of 128 words with word width
of 8 bits, each storing a pixel data of 8 bits. Search area with
all the pixels needed for the current 9 candidates of Large
Diamond Search Pattern (LDSP) and 4 of Small Diamond

978-1-4799-6052-1/14/$31.00 ©2014 IEEE
Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:42:06 UTC from IEEE Xplore. Restrictions apply.

Search Pattern (SDSP) are stored in LM. Search area consists
of 20*20 pixels. LM is RAM of 400 words with a word width
of 8 bits, each storing a pixel. LM is connected with 13
Pattern Generators (PG0-PG12), each for the 9 LDSP
candidates and 4 SDSP candidates. Refer Fig.1 for the
numbering of the candidate blocks on the DS pattern. PG
selects the pixels in a row on LM which are needed for the
respective candidate on diamond search. Input to PG is a row
of 20 pixels form LM i.e. 160 bits and output is 8 pixel pattern
needed for particular candidate block.

Fig. 1. LDSP and SDSP candidate points on the diamond

The output of PG is stored in corresponding Candidate

Block Memories (CBM0-CBM12), each for the 13 candidate
blocks. CBMs are RAM of 128 words, each word being 8 bits.
They store sub sampled 8*16 pixels for a particular candidate
block. The CBMs0-8 store the LDSP candidates and CBMs9-
12 store SDSP candidates. The row of 8 pixels from CBMs
i.e. 64 bits is output of CBMs. 9 Processing Units (PU)
compute SAD for respective candidate blocks. Each PU
accumulates SAD for a row on a single clock pulse. MUX
X1-4 are used to multiplex the input to PUs 1-4 with one input
coming from candidate 1-4 from LDSP and the other coming
from candidates 9-12 from SDSP (for numbering of candidate
blocks refer Fig 1). 16 bit SAD output from 9 PUs is input to
comparator through flops. Comparator compares all the 9
SADs and selects the minimum SAD and vector candidate
with minimum SAD and passes this information to the
controller. The shift block performs the shifting within LM
based on the best candidate selected by the comparator. The
shift block is embedded within CU. (Refer Fig. 2 for the
architecture diagram)

A. Computation flow within the architecture

Step 1: The macro block from the current frame is copied
from external memory to CB from external ROM. 128 clocks
are needed to full copy 8*16 pixels to CB.

Step 2: 20*20 pixels covering all the search area pixels for the
candidate blocks are copied to the LM from external ROM in
400 clocks.

Step 3: 20 pixels in a row or 400 bits output of the LM is fed
to PGs. The PG selects the 8 pixels present in the respective
candidate block on the diamond and passes them to CBMs.
.

Fig.2. Sub-sampled diamond search architecture with shift operation block

Step 4: CBMs store the output of PGs on the next clock as
soon as PG receives the data.

Step 5: 8 pixel output of CBM is fed to PU, for a particular
row. The output operation is performed even when CBM is
not fully filled, as while CBM outputs the row at one end it
receives another row data as input from PG. Hence a 2 port
RAM is to be used for CBM to read and write at same time
(as read and write locations are different) and hence saving
clocks for operation.

Step 6: PU takes 16 clocks for all the rows of a candidate to
be fully read from CBM. The SAD is calculated by PU and
accumulated to give the final 16 bit SAD, which is fed to
comparator through D Flip flops.

Step 7: Comparator computes the minimum SAD among all
the 9 candidate blocks and passes the index of the best
candidate to the controller and its SAD value is bought to top
level

Step 8: Depending if best candidate is from 0-12 on the
diamond pattern, the shift block shifts the contents in LM and
then new pixels are added for next step of search

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:42:06 UTC from IEEE Xplore. Restrictions apply.

Candidate 0: No shifting, muxes X1-4 select input from
CBMs 9-12 instead of CBMs 1-4 now and inputs to
comparator from df1, df5-8 are invalidated. Now next
diamond pattern is SDSP.
Candidate 1: shift down, 2 rows and add top 2 LM rows with
new pixels from external memory.
Candidate 2: Shift left, 2 columns and add 2 columns at right
end of LM from external memory.
Candidate 3: Shift up, 2 rows and add last 2 LM rows with
new pixels from external memory.
Candidate 4: Shift right, 2 columns and add 2 columns at left
end of LM from external memory.
Candidate 5: Down shift, 1 row and shift left, 1 column and
add 1 top row and 1 column at right of LM from external
memory.
Candidate 6: Shift up, 1 row and shifts left, 1 column and add
1 row at row at bottom and 1 column at right of LM.
Candidate 7: Shift up, 1 row and shifts left, 1 column and add
1 row at bottom and 1 column at left of LM.
Candidate 8: Shift down, 1 row and shift right, 1 column and
add 1 row at top and 1 column at left of LM.
Candidate 9-12: These are selected at the last stage of DS and
hence they are the final vectors.

Step 9: If the number of LDSP searches reach 20, next
iteration is set as the last one and the pattern is set to SDSP
even when best candidate is not at 0th position. This is done to
limit the number of search steps to 21. As after 20 steps vector
will move to the edge of search area. Also this will prevent
the vector to limit in circular periphery preventing to move
towards the vertex of the search area where the probability of
finding the vector is less.

III. STATISTICAL ANALYSIS
Following is a statistical comparison of DS architecture

with shift mechanism vs DS architecture without shift
mechanism (DS without shift mechanism is similar to [5]).
Consider n iterations before best candidate is found at 0th
position.

Diamond search architecture without shift mechanism:

No. of clocks needed = 558 + (n-1)432 =126+432n (1)

Here,
558 clocks are needed for first LDSP which includes clocks to
read the current macro block, read the first search area and for
computation on first step of DS. Then 432 clocks are needed
on each step of diamond search for reading full search area
and computation of SAD.

Diamond search architecture with shift mechanism:

No of clocks needed = 558 + (n-1)(40+30) =488 + 70n
(2)

Here,
558 clocks are needed similar to above case. Then on each DS
step the number of clock for external memory access will be
40 as for any candidate 2 rows and column combined will be
new in the search area. Other 30 clocks are needed for SAD
computation.

Hence for n steps,
No of clocks saved with shift mechanism per macro block
=362*(n-1) (3)

Of these 360n are saved on access to external memory.
If n=21 for max number of steps on diamond search,Number
of clocks saved per macro block = 362*(21-1) =7240 clocks

Considering 720p frame if each macro block has 21 steps on
DS, number of clocks saved = 7240*80*45 =26,064,000
clocks

IV. SYNTHESIS & SIMULATION RESULTS
The proposed architecture was described in VHDL. Industry
standard synthesis tool Synopsis Synplify tool was used to
synthesize the architecture. Industry standard simulation tool
ModelSim 10.1 tool was used to simulate and validate the
architecture design. Comparison is made between architecture
with shift block and without shift block (DS without shift
mechanism is similar to [5]). Due to addition of shift
mechanism the utilization of logic was increased. Table I
gives a comparison of the resources utilized in both the
architectures. There is 116% increase in combinational logic
on FPGA needed for shift operation block. MACC (dedicated
Math block in SmartFusion2 for arithmetical operation)
utilization increased from 2 to 7 due to increase in
calculations needed for shifting.

TABLE I. SYNTHESIS RESULTS

FPGA resources

Architecture
without shift
mechanism*

Architecture
with shift

mechanism

% increase
with shift

block
Combinational logic 21848 47215 116
Sequential logic 10842 11055 1.96
IO 126 126 0
Global 4 5 25
RGB 4 5 25
RAM 64K*18 60 60 0
RAM 1K*18 0 0 0
MACC 2 7 250

*this architecture is similar to the DS architecture by Porto M and et. el. [5]

The addition of shift block also limits the timing
constraints for the architecture. Post synthesis timing results
on the architectures report maximum frequency for DS
architecture with shift block is 33.27MHz, whereas the
maximum frequency for DS without shift block is 52.34MHz.

Simulations were performed on HDTV 720p frames for
the calculation of vectors and total number of clocks needed

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:42:06 UTC from IEEE Xplore. Restrictions apply.

for vector computation was recorded. The calculations were
performed when reference frames were at a distance of -1,-
2,-3,-4 and -5 from the candidate frame. Table II details the
comparison of total number of clocks needed for vector
computation of all the macro blocks on 720p frames on
architectures with and without shift logic. The comparison
were made keeping reference frame same and changing the
candidate frame as the next one in the video.

TABLE II. COMPARISON OF NO. OF CLOCKS NEEDED PER FRAME

Distance of reference
frame with respect to

candidate frame

Architecture
without
shift*

Architecture
with shift

% decrease
with shift

-1 8,580,000 3,013,406 184.72

-2 34,386,077 11,048,544 211.22

-3 12,828,384 3,744,591 242.58

-4 14,062,176 3,957,166 255.35

-5 14,880,384 4,097,872 263.12
*this architecture is similar to the DS architecture by Porto M and et. el. [5]

TABLE III. SIMULATION RESULTS ON TIME TAKEN

Distance of reference
frame from candidate

frame

Architecture
without shift

(ns)*#

Architecture
with shift

(ns)**

% decrease
with shift

-1 173,170,140 90,564,903 91.21

-2 673,911,033 332,052,941 102.95

-3 258,915,274 112,539,937 130.06

-4 283,816,898 118,928,666 138.64

-5 300,330,700 123,157,445 143.85
this architecture is similar to the DS architecture by Porto M and et. el. [5]

*Max frequency =52.34MHz
**Max frequency = 33.27MHz.

When the clocks used were taken as the maximum

allowed frequency by the synthesized netlist as 33.27MHz
(30.054 ns) with shift and 52.34MHz (20.183 ns) without

shift, the comparison of the total time taken for computation
of vectors for the complete frame is given in Table III. There
is 90% - 150% increase in time needed for computation of
frame vectors. This data has considered read access from
external memory to have same latency as the operations
internal to the chip.

V. CONCLUSIONS
This paper presents hardware architecture for sub-

sampled Diamond Search algorithm with shift mechanism
for HDTV (720p frames). The synthesis results show that
including a shift mechanism increases hardware utilization
and limits maximum clock frequency. However the number
of clock pulses saved by using shift operation on LM ranged
from 180%-260%. Summing up the effect of limiting in max
clock frequency and the number of clocks saved the total
time saved per frame for vector calculations was 90%-150%.
Hence it is evident that using a shift block definitely makes
the architecture faster.

If the latency of access of external memory is considered
this will increase many times as in section III it is proved
that out of total 360(n-1) clocks saved, 360n are for external
memory access.

The above architecture acts on a single macro block at a
time and hence based on requirement to speed up the
computation; the whole architecture can be duplicated
multiple times. Hence, make the vector computation of
different macro blocks parallel.

REFERENCES
[1] E. Iain , G. Richardson, Video Codec Design, West Sussex: John

Wiley & Sons Ltd., 2002, Ch. 1-6.
[2] Coding of moving pictures and audio, ISO/IEC JTC1/SC29/WG11

N2932, Oct. 1999.
[3] Shan Zhu, and Kai-Kuang Ma, “A New Diamond Search Algorithm for

Fast Block-Matching Motion Estimation,” IEEE Trans. Image
Processing, February2000, vol 9, no. 2, pp. 287-290.

[4] Y. Cheng, L. Yang, Z. Fang, H. Hou and G. Chen, “A Fast Motion
Estimation Algorithm Based on Diamond and Hexagon Search
Patterns,” IEEE Joint Conference on Pervasive Computation, Tamsui,
Taipei, 2009, pp. 595-598.

[5] M. Porto, L. Agostini, S. Bampi and A. Susin, “A high throughput and
low cost diamond search architecture for HDTV motion estimation,”
IEEE Int. Conference on Multimedia and Expo, Hannover, 2008,
pp.1033-1036.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:42:06 UTC from IEEE Xplore. Restrictions apply.

