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Abstract—Elliptic Curve Cryptography (ECC) has been gain-
ing popularity due to its shorter key size requirements. It uses
arithmetic operations including addition, subtraction, multiplica-
tion and inversion in finite fields. For an efficient implementation of
ECC, it is very important to carry out these operations faster using
lesser resources. The in version operation consumes most of the
time and more resources. The Itoh-Tsujii algorithm can be used to
carry out the computation of multiplicative inverse by making use
of Brauer addition chains in less time. This work presents an FPGA
implementation of the multiplicative inversion for the key lengths
of 194-, 233-, and 384- bits. A resource comparison for these key
lengths is also made. This work uses Sunar-Koc multiplier for the

finite field, GF(Zm) multiplication.
Keywords: ECC; multiplication; inversion.

L. INTRODUCTION

Finite fields are widely used while implementing various
cryptographic techniques. Finite field operations, mainly
inversion plays a key role in the Elliptic curve cryptography
(ECC) implementation. Consider an element a [| GF (2m). The
inverse of a is a—1 [/ GF (2m) for which a.a—1 = 1. There are
many algorithms that have been proposed to compute
multiplicative inverse such as Extended Euclidean algorithm,
Binary inversion algorithm, Itoh-Tsujii (IT) inversion algorithm,
and so on. Among these, the Itoh-Tsujii algorithm consumes
fewer clock cycles to carry out the multiplicative inversion of an
element. The basis for this algorithm is Fermat’s little theorem.
According to this theorem, for a non-zero element a [| GF (2m),
a—1 = a2m -2. This exponentiation can be carried out by
squaring and multiplication operations.

The Itoh-Tsujii algorithm makes use of Brauer addition
chains to decrease the number of multiplication operations
required to compute a2m—2. The squaring operation in normal
basis representation, which is achieved by using cyclic shift
operations, is less compute intensive. The multiplication
operation is more complex. Hence, it is required to choose an
efficient algorithm to carry out the multiplication operation. The
Sunar-Koc finite field multiplication algorithm is the one in
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which the numbers are converted into optimal normal basis of
type-11, then multiplied and then converted back. It requires only
1.5 x (m2 — m) number of XOR gates for GF(2m).

We have implemented the algorithm wusing Field
programmable gate array (FPGA) with key lengths of 194-, 233-
, and 384- bits. A resource comparison of the implementation of
the IT algorithm for different fields: GF(2194), GF(2233),
GF(2384) based on the utilized LUTs, flip-flops, and maximum
allowable clock frequency is also presented. The rest of the
paper is organized as follows: section Il provides literature
review, section III presents mathematical preliminaries which
include the optimal normal basis of type Il and Brauer addition
chains. The Sunar-Koc multiplier is discussed in section IV. The
Itoh-Tsujii inversion algorithm and its implementation for GF
(2384) are presented in section V. The results and comparison
are given in section VI and section VII concludes the work.

II. LITERATURE REVIEW

The IT inversion algorithm is generalized for extension
fields, GF(qm) in [1]. But the implementation is done using
standard basis representation. The algorithm is generalised for
standard basis and required expressions for complexity are
derived. Frobenius map is explored for exponentiations and it is
shown that the standard basis complexity is almost similar to
that of normal basis. The inversion algorithm using standard
basis with minimum number of clock cycles is implemented in
[2]. The algorithm is implemented and compared using squarer
ITA, quad ITA, Full ITA, etc.

It perform the inversion over GF(2233) or GF(2409)
within 10 clock cycles. Wang proposed the implementation
of the algorithm using normal basis, which uses (m — 2)
multiplication operations and (m — 1) cyclic shifts in GF(2m).
Itoh and Tsujii have proposed a fast algorithm by making use of
normal bases [3]. Normal basis has a useful property that the
squaring can be achieved by mere cyclic shift operation. It is
proved that the proposed algorithm is capable of computing the

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:33:07 UTC from IEEE Xplore. Restrictions apply.



IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), May 09-11, 2014, Jaipur, India

multiplicative inverse with a maximum of 2 log2(m — 1)
multiplications and (m — 1) cyclic shifts.

The Itoh-Tsujii algorithm is modified for the binary fields which
are generated by irreducible trinomials for efficient
implementation on FPGA platforms in [4]. It makes better uti-
lization of FPGA resources and also requires shorter addition
chains. The LUT utilization is maximized in this algorithm.
Also, this has flexibility of scaling with respect to finite-field
sizes. A theoretical model for the ITA for any Galois field and k-
input (k > 3) LUT based FPGA is given in [5]. A fast hardware
implementation of multiplicative inversion in GF(2™) based on
Sunar-Koc multiplier and [toh-Tsujii inversion is presented in
[6] using the optimal normal basis of type II. The IT algorithm
implementation for GF(2**) is discussed. The required area and
clock frequency for this algorithm is compared with the previous
works [7], [8], [9]. A detailed discussion on Sunar-Koc is given
in [10], [11]. It is shown that this algorithm requires only 1.5(m’
—m) XOR gates for the implementation.

1. MATHEMATICAL BACKGROUND

A. Optimal normal basis of type 11

Consider an element B[] GF(2™).
Then the set, M, where M ={f, B2, 22 , 23 ...... B2m—1}, is
called the normal basis with B as the normal element. The
optimal normal basis of type II for GF(2™) can be calculated by
making use of B if there exists y such that p =y +y', and y is
the primitive (2m + 1)th root of unity.
ie.y™"'=1andy =61 forany 1 <i<(2m + 1). There-fore,an
optimal normal basis of type II can be constructed only if p is
prime, where (p = 2m + 1) and also if either of the following
conditions hold [10]:

e 2 is a primitive root modulo p
* p = (7 mod 8) and the multiplicative order of (2 mod p) is
m.

It is found that there are 319 values of m in the range m € [2,
2001]. Therefore the optimal normal basis of type I1

N = {'y +~7t

B. Brauer chains

Fermat’s little theorem says that the multiplicative inverse of an
element a = GF(2™) is a™™ . The inverse can be given by
equation (2).

a_l = [.»'31?1—1(&']]2 . 2)

Where Bx — a2 —1 & GF(2™) [4].
Let By(a) be represented by By. The inverse is computed using
addition chain recursively as given in equation (3).

Bris(a) = B2 8 = BY B; 3

Consider an example of finding the inverse in GF (2%**).

. nedd o

(0383
a =a = aa b

= ."335 9 (4)

It requires the calculation of B;g;. Therefore, the Brauer addi-tion
chain for 383 is obtained from Table -I and is given by equation

3.

U=1{1,2,4,5,10,11,22, 23,46,47,94, 95,190, 191, 382, 383}
(3
The square of Bss; provides the inverse of a.

TABLET BRAUER ADDITION CHAIN FOR GF(2**) EXTRACTION
TABLE
Aila) B #lnl Fxponenfizfion
1 Bile) a
2, Ba(a) B1+1(a) (31 )3 81 = a"“
] Bala) Poia(zl (82)% Bo =@ !
4. | Bsla) Hat1(a) (80)? B1=a® 1
5. H1o(a Baie(a) (B5)Y By = a2 1
6. Bi11(n) 3041 (a) (F10)% f1=a2 !
7. | Maufa B11 ) 11(a) (B11)2 P11 —a2 1
8 | Aas(al Bao11a) :,921)2 B —a-"‘ L
Q, Bac(a) Boa+aa(e) (B2s)? Bog —a? 1
0. | Bar(a Bia+ila) (B16)2 41 — ot -l
1. | Boela Bar+av(a) (Bar)2 By = a? -1
12. | Bos(a Boa+1la) tﬁu;) Bi —a? L
13. | Pufa) | Sustus(e) Ous) Oos =u2 =
14, | Bisila) B1oo+1(a) avn) 131 = aiigl_l
15. | Sas2(a) | Sio1+101(a) | (B101)2 Bigi =a¥
16. | 3ag3fa) | Baseyi(a) (Bas2)® 1 =a® !

Iv. SUNAR-KOC MULTIPLICATION

The IT algorithm requires squaring and multiplication oper-
ations, while carrying out an inversion operation. The squaring
operation is a simple cyclic shift in normal basis. The multi-
plication can be performed efficiently using Sunar-Koc. In this
algorithm, the numbers are first converted into shifted form of
canonical basis (optimal normal basis of type II) and then the
product is computed. The numbers are then converted back into
normal basis. This involves three steps:

1. Conversion of the normal basis into its equivalent shifted
form of canonical basis
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2. Computation of the product of the numbers
3. Conversion of the resultant product into its normal basis

The conversion technique of the normal basis into its equivalent
shifted form of canonical basis is as follows:

+ If 2 is primitive modulo p, the set of powers of (2 modulo p)
{2, 2% 2% .2"™1' 2™ (modp) is equivalent to {1, 2, 3,
..2m— 1, 2m}. Therefore the elements in the normal basis
y* + vy can take the form y + y7 for j € [1, 2m]. The
powers can be brought into the range [1,m] by writing the
elements y' +yJas y@™ DI 4y P for i > 41,

o If the multiplicative order of (2 modulo p) is equal to m,
then the set of powers of (2 modulo p) {2, 2%, 2°, .2,
2”™ are m distinct integers in [1, 2m]. Then the powers are
brought into the range [1, m] as given in equation (6).

7 =2"(mod p) if 2*(mod p) € [1,m] (6a)

j=(2m+1)—2%(mod p) if 2'(medp) € [m+1,2m]

(6b)

Second step involves the multiplication of numbers in the shifted
form of canonical basis. Let us consider two numbers X,Y [ GF
(2™). They can be expressed in basis N as given in equation (7).

m m

X=) mfi=) =(r+7v7) (7a)

(i=1) (i=1)

= Z y; 85 = Z (¥ +479) (7b)

(7=1) (i=1)

—-\'Y—(Z ziBs). ZyﬁJ
(i=1) (j=1)

=) m(+vN) vty +17)

(=) (j=1)

=3 S P )
=1 y=1
n m i
- Z Z miyj(fy(?--!ﬂ) g .I,“l'l‘l-J’}
=Z1+ 272 (8)

71 and Z2 can be further expressed by

ZZ !uj J)+,.)( (i— JJ)
i=13=1
i£]
= ) =z + D) (9a)

1<f,j<m

Z2 = Zva yi{

=191

(:+J) +q itj )

m m—i

=2, 2%

i=1 =1

m m
=1 j=m—i}1
=W1+ W2 (9b)
Hence, the product, Z, can be calculated as given [6] by
equation (10).

~EHT) —{i+31)

rly.} (qlrh-l—j) _|_ ;-}_“"'j? )

Z=Z1+W1+ W2 (10)
The third step involves the conversion of the product back into
its normal basis. The Sunar-Koc multiplication uses 1.5 x (m2 —
m) XOR gates, whereas Massey-Omura algorithm uses 2 x (m2
— m) XOR gates. And the time complexities of both these
algorithms are almost same. Hence Sunar-Koc algorithm is
preferred for multiplication.

V. ITOH-TSUJII INVERSION ALGORITHM

Let us consider an element a & GF(2m). The inverse of the
element can be calculated using Itoh-Tsujii inversion algorithm
as given in equation (11).

mi
a—! — 2™ 2

(11)

agm_g o a-){ am—1 —1)

when (m-1) is even,

m—1 m—1

am—l _1=02%7 -1)(27F +1) (12a)
When (m-1) is odd,

The exponents are further simplified in a similar manner. An
example is worked out with m = 384.
Let us consider an element a € GF(2%**).
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2t(2 2t(2
a1 = @2 -2 = 42(2*"-1) T, =a"?, T=a"® o
2383 1 _ _2(2382_1)41 _ _2(219141)(21%1—1)41 8. cyclic shift T, 95 times: T, < T2
” = 1 . ~ e VA T, = g2t(2°%)
P WO 1)41 _ oefRp) (2B 1) 41 2
a)g,. 1 B q’) 094 1 1 B 51)4— ] 04T 1)+1 9- T] (_Tsz
e 1 = 227 —1) 04T 1y /947 _
a® ~!=a%? 1 = g2( N ) N + Letu=202% + 1)
- 2(246 1) 2223 L1923 _
PR gt (. _ D41 _ 207 +1)(9221)41 T, = 22
a??—1 = g20% =141 _ G201 +1)(21 1)+ 10. invout« invout.T,
; l I I 3 2 _ J2[tu+1]+1
L SR 1t L [ N, [ K, (¥ L LT § invout = g 11*1
(15 =a 4 ‘ _aﬂ I 11.T1<_T12, T2<—T12
a2 —1 = g2(27 141 _ L2(2°4+13(27°-1)+1 SRS e
: ( \ 2 s 1= , Ta=
— 2224121 1) (2 )41 _ 22241 (2N +1)+1 47

12. cyclic shift T, 47 times:T, < T;
T,= g2tu@(2*7)

. . 384+ - 0 0 g
The inverse in GF(2”") is computed as given in Algorithm -1. 13. T, < T,T,
Letv=(2)Q2" +1)
Algorithm 1 Algerithm for the calculatien of Multiplicative T, = a®™
Inverse 14. invout«— invout. T}
: — S2[t[u[v+1]+1]+1]
Input: a, Output: a1 mnvout ;1 ,
Calculate & = o - 15-%"1;21;&&)1"2 —T
Stere a and calculate 3 = o227 +1) 1 :

T2 — ava(Z)

H9n
Stere 3 and calculate v = #%02 +1)
16. cyclic shift T, 23 times:T, « T2

Store 7y and calculate § = 72(295“)

Store § and calculate = 62(327"‘1) T, = 2twr(@(2*)
Store and calculate ¥ = 1}2(2 1“;1} 17. T, < T,T, »
Store ¥ ang calculate A = 192('{ +1) Let w2= 2(2 +1)
Store ) and calculate p = A2(2"+1) T, = a*™""
Stere p and calculate o = uQ(fHWJ ) 18. invout« invout.T,
_ i invout = g2V I111]
Compute the preduct of a,3,v.6,7,U. Ay, and &

19. T, < T4 T, < T2
T, = aZtuvw(Z)

The algorithm for the calculation of multiplicative inverse in T, = 2@
GF(2™™) is presented below: 20. cyclic shift T, 11 times:T, < T2"
It can be implemented using three registers:(T;, T, and invout), a T, = g2turw()(2')
multiplier and a squarer. Multiplicative inverse algorithm for :
GF(2:%). 21. Ty < T T,

@) Letx = (2)2" + 1)

Tl — a2tuvwx

ygLiee - 22. invout< invout.T,
Output : a invout = a2 VWEHF 1T+ ]1]
Registers : Ty, T,, invout 23, T — le’ o T2
1. Tl «a, Tz «<—a Tl — aZtuvwx(Z)

Tl =a, Tz =a T2 — aZtuvwx(Z)’
2. invout«— TT,, Ty« T:T, . . . 5

T, =a’, invout=a 24, cyclic shift T, 5 t;lmes:Tz — T2
SR T]27 T T12 T,= q2turwx(2)(2%)

T, =™, T,=a® 25. T, < T,T,

2191 Lety=2(2°+ 1)

4. cyclic shift T, 191 times:T, < T;

T, = q2@2") Ty =2

26. invout«— invout.T;

5. gét(t_:TZ‘gm s 1) invout = §l2[t[u[\z[w[>([y+;]+1]+1]+1]+1]+1]
T, = 20 27. T Ty, T« T,
1—a T] _ a2tuvwxy(2),
6. invout<«— invout.T; T, = g2uvway()
. _ 2t 2= a
invout = a

1T, T2 T, — T; 28. cyclic shift T, 2 times:T, « T2
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T,= aztuvwxy(z)(zz)

29. T] <« T]T2
T, :aztuvwxy(z)(22+1)

30. cyclic shift T, 1 times:T, < Tz21
T, = aztuvwxy(z)(22+1)(21)

3 1 g T] <« T]Tz
Letz=(2)2*+ DQ2'+ 1)

Tl — azmvv\xyz

32. invout« invout. T,
invout = gV z+ 111+ 1141 1]

The inverse of a, a—! is available at invout.

invout = uz[t[u[u[u [elylz 14+ 1]4+1]+1]+1]+1]+1]

az[[ [ [ [1[ [ (2 +1:t_2‘+1)(2'—1)+1]+1]+1].—1]+1]+1]+1]
2fefufefwfale* DR+ 1]+ 1] +1] 41

2[t[ufufw2e2 + )2 1]+ 1] +1]+ 1]+ 1]+ 1]
2[tfufu[2(2®+ 132 — 1] +1] 1] +1]+1]
2[t[u[2(2*7 +1}[2¢7 —1]+1]+1] +1]
z[c[.u +1J[[’“—1] I-«-l}
[
[

u

|
2R 8. 2 0

2[2(2 +1)[2(2"9 —1)]+1]
22353 1] i

=

233473 _1

= a =&

VI RESULTS

The ltoh-Tsujii inversion algorithm has been implemented for
key lengths of 194-, 233-, and 384- bits on the Virtex 7
XC7V2000T-1FLG1925 FPGA device. The multiplier is
implemented using Sunar-Koc technique. The numbers are first
converted into basis N. They are multiplied in N basis and the
result is converted back into basis M. The squarer is nothing but
a cyclic shifter which is implemented using a register. The
synthesis results are included in Table -1I. The number of LUTs
and flip-flops used are compared for different key lengths. Also,
the maximum frequency of operation is also compared for these
key lengths. The simulation results are also provided in Figure
1.

The implementation for 194-, 233-, and 384- bit key lengths
consumed 20, 21 and 32 clock cycles respectively.

TABLE I FPGA SYNTHESIS RESULTS FOR DIFFERENT KEY

LENGTHS
: Key length in bits

Parameter 194- 233. 384-
Logic Avail- Used Used Used
Utilization able

No. of LUT's 1221600 62431 87742 51227
No. of FF’s 2443200 587 704 966
No. of 10’s 1200 390 468 770
Max. freq.(MHz) 103.27 92.32 99.5

VIL CONCLUSIONS

The implementation of /toh-Tsujii inversion algorithm using
Sunar-Koc multiplier for optimal normal basis of type II is pre-

sented. The inversion operation for GF (2°*) has been illus-
trated with an example. A resource comparison of the FPGA
implementations of the algorithm for GF(2'**),GF(2***), and
GF(2%) is given.

Now:
10100 ns . T T . . T T
Wek o _NAAANAAAMNAAAANAAAAMAAAANAAAAMAAMANAAAANAARAAARMAE
W stan o 1]
@ §1930] 108
©3um1930] 194 (S4RUL Y 134n000000000000000000000002000080000. YAS#m2C0E3. Toam

(a) Key length = 194

T94m010400000000000002020000000000000000 1100000000001
B68E 74000002 1B6EABAGAOBCE04A0029

Now:
10100 ns b 2020 404pns 5080 8080ns 1010

5 5 | | | | | |
a

Wstart 1 11
=@y 2w ZSmO2040T0300000000 430300 00E240000000BE 0000 TO 00T TO00TO00T
® Hund23201 233 IUUULUUUUU. X2331126543C521.. Y233N 19AE8.. 233 1DDBEDDSA185CODZEAI 1875FATGF 45BC 1FC51A32508A 1435526 7EF 38236
(b) Key length = 233
Now:
10200 s ons 2040 4080ns 120 8160 1020¢
| | | 1 | | 1 | | L | ] | 1 I | | [ |
Wex o UMM A A Ui U U U U gt
Wt o

= X 3830) ¢ GY 334M0210000000030000000000000002010000000000300000000003000000300000030040020000000300000030000 4000
# @ un(3830] 384 (3840 Ya84N00B00. )G84M1ADDO. YaBAMOASTE Y3B4NEEA3 X 384NACTB. X384 N54685. 3B4NOB20EEINC. )Wﬁsnamacuzzzmmmmmnmrm

(c) Key length = 384
Fig. 1. Simulation results for three ditferent key lengths
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