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Mixed Convection Flow of Chemically Reacting Couple
Stress Fluid in a Vertical Channel with Soret

and Dufour Effects
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The heat and mass transfer characteristics of mixed convection
flow of a chemically reacting couple stress fluid between vertical
parallel plates in the presence of Dufour and Soret effects are
studied. The governing nonlinear partial differential equations are
transformed into a system of ordinary differential equations using
similarity transformations. The resulting equations are solved us-
ing Homotopy Analysis Method (HAM). Profiles of dimensionless
velocity, temperature, and concentration are shown graphically
for various values of Dufour number, Soret number, Couple stress
parameter, and chemical reaction parameter.

Keywords Couple stress fluid, Soret and Dufour effect, Heat and
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1. INTRODUCTION

Convective flow in channels has been of special interest over
the past few years due to vast applications, such as solar col-
lectors, electronic equipment, transistors, and nuclear reactors.
Heat exchanger technology involves convective flows in verti-
cal channels. Several researchers have studied analytically and
mostly numerically the problem of mixed convection heat trans-
fer and fluid flow between vertical parallel plates. Aung and
Worku [1] presented an exact solution for fully developed mixed
convection in a parallel-plate vertical channel. Hamadah and
Wirtz [2] extended this study by examining different thermal
boundary conditions and obtained the velocity and temperature
profiles as well as expressions for the Nusselt numbers. Bar-
letta et al. [3] have investigated the dual mixed convection flows
in a vertical channel. Ameni et al. [4] investigated numerically
the mixed convection in a vertical heated channel. Makinde
and Olanrewaju [5] presented the buoyancy effects on thermal
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boundary layer over a vertical plate with a convective surface
boundary condition.

Chemical reaction effects on heat and mass transfer are of
considerable importance in hydrometallurgical industries and
chemical technology. Chemical reaction can be described as ei-
ther heterogeneous or homogeneous processes, which depends
on whether it occurs at an interface or as a single-phase volume
reaction. In many materials, processing systems, chemical reac-
tion effects may exert a significant role. Research on combined
heat and mass transfer with chemical reaction and thermophore-
sis effect can help to design for chemical processing equipment,
formation and dispersion of fog, distribution of temperature and
moisture over agricultural fields as well as groves of fruit trees,
damage of crops due to freezing, food processing, and cool-
ing towers. Cooling towers are the cheapest way to cool large
quantities of water. In particular, the study of heat and mass
transfer with chemical reaction is of considerable importance in
chemical and hydrometallurgical industries. Das et al. [6] have
studied the effect of a homogeneous first-order chemical reac-
tion on the flow past an impulsively started infinite vertical plate
with uniform heat flux and mass transfer using Laplace trans-
form technique. The effects of chemical reaction, heat, and mass
transfer on boundary layer flow over a porous wedge with heat
radiation in the presence of suction or injection was studied by
Kandasamy et al. [7]. Muthucumaraswamy [8] studied chemi-
cal reaction effects on the vertical oscillating plate with variable
temperature. Recently, Makinde and Olanrewaju [9] presented
the Soret and Dufour effects in an unsteady mixed convection
flow past a porous plate moving through a binary mixture of
chemically reacting fluid.

The energy flux caused by a concentration gradient is termed
the diffusion-thermo (Dufour) effect. On the other hand, mass
fluxes can also be created by temperature gradients and this
embodies the thermal-diffusion (Soret) effect. In most of the
studies related to heat and mass transfer process, Soret and Du-
four effects are neglected on the basis that they are of a smaller
order of magnitude than the effects described by Fourier’s and
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Fick’s laws. But these effects are considered as second-order
phenomena and may become significant in areas such as hy-
drology, petrology, geosciences, etc. The Dufour effect was re-
cently found to be of an order of considerable magnitude such
that it cannot be neglected [10]. Kafoussias [11] presented the
local similarity solution for combined free-forced convective
and mass transfer flow past a semi-infinite vertical plate. Dur-
sunkaya and Worek [12] studied diffusion-thermo and thermal-
diffusion effects in transient and steady natural convection from
a vertical surface, whereas Kafoussias and Williams [13] pre-
sented the same effects on mixed convective and mass transfer
transfer steady laminar boundary layer flow over a vertical flat
plate with temperature—dependent viscosity. The effect of Soret
and Dufour parameters on free convection heat and mass trans-
fers from a vertical surface in a doubly stratified Darcian porous
medium has been reported by Lakshmi Narayana and Murthy
[14]. Awad and Sibanda [15] studied the Dufour and Soret ef-
fects on heat and mass transfer in a micropolar fluid in a hori-
zontal channel. Free convection heat and mass transfer flow in a
vertical channel with the Dufour effect studied by Ajibade and
Jha [16]. Makinde [17] studied the Soret and Dufour effects on
MHD mixed convection flow past a vertical plate embedded in a
porous medium. Later, Olanrewaju and Makinde [18] extended
the work to a porous plate moving through a binary mixture
of chemically reacting fluid. Srinivasacharya and Kaladhar [19]
presented the mixed convective flow of couple stress fluid with
Soret and Dufour effects.

The growing importance of non-Newtonian fluids in mod-
ern technology has attracted researchers for the consideration
of such fluids; this is because the traditional Newtonian fluids
cannot precisely describe the characteristics of the real fluids.
Different models have been proposed to explain the behavior
of non-Newtonian fluids. Among these, couple stress fluids
introduced by Stokes [20] have distinct features, such as the
presence of couple stresses, body couples, and non-symmetric
stress tensor. The main feature of couple stresses is to intro-
duce a size—dependent effect. Classical continuum mechanics
neglects the size effect of material particles within the continua.
This is consistent with ignoring the rotational interaction among
particles, which results in symmetry of the force-stress tensor.
The study of couple-stress fluids has applications in a number of
processes that occur in industry, such as the extrusion of poly-
mer fluids, solidification of liquid crystals, cooling of metallic
plate in a bath, and colloidal solutions, etc. A review of cou-
ple stress (polar) fluid dynamics was reported by Stokes [21].
Recently, analytical solution for free convective flow of couple
stress fluid in an annulus with Hall and ion-slip effects presented
by Srinivasacharya and Kaladhar [22].

The homotopy analysis method [23] was first proposed by
Liao in 1992, and is one of the most efficient methods in solving
different types of nonlinear equations such as coupled, decou-
pled, homogeneous, and non-homogeneous. Also, HAM pro-
vides us a great freedom to choose different base functions to
express solutions of a nonlinear problem [24]. The application
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of the Homotopy Analysis Method (HAM) in engineering prob-
lems is highly considered by scientists because HAM provides
us with a convenient way to control the convergence of approx-
imation series, which is a fundamental qualitative difference
in analysis between HAM and other methods. Later, Liao [25]
presented an optimal Homotopy Analysis approach for strongly
nonlinear differential equations. HAM is used to get analytic
approximate solutions for heat transfer of a micropolar fluid
through a porous medium with radiation by Rashidi et al. [26].

In this paper, we have investigated the Soret and Dufour ef-
fects on steady mixed convective flow of couple stress fluid in a
vertical channel with chemical reaction. The Homotopy Analy-
sis Method is employed to solve the governing nonlinear equa-
tions. Convergence of the derived series solution is analyzed.
The behavior of emerging flow parameters on the velocity and
temperature is discussed.

2. MATHEMATICAL FORMULATION

Consider a steady laminar mixed convection flow of a cou-
ple stress fluid between two vertical plates of a distance of 2d
apart. Choose the coordinate system such that x-axis be taken
along vertically upward direction through the central line of the
channel, y, is perpendicular to the plates and the two plates are
infinitely extended in the direction of x. The plates of the chan-
nel are at y = d. The plate y = —d is maintained at a constant
temperature 77 and concentration C;, while the plate y = d
at a constant temperature 7, and concentration C,. Since the
boundaries in the x direction are of infinite dimensions, without
any loss of generality, we assume that the physical quantities
depend on y only. The fluid properties are assumed to be con-
stant except for density variations in the buoyancy force term. In
addition, the Soret and Dufour effects are considered. The flow
is a mixed convection caused by buoyancy forces and uniform
pressure gradient in the direction of x. The flow configuration
and the coordinates system are shown in Figure 1. The fluid
velocity vector § = (u;v) is assumed to be parallel to the x-
axis, so that only the x component u of the velocity vector does
not vanish but the transpiration cross-flow velocity vy remains
constant, where vy < 0 is the velocity of suction and vy > 0 is
the velocity of injection.

With the above assumptions and Boussinesq approximations
with energy and concentration, the equations governing the
steady flow of an incompressible couple stress fluid are

v = vy = constant @))]
ou 9%u *u
Vo— = U— — N1 —
PV dy M 9y? m oyt

d
+08Br(T — Th) + pgBe(C — Cy) — d—’; @)
aT 9T du1? 32u 7’
Uo—:a—2+2L |:—] + il |:—2]
dy dy pCp L3y pCp L3y
DKy 8*C
+__
C,C, 9y?
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FIG. 1. Physical model and coordinate system.

aC 3*’C DKy 9°T
v =D + ———— —ki(C = C1) @)

dy dy? T, 9y2

where u is the velocity component along x direction, p is the
density, g is the acceleration due to gravity, u is the coefficient
of viscosity, B is the coefficient of thermal expansion, . is the
coefficient of solutal expansion, « is the thermal diffusivity, D
is the mass diffusivity, C, is the specific heat capacity, C; is the
concentration susceptibility, 7, is the mean fluid temperature,
K7 is the thermal diffusion ratio, K  is the coefficient of thermal
conductivity, and n, is the additional viscosity coefficient which
specifies the character of couple-stresses in the fluid.
The boundary conditions are given by

u=0 at y==d (5a)
uyy =0 at y=d=4d (5b)
T=T, aa y=—d and T =T, at y=d (50)

The boundary condition (5a) corresponds to the classical
no-slip condition from viscous fluid dynamics. The boundary
condition (5b) implies that the couple stresses are zero at the
plate surfaces.

Introducing the following similarity transformations

y:nd, M:uof, T—T1=(T2—T1)9,
nu
C—C=(C=C)p. p="D3P (©)

in Equations (2)—(4), we get the following nonlinear system of
differential equations

§7 e — f”+Rf— 9——¢+A_o (7
0" —RPro +2Br(f)Y+S*Br(f'Y+Ds;Pr¢’ =0 (8)

¢ —RScd' +S,5c0" —KScp =0 9)
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Re = ‘”:—fd is the Reynolds number, R = @ is the suc-
tion/injuction parameter, Pr = “é” is the Prandtl number, u

14 813/ (T2
p 2gfcd®
2

is the entrance velocity, Gry =

Ty) is the tem-
(Cy — Cy) is the

is the Brinkman num-

DK7(C—C1)
vCy C/;(TZ T1)

perature Grashof number, Gre =

pad
Kr(T,-T))
is the Soret number, Dy =

mass Grashof number, Br =

ber, S, = DKy (T,— Tl)

= T (G 18

the Dufour number K = % i the chemical reaction parame-

ter, A = %- is the constant pressure gradient, S = 3 /% is the
couple stress parameter; the effects of couple-stress are signifi-
l/d), wherel =

constant. If / is a function of the molecular dimensions of the
liquid, it will vary greatly for different liquids. For example, the
length of a polymer chain may be a million times the diameter
of a water molecule [20]. Therefore, there are many reasons
to expect that couple-stresses appear in noticeable magnitudes
in liquids with large molecules. The last terms on the right-
hand side of the energy equation (8) and concentration equation
(9) signify the Dufour (diffusion-thermo) effect and the Soret
(thermal-diffusion) effect, respectively.
Boundary conditions (5) in terms of f, 6, ¢ become

cant for large values of S(= % is the material

F=0, f'=0, 6=0 ¢$=0 at y=-—I
F=0, f'=0 6=1, ¢=1 a n=1 (10)
The shear stress [20] is T = u(%)yz ., and friction factors at

the plates are

CpRe=2f'(—1) and CpRe=2f"(1) (11)
The heat and mass transfer rates on the plates are
a0 d
Nu=—- — and Sh:——¢ (12)
L — N | =1

3. THE HAM SOLUTION OF THE PROBLEM
For HAM solutions, we choose the initial approximations of
U(), 6(n), and ¢(n) as follows:

147 I+n

Uo(m) =0, 6(n) = — ¢o(n) = 5 (13)

and choose the auxiliary linear operators:

a* 92
Li=—, Ly=— 14
L= o 2= 5 (14
such that

Li(ci +ean+c3n’ +ean’) =0, La(es +con) = 0. (15)

where ¢;(i = 1,2, ..., 6) are constants. Introducing non-zero
auxiliary parameters %1, h, and h3, we develop the zeroth-order
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deformation problems as follow:

(I = p)Li[f(n; p) — fon] = phiNi[f(n; p)]  (16)
(1 = p)L2[0(n; p) — 6o(m)] = phaNo2[6(n; p)] (A7)
(1 = p)L2[p(n; p) — do(M)] = ph3N3[p(n; p)]  (18)

subject to the boundary conditions

f(=L;p)=0, f(;p)=0, f'"(=1;p)=0, f"(0;p)=0
0(=1;p) =0, 0(1;p) =1, ¢(=1;p) =0, ¢(1; p) =1 (19)

where p € [0, 1] is the embedding parameter and the nonlinear
operators Ny, N, and N3 are defined as:

Nilf(n, p), 0(n, p), ¢(n, p)] = S* ' — f" + Rf'
Gy Grey a0
Re 0T R OTA D
NoLf(n, p), 0(n, p), d(n, p)) = 6" — R Pré’ +2Br (f')?

+8*Br(f")* + Dy Pr¢”

2D
N3[f(n. p),0(n, p). ¢(n, p)l = ¢" — R Sc¢’ + S, Sc 0"
—K Sc¢ (22)
For p = 0 we have the initial guess approximations
F@;0) = fo(n), 6(n;0) = Oo(m), ¢(n;0) = ¢o(n)  (23)

When p = 1, Equations (16)—(18) are the same as (7)—(9),
respectively, therefore at p = 1 we get the final solutions

S D)= f(), 0(; 1) = 0(n), ¢(n: 1) = ¢(n) (24)

Hence the process of giving an increment to p from O to 1
is the process of f(n; p) varying continuously from the initial
guess fo(n) to the final solution f(n) (similar for 6(n, p) and
¢(n, p)). This kind of continuous variation is called deformation
in topology so that we call system Eqs. (16) — (19) the zero-
order deformation equation. Next, the m'-order deformation
Equations follow as

Lilfu() = Xom fna1 (D1 = iR () (25)
Lo[6,(1) — XmOm—1()] = haR% () (26)
La[én(m) — Xm®m-1(0)] = h3RS(1) (27)
with the boundary conditions
fu(=1) =0, fu(H)=0, fi(=1)=0, fn(1)=0
On(=1) =0, 6,,(1) =0, ¢pu(—1)=0, ¢,,() =0 (28)
where
Ry = §5 gy g — G _ Gl
Re Re
+A( = Xm) (29)
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m—1

RO(n)=0"— RPro’ +2Br Y _ f1 . f

n=0
m—1
+S?Br Y for  fi + Dy Pre’ (30)
n=0
RO(n) =¢" — RSc¢' + S, Sc0” —K Sc¢ (€20)
for m being integer
xm=0 for m<1 =1 for m>1 (32)

The initial guess approximations fy(n), 6p(n7) and ¢o(1n), the
linear operators L, L,, and the auxiliary parameters %, h, and
hs are assumed to be selected such that Equations (16) - (19)
have a solution at each point p € [0, 1] and also with the help of
Taylor’s series, and due to Eq. (23); f(n; p), 6(n; p) and ¢(n; p)
can be expressed as

FO:p) = fom) + D fu(mp™

(33)
m=1

0n; p) = 60m) + Y _ Ou()p” 34
m=1

¢(1; p) = po(m) + Y _ ¢m(MP" (35)

m=1

in which Ay, h, and &3 are chosen in such a way that the series
(33) — (35) is convergent [25] at p = 1. Therefore we have from
(24) that

£y = fom)+ > fulm)

(36)
m=1

0n) = 6+ Y, (i) (37)
m=1

¢() = do(n) + D _ dm(1) (38)

m=1

for which we presume that the initial guesses to f, 6 and ¢ the
auxiliary linear operators L and the non-zero auxiliary param-
eters hy, h, and h; are so properly selected that the deforma-
tions f(n, p), 8(n, p) and ¢(n, p) are smooth enough and their
mth-order derivatives with respect to p in Equations (36)—(38)

1 2" f(:p)

exist and are given respectively by f.(n) = ;; Spm
! =0

s

1 3"¢(;
0 ¢m(n) = W%IP)

that the convergence of Taylor series at p = 1 is a prior assump-
tion, whose justification is provided via a theorem [27], so that
the system in (36)—(38) holds true. The formulae in (36)—(38)
provide us with a direct relationship between the initial guesses
and the exact solutions. All the effects of interaction of the
chemical reaction as well as of the heat and mass transfer, Soret
and Dufour effects and couple stress flow field can be studied

9m0(n:
Gm(ﬂ) =L (i)

L . It is clear
m! dp
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TABLE 1
Convergence of HAM solutions for different order of approximations
Order U0 6(0) ¢(0)
5 0.05463457394417 0.6014718469641 0.7501884356211
10 0.0544547839349 0.6009835960752 0.7492017782657
15 0.05445002207132 0.6009834479197 0.7491938981286
20 0.05445002143533 0.6009834478693 0.7491938973199
30 0.05445002143508 0.6009834478036 0.7491938973098
40 0.05445002143482 0.6009834478035 0.7491938973088
50 0.05445002143482 0.6009834478035 0.7491938973088
from the exact formulas (36)—(38). Moreover, a special empha- 1.0
sis should be placed here that the m'"-order deformation system
(25)-(28) is a linear differential equation system with the aux-
iliary linear operators L, whose fundamental solution is known. 05
4. CONVERGENCE OF THE HAM SOLUTION 0.0
The expressions for f,6 and ¢ contain the auxiliary pa- ©'(0)
rameters hj, h, and h3. As pointed out by Liao [23], the
convergence and the rate of approximation for the HAM so-
lution strongly depend on the values of auxiliary parameter 05
h. For this purpose, h-curves are plotted by choosing h, i,
and A3 in such a manner that the solutions (33)—(35) en-
sure convergence [23]. Here to see the admissible values of

hy, hy and hj, the h-curves are plotted for the fifteenth-order of
approximation in Figures (2)—(4) by taking the values of the
parameters Pr = 0.71, S¢c = 0.22, Br = 0.5, Re = 2, R =
2,Grr/Re = Gr¢/Re =2,K =01,A=1,5S=0.5,Df =
0.03 and S, = 2.0. It is clearly noted from Fig. 2 that the range
for the admissible values of s is —1.25 < h; < —0.3. From

0.02

0.01

£(0) 0.00

-0.01 -

-0.02 , . , ; . . . . . . .
-1.50 -1.25 -1.00 -0.75 -0.50 025 0.00

h

1

FIG.2. The hcurve of f() when Dy =0.03, S, =2.0,§ =1.0, K =0.1.

FIG.3. The h curve of 6(n) when Dy = 0.03, S, =2.0,§ =1.0, K =0.1.

0.3

0.2 +

¢'(0)

0.1

0.0 . , . , . , .
2.0 15 -1.0 -05 0.0

FIG.4. The h curve of ¢(n) when Dy = 0.03, S, =2.0,§ = 1.0, K =0.1.
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Fig. 3, it can be seen that the A-curve has a parallel line segment
that corresponds to a region —1.4 < hy, < —0.3. Fig. 4 depicts
that the admissible value of h3 is —1.5 < h3 < —0.4. A wide
valid zone is evident in these figures, ensuring convergence of
the series. To choose the optimal value of the auxiliary param-
eter, the average residual errors (see Ref. [25] for more details)
are defined as

N 2
K m
1 .
Efm =3¢ Z N ij(lm) (39)
i=—K j=0 i
< - Ay 2
1 SN
Eom = 3¢ > [ v Zej(zm) (40)
i=—K _j=0 i
< - 2
1 SN
Eym =5z Z N3 quj(zm) (41)
i=—K _J=0
where At = 1/K and K = 5. These average residual errors
are calculated at different order of approximations (m) and they
are minimum at h; = —0.8, h, = —0.85, hy; = —0.7, respec-

tively. Therefore, the optimum values of convergence control
parameters are taken as h; = —0.8, hy, = —0.85, h; = —0.7.
To see the accuracy of the solutions, the residual errors are
defined for the system as
RE; = S0 — 1+ Rpl = S0, — S0 14 a2
Re Re
RE; =6/—R Pro,+2Br (f))*+S* Br (f/)*+D;s Pr ¢!
(43)

RE, = ¢! — RScd) + S, Sc6! — K Sc ¢, (44)

where f,(n), 6,(n) and ¢,(n) are the HAM solution for f(n),
6(n) and ¢(n). For optimality of the convergence control pa-
rameters, residual error [26] are calculated for different val-
ues of & in the convergence region and we determined that
hy = —0.8, h, = —0.85, h3 = —0.7 give a better solution.
Table 1 establishes the convergence of the obtained series so-
lution. It is found from the above observations that the series
given by (33)-(35) converges in the whole region of n when
hy = —0.8, h, = —0.85, h3 = —0.7.

5. RESULTS AND DISCUSSION

In order to study the effects of couple stress fluid parameter
S, Soret number S, Dufour number D, and chemical reaction
parameter K explicitly, computations were carried out by taking
Pr =0.71,S¢c = 022, A = 1,Gry/Re = 2.0, Gr¢/Re =
2.0,Br = 05,Re = 2,R = 2 and hy = —038, h, =
—0.85, h3 = —0.7. The values of Soret number S, and Du-
four number D are chosen in such a way that their product
is constant according to their definition provided that the mean
temperature 7T,, is kept constant [13]. These values are used
throughout the computations, unless otherwise indicated.
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FIG. 5. Velocity profile for different values of Dy, S, at § = 1.0, K =0.1.

Fig. 5 displays the nondimensional velocity for different val-
ues of Soret number S, and Dufour number Dy with § = 1.0
and K = 0.1. It can be observed from this figure that the veloc-
ity of the fluid decreases with the decrease of Dufour number
(or increase of Soret number). The dimensionless temperature
for different values of Soret number S, and Dufour number D ¢
with § = 1.0 and K = 0.1 is shown in Fig. 6. It is clear that the
temperature of the fluid decreases with the decrease of Dufour
number (or increase of Soret number). Fig. 7 demonstrates the
dimensionless concentration for different values of Soret num-
ber S, and Dufour number Dy with S = 1.0 and K = 0.1. It is
seen that the concentration of the fluid decreases with increase
of Dufour number (or decrease of Soret number).
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FIG. 6. Temperature profile for different values of Dy, S, at § = 1.0, K =
0.1.
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In Figs. 8-10, the effects of the couple stress parameter S
on the dimensionless velocity, temperature, and concentration
profiles are presented for fixed values of S, = 2.0, Dy = 0.03
and K = 0.1. As S increases, it can be observed from Fig. 8
that the maximum velocity decreases in amplitude. This happens
because of the rotational field of the velocity generated in couple
stress fluid. It is clear from Fig. 9 that the temperature decreases
with the increase of couple stress fluid parameter S. It can be
seen from Fig. 10 that the concentration of the fluid decreases
with an increase in couple stress fluid parameter S.

Figures 11 to 13 represent the effect of chemical reaction K
on f(n),0(n) and ¢(n). It can be seen from these figures that
the velocity f(n) decreases with an increase in the parameter K.
The dimensionless temperature decreases as K increases. The
concentration ¢(n) decrases with an increase in the parameter
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FIG.8. Velocity profile for different values of Sat Dy = 0.03, S, =2.0, K =
0.1.
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FIG. 9. Temperature profile for different values of S at Dy = 0.03, S, =
2.0, K =0.1.

K. Higher values of K amount to a fall in the chemical molecular
diffusivity; i.e., less diffusion. Therefore, they are obtained by
species transfer. An increase in K will suppress species concen-
tration. The concentration distribution decreases at all points
of the flow field with the increase in the reaction parameter.
This shows that heavier diffusing species have greater retarding
effect on the concentration distribution of the flow field.

The variations skin-friction coefficient, rate of heat and mass
transfers are shown in Table 2 for different values of Soret
and Dufour numbers and reaction parameter. From this table, it
is observed that the value of f’ decreases with the increasing
values of chemical reaction parameter. The heat and mass trans-
fer rates decrease with the increasing values of reaction param-
eters. Finally, for fixed values of K, the effects of Dufour and
Soret number on the skin-friction coefficient rate of heat and
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FIG. 10. Concentration profile for different values of S at Dy = 0.03, S, =
2.0,K =0.1.
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TABLE 2
Effects of skin friction, heat and mass transfer coefficients for varying values of Soret
and Dufour numbers and chemical reaction parameters

Df Sr K Cfl sz Nu1 Nu2 S]’ll Sh2
2 0.03 0.1 0.09193 -0.4147 0.24607 0.90448 0.30875 0.76311
1 0.06 0.1 0.04904 -0.3476 0.16837 1.19106 0.31086 0.75612
0.4 0.15 0.1 0.02668 -0.3126 0.12296 1.35825 0.31717 0.73531
0.03 2 0.1 0.08436 -0.4021 0.10229 1.41532 0.44461 0.32861
0.03 2 0.5 0.07139 -0.3822 0.10076 1.42301 0.42313 0.38942
0.03 2 1 0.05640 -0.3591 0.09920 1.43117 0.39835 0.46221
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FIG. 11. Velocity profile for different values of K at Dy = 0.03, 5, = FIG. 13. Concentration profile for different values of K at Dy = 0.03, S, =
2.0,S =1.0. 20,K=1.0
mass transfer are shown in this table. The behavior of these
parameters is self-evident from Table 2 and hence is not dis-
cussed for briefness.
1.00
6. CONCLUSIONS
0.75 1 In this paper, the Dufour and Soret effects on steady mixed
convection of a couple stress fluid flowing through a vertical
channel with chemical reaction has been studied. Using trans-
0.50 formations, the governing equations have been transformed into
4 y nonlinear ordinary differential equations. The approximate ana-
p 3 lytical series solutions are obtained applying homotopy analysis
025 y method (HAM). From the present study, we observe that:
—K=0.1 1. The velocity, temperature, friction factor, and heat transfer
- K=05 rate of the fluid decreases with the decrease of Dufour number
------ K=1.0 . L
0.00 : : , , (or increase of Soret number), and with increase of Dufour
-1.0 0.5 0.0 05 1.0 number (or decrease of Soret number) the concentration and
n

FIG. 12. Temperature profile for different values of K at Dy = 0.03, §, =

2.0, K =1.0.

mass transfer rate of the fluid decrease.
2. The presence of couple stresses in the fluid decreases the
velocity and temperature and increases the concentration.
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The velocity, temperature, concentration, skin-friction, and
heat mass transfer rates decrease with the increase in the
reaction parameter.
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