
IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), May 09-11, 2014, Jaipur, India

FPGA Implementation of Itoh-Tsujii Inversion
Algorithm

Ravi Kishore Kodali
Department of Electronics

and Communication
Engineering,

National Institute of
Technology, Warangal

Chandana N. Amanchi
Department of Electronics

and Communication
Engineering,

National Institute of
Technology, Warangal

Abstract-Elliptic Curve Cryptography (ECC) has been gain­
ing popularity due to its shorter key size requirements. It uses
arithmetic operations including addition, subtraction, multiplica­
tion and inversion in finite fields. For an efficient implementation of
ECC, it is very important to carry out these operations faster using
lesser resources. The in version operation consumes most of the
time and more resources. The ltoh-Tsujii algorithm can be used to
carry out the computation of multiplicative inverse by making use
of Brauer addition chains in less time. This work presents an FPGA
implementation of the multiplicative inversion for the key lengths
of 194-, 233-, and 384- bits. A resource comparison for these key
lengths is also made. This work uses Sunar-Koc multiplier for the

finite field, GF(2
m) multiplication.

Keywords: ECC; multiplication; inversion.

I. INTRODUCTION

Finite fields are widely used while implementing various
cryptographic techniques. Finite field operations, mainly
inversion plays a key role in the Elliptic curve cryptography
(ECC) implementation. Consider an element a D GF (2m). The
inverse of a is a-I D GF (2m) for which a.a-l = 1. There are
many algorithms that have been proposed to compute
multiplicative inverse such as Extended Euclidean algorithm,
Binary inversion algorithm, Itoh-Tsujii (IT) inversion algorithm,
and so on. Among these, the Itoh-Tsujii algorithm consumes
fewer clock cycles to carry out the multiplicative inversion of an
element. The basis for this algorithm is Fermat's little theorem.
According to this theorem, for a non-zero element a D GF (2m),
a-I = a2m -2. This exponentiation can be carried out by
squaring and multiplication operations.

The Itoh-Tsuj ii algorithm makes use of Brauer addition
chains to decrease the number of multiplication operations
required to compute a2m-2. The squaring operation in normal
basis representation, which is achieved by using cyclic shift
operations, is less compute intensive. The multiplication
operation is more complex. Hence, it is required to choose an
efficient algorithm to carry out the multiplication operation. The
Sunar-Koc finite field multiplication algorithm is the one in

[978-1-4799-4040-0114/$31.00 ©20 14 IEEE]

Shubham Kumar
Department of Electronics

and Communication
Engineering,

National Institute of
Technology, Warangal

Lakshmi Boppana
Department of Electronics

and Communication
Engineering,

National Institute of
Technology, Warangal

which the numbers are converted into optimal normal basis of
type-II, then multiplied and then converted back. It requires only
1.5 x (m2 - m) number of XOR gates for GF(2m).

We have implemented the algorithm using Field
programmable gate array (FPGA) with key lengths of 194-, 233-
, and 384- bits. A resource comparison of the implementation of
the IT algorithm for different fields: GF(2194), GF(2233),
GF(2384) based on the utilized LUTs, flip-flops, and maximum
allowable clock frequency is also presented. The rest of the
paper is organized as follows: section II provides literature
review, section III presents mathematical preliminaries which
include the optimal normal basis of type II and Brauer addition
chains. The Sunar-Koc multiplier is discussed in section IV. The
Itoh-Tsujii inversion algorithm and its implementation for GF
(2384) are presented in section V. The results and comparison
are given in section VI and section VII concludes the work.

II. LITERA TURE REVIEW

The IT inversion algorithm is generalized for extension
fields, GF(qm) in [1]. But the implementation is done using
standard basis representation. The algorithm is generalised for
standard basis and required expressions for complexity are
derived. Frobenius map is explored for exponentiations and it is
shown that the standard basis complexity is almost similar to
that of normal basis. The inversion algorithm using standard
basis with minimum number of clock cycles is implemented in
[2]. The algorithm is implemented and compared using squarer
ITA, quad ITA, Full ITA, etc.

It perform the inversion over GF(2233) or GF(2409)
within 10 clock cycles. Wang proposed the implementation
of the algorithm using normal basis, which uses (m - 2)
multiplication operations and (m - 1) cyclic shifts in GF(2m).
Itoh and Tsujii have proposed a fast algorithm by making use of
normal bases [3]. Normal basis has a useful property that the
squaring can be achieved by mere cyclic shift operation. It is
proved that the proposed algorithm is capable of computing the

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:33:07 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), May 09-11, 2014, Jaipur, India

multiplicative inverse with a maximum of 2 log2(m - 1)
multiplications and (m - 1) cyclic shifts.
The ltoh-Tsujii algorithm is modified for the binary fields which
are generated by irreducible trinomials for efficient
implementation on FPGA platforms in [4]. It makes better uti­
lization of FPGA resources and also requires shorter addition
chains. The LUT utilization is maximized in this algorithm.
Also, this has flexibility of scaling with respect to finite-field
sizes. A theoretical model for the ITA for any Galois field and k­
input (k > 3) LUT based FPGA is given in [5]. A fast hardware
implementation of multiplicative inversion in GF(2m) based on
Sunar-Koc mUltiplier and ltoh-Tsujii inversion is presented in
[6] using the optimal normal basis of type II. The IT algorithm
implementation for GF(2233) is discussed. The required area and
clock frequency for this algorithm is compared with the previous
works [7], [8], [9]. A detailed discussion on Sunar-Koc is given
in [10], [11]. It is shown that this algorithm requires only 1.5(m2

- m) XOR gates for the implementation.

III. MATHEMATICAL BACKGROUND

A. Optimal normal basis of type II
Consider an element � D GF(2m).

Then the set, M, where M ={�, �2, �22 , �23 �2m-l}, is
called the normal basis with � as the normal element. The
optimal normal basis of type II for GF(2m) can be calculated by
making use of � if there exists y such that � = y + y-

I
, and y is

the primitive (2m + l)th root of unity.
i.e. y2m+1 = 1 and yi =6 1 for any 1 :s i < (2m + 1). There-fore,an
optimal normal basis of type II can be constructed only if p is
prime, where (p = 2m + 1) and also if either of the following
conditions hold [10]:

2 is a primitive root modulo p
p = (7 mod 8) and the multiplicative order of (2 mod p) is
m.

It is found that there are 319 values of m in the range m EO [2,
2001]. Therefore the optimal normal basis of type II

N = { l' + .,-1 , -y'2 + 1'-2, �l + 1'-22
, • • • -1"'-' + 1'-2m-1 }

(1)
B. Brauer chains
Fermat's little theorem says that the multiplicative inverse of an
element a D GF(2m) is a2m-2. The inverse can be given by
equation (2).

Where f3k = 0;2"'-1 E GF 2""'-) [4] _

(2)

Let �k(a) be represented by �k' The inverse is computed using
addition chain recursively as given in equation (3).

(3)
Consider an example of fmding the inverse in GF (2384).

(4)

It requires the calculation of �383' Therefore,the Brauer addi-tion
chain for 383 is obtained from Table -I and is given by equation
(5).

u= {1,2,4 5 1 0 ,11 , 22, 2 3,4647, 94, 95 190, 1 91,3 2,3 3}
(5)

The square of �383 provides the inverse of a.

TABLE I BRAUER ADDITION CHAIN FOR GF(2384) EXTRACTION
TABLE

(1j((I') Ii; 1« <1 . .1
1. Ih(a)
2. thea) 61+j (a)
J. JJ4 (a) .82+'1 (a)
4. tJs(a) fia+l (a)
5. .810 (a) Jj5+5 (aJ
n. Rl1 (n.) thO+l(n)
7. ,821)(0) PH I 11(0.)
8. .B2!l(a) tl22t-l (0)
9. 1340 (0.) .823t-23(a)
10. 1347 (0.) �4.6t-l (0)
I l. ,89';"(0.) .84·r-t4·'(a.)
12. /39<'(0.) ,894-t-1 (a)
13. PWJ (u,) ,OU5+1I5(a)
Io:!.. �191 la) .8190+1 (a)
15. S382 (a) ;) 1 91+1 9 1 (a)
16. /1383Ia) P382+1 (a)

I-'.!ponenhllholl
a

(;3d�· ill = a�:'- l
(i3'2)!."l:' fl? = a2- 1
(.'ltP' /h = a2"-1

(tfS) 2 ' .8r, = a2 -1

(fhO)2- fh = n2;U-t
Ll) "" (,Bu)2 i311 = a.2 -1

(1322)'1.: P1 = a��;;-t

(;123) '1.�" i32'J - a :.!�. -1
(/346)2: .81 = a.2'" , -l

(/347)2'" f34'(= a�2"�-l
(/39 4)2 - lit - CL 2�" l

({JIJ5)'l."" (JU T:> = u'l ' '''' - l
2- 2191 1 (P190) fh = a -

(.8191) '} " .. fi191 = a 2 °o,"-:

(P382)'2:.81 = a'l",,3-1

IV. SUNAR-KOC MULTIPLICATION

The IT algorithm requires squaring and multiplication oper­
ations, while carrying out an inversion operation. The squaring
operation is a simple cyclic shift in normal basis. The multi­
plication can be performed efficiently using Sunar-Koc. In this
algorithm, the numbers are fust converted into shifted form of
canonical basis (optimal normal basis of type II) and then the
product is computed, The nwnbers are then converted back into
normal basis. This involves three steps:
1. Conversion of the normal basis into its equivalent shifted
form of canonical basis

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:33:07 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), May 09-11, 2014, Jaipur, India

2. Computation of the product of the numbers
3. Conversion of the resultant product into its normal basis

The conversion technique of the normal basis into its equivalent
shifted form of canonical basis is as follows:

If 2 is primitive modulo p, the set of powers of (2 modulo p)
{2, 22, 23, .. .22m- l, 22m} (modp) is equivalent to {I, 2, 3,
.. .2m- 1, 2m}. Therefore the elements in the normal basis
y2i + i2i can take the form yi + y-j for j E [1, 2m]. The
powers can be brought into the range [I,m] by writing the
elements yi + y-j as y(2m+I)-j + y -(2m+I)+j for j � m + 1.
If the multiplicative order of (2 modulo p) is equal to m,
then the set of powers of (2 modulo p) {2, 22, 23, • • • 22m- l,
22m} are m distinct integers in [1, 2m]. Then the powers are
brought into the range [1, m] as given in equation (6).

(6a)

j = (2 m + 1) - 2i(mod p) if 2t(modp) E [m+ 1 , 2m]
(li b)

Second step involves the multiplication of numbers in the shifted
form of canonical basis. Let us consider two numbers X, Y D GF
(2m). They can be expressed in basis N as given in equation (7).

m m

x = L xi/3i = L xiCl + ,-i) (7 a)
(i=l) (i=l)

m m

Y = L Yj,Bj = L Yj(Y + ,-j)
(j=1) (j=1)

m m

Z = X.Y = (L xd3i).(L Yj{3j)
(i=1) (j=1)

m m

(7b)

= (L xibi + ,-i)).(L Yj(-yj + ,-i))
(i=l) (i=l)
m m

= L L XiYi(f(i-i) + ,- (i-j »)
i=1 j=l

m m

+ L L XiYj(-y(i+j) + ,- (Hj»)
i=l j=l

= Zl + Z2

Z 1 and Z2 can be further expressed by

(8)

m m

Zl = L 2::= T,Yj (-y(i-j) + "(-(i-j»)

i=1 j=1
i;t.j
L xi Yi(,(i-j) +,-(i-J))

ls;i,j.'S:m
,n m.

Z2 = L L TiYj er(i+j) + "(-(i+j»)
;=1 j=1

'Pn m-i

.=1 j=1
m Tn

= W l + W2

(9 a)

(9b)
Hence, the product, Z, can be calculated as given [6] by
equation (10).

Z=Zl+" 1 +W2 10
The third step involves the conversion of the product back into
its normal basis. The Sunar-Koc multiplication uses 1.5 x (m2 -
m) XOR gates, whereas Massey-Omura algorithm uses 2 x (m2
- m) XOR gates. And the time complexities of both these
algorithms are almost same. Hence Sunar-Koc algorithm is
preferred for multiplication.

V. ITOH-TSUJII INVERSION ALGORITHM

Let us consider an element a E GF(2m). The inverse of the
element can be calculated using Itoh-Tsuj ii inversion algorithm
as given in equation (11).

-] 2=-2 a =a

2rn-2 2(.2 = - 1 _ 1) a =a
when (m-I) is even,

2m-1 _ 1 = (2 "';-1 _ 1) (2 Tn; 1 + 1)
When (m-I) is odd,

11

12a)

2111-1 -1 = 2(2"'2'). _ 1)(2 m.2� + 1) -1 12b)

The exponents are further simplified in a similar manner. An
example is worked out with m = 384.
Let us consider an element a E GF(2384).

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:33:07 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), May 09-11, 2014, Jaipur, India

a-I = a2:l�"-2 = a2(2���-1)
2383_1 _ 2(2362_1 }+1 _ 2(2 1 91 + 1)('2191_1'1 + 1 a -a -0,

a2L91-1 = a2(2190-1)+1 = a2(2!i5 + 1)(�5-1)+1
a29 5 _1 = a2 (294-1)+1 = a2(247 +1) (247 -1)+1
(1,247_1 = (1,2(241>-1)+1 = (£2(223+1)(223_1)+1

a2 23-1 = a2(22.�-1)+1 = a2(21l+1)(211_1)+1
a2L1-1 = a 2(21D -l) + 1 = a2(25+ 1){25-1)+1
a 2.'i-1 = a2(24-1)+1 = a2(22+1:(22-1)+1

= a2(22+1)(21_1)('21 1)+1 = u2(2 2 +1) (21 + 1)+1

The inverse in GF(2384) is computed as given in Algorithm -I.

Algorit.hm 1 Algorithm for the calculation of M ulti plic ative

Lnve rse
Input: a, Output: a-I

Calculate a = a2

Store 0: and calculate j3 = 0:2(2Igl+1)
Store f3 and calculate 'Y = f32(2%+1)
Store 'Y and calculate 0 = 'Y2(29�+1)
Store 15 and calculate T} = 02(241 +1)
Store and calcu late {) = T}2(223 +1)
Store {) and ca l cul ate ,\ = {)2(2"+J)

Store ,\ and c alculate /-L = ,\2(25+1)
Store /-L and calculate a = /-L2(2'+1)(2' +1)
Com pute the product of 0: j3, 'Y, 0, T} {),'\, /-L and a

The algorithm for the calculation of mUltiplicative inverse in
GF(2384) is presented below:
It can be implemented using three registers:(TI, Tz and invout), a
multiplier and a squarer. Multiplicative inverse algorithm for
GF(2384):

Input : a
Output : a-

I

Registers : T" T z, invout
1. TI <-- a, Tz <-- a

TI = a, Tz = a
2. invout<-- TITz, TI <-- TITz

TI = aZ, invout = aZ
3. TI <-- Tl

z
, Tz <-- nZ

TI = aZ(2), Tz = aZ(Z)

4. cyclic shift Tz 191 times:Tz <-- rt9l

Tz = aZ(z(z'91)
5. TI <-- TIT2

Let t = 2(2191 + 1)
TI = a2(t)

6. invout<-- invout.TI
invout = a2[t+l]

7. TI <-- TIZ, Tz <-- Tl
z

TI =aZt(Z), T2= aZt(Z)

8. cyclic shift Tz 95 times: Tz <-- rtS
Tz = aZt(Z)(z9S)

9. TI <-- TITz
Let u = 2(295 + 1)
TI = aZtu

10. invout<-- invout.TI
invout = aZ[t[u+I]+I]

11. TI <-- TIZ, Tz <-- Tl
z

TI = aZtu(2), Tz = aZtu(2)

12. cyclic shift Tz 47 times:Tz <-- rt7

T2 = aZtU(Z)(z47)
13. TI <-- TITz

Let v = (2)(247 + 1)
TI = aZtuv

14. invout<-- invout. T I
invout = a2[t[u[v+I]+I]+I]

15. TI <-- T1
2, Tz <-- TI2

T I = aZtuv(2),
T2 = ituv(Z)

16. cyclic shift T2 23 times:Tz <-- rt3

Tz = aZtuv(Z)(z23)
17. TI <-- TITz

Let w = 2(223 + 1)
TI = aZtuvw

18. invout<-- invout. T I
invout = aZ[t[u[v[w+I]+I]+I]+I]

19. TI <-- TIZ, T2 <-- Tl
z

T I = ituvw(2),
T 2 = ituvw(2)

20. cyclic shift Tz 11 times:Tz <-- Tt'
Tz = aZtuvw(Z)(z")

21. TI <-- TITz
Let x = (2)(211 + 1)
TI = ituvwx

22. invout<-- invout. T I
invout = a2[t[u[v[w[x+I]+I]+I]+I]+I]

23. TI <-- T1
2, Tz <-- TI2

T I = aZtuvwx(2),
T Z = aZtuvwx(2)

24. cyclic shift T2 5 times:Tz <-- rt
Tz = aZtuvwx(Z)(zS)

25. TI <-- TITz
Let y = 2(25 + 1)
T I = aZtuvwxy

26. invout<-- invout. T I
invout = a2[t[u[v[w[x[y+I]+I]+I]+I]+I]+I]

27. TI <-- TIZ, Tz <-- Tl
z

T I = ituvwxy(Z),
T 2 = ituvwxy(Z)

28. cyclic shift T2 2 times:Tz <-- rt

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:33:07 UTC from IEEE Xplore. Restrictions apply.

IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), May 09-11, 2014, Jaipur, India

T2 = a2tuvwXY(2)(22)
29. TI +-TIT2

T, =a2tuvwxy(2)(22+1)
30. cyclic shift T2 1 times:T2 +-rt

T2 = a2tUVWXY(2)(22+1)(21)
3l. T, +-T,T2

Let z = (2)(22 + 1)(21 + 1)
T, = a2tuvwxyz

32. invout+-invout.T,
invout = i[t[u[v[w[x[y[z+lj+lj+lj+lj+lj+lj+lj

TIle inverse of a, a-I is available at invout.
invout = a2[t[u[v[w[x[y[z +II+1I+1J+IJ+IJ+1J+I J

= a 2 [t [-U [U [W [X [1 [2 (2'+1) (2 ' +1)(2' -1)+1] +1] +1]+1] +1] + 1]+ 1]
= a2[t[1L[v(w[x[2(2"+I) [2"-1]+1]+1]+ 1]+1)+1]+1]
= a2[t [II [v[w[2(2 1 1 + 1)[21'-1]+1]+1]+1]+1]+ 1]
= a2[t[II[V[2(223+1*23 -1]+1] +1] + 1)+1]
= a2[t[II [2 (2 4 7 +11[2H -1]+1]+1]+1]
= a4t[2(�9o+1)[:l90-11+11+1]

= a2 [2 (219 0+1)[2 (219 1 -J))+ I]
= a2[23B3-'l = a23S4-2 =

a-I

VI. RESULTS

The ltoh-Tsujii inversion algorithm has been implemented for
key lengths of 194-, 233-, and 384- bits on the Virtex 7
XC7V2000T-IFLG1925 FPGA device. The mUltiplier is
implemented using Sunar-Koc technique. The numbers are first
converted into basis N. They are mUltiplied in N basis and the
result is converted back into basis M. The squarer is nothing but
a cyclic shifter which is implemented using a register. The
synthesis results are included in Table -II. The number of LUTs
and flip-flops used are compared for different key lengths. Also,
the maximum frequency of operation is also compared for these
key lengths. The simulation results are also provided in Figure
l.

The implementation for 194-, 233-, and 384- bit key lengths
consumed 20, 21 and 32 clock cycles respectively.

TABLE II FPGA SYNTHESIS RESULTS FOR DIFFERENT KEY

LENGTHS

Parameter
Logic Avai l -
Util izatio n able
No. of LUT's 1221600
No. of FF's 2443200
No . of 10's 1200
Max. freq.(MHz)

VII.

194-
Used

62431
587
390

103.27

Key length in biis
233-
Used

87742
704
468

92.32

CONCLUSIONS

3 84- I
Used

51227
966
770
99.5

The implementation of ltoh-Tsujii inversion algorithm using
Sunar-Koc multiplier for optimal normal basis of type II is pre-

sented. The inversion operation for GF (2384) has been illus­
trated with an example. A resource comparison of the FPGA
implementations of the algorithm for GF(2194),GF(2233), and
GF(2384) is given.

Now:
10100",

.. � .. - 'a�;;;;;;;;;;��;;;;��;;��;;�;;��� lii iil(041n.0I 1U" O '94'nCl0��1'OOOOOOOOOO'
1Il 1ijl(: *"" nOl 194'_�'94l1OOOOOOOOOOOOO� 1901''''6725ED8l3C.3Ioa8UE7 4C0CC02 1�2!I

(b) Key length = 233
Now:

.. �

�� , �i���iiiiiiiiiiiiiiiiiiiiiiiiiiii;;��� iII i(>(lIlOl 38-1' 0 J8.1'h0210< 100201 'OOOOOOCOCC 2COOCCHlOOOOOOOOOOOOOOOl OJ
i!I ((,;",ptJ,0) 38oI'.'-I7EBCOEEEI�11571if17ClQ'�

(c) Key length = 384
Fig. I. Simulation results for three different key lengths

REFERENCES

[I] J. Guajardo and C. Paar, "ltoh-tsujii inversion in standard basis and its
application in cryptography and codes, " Designs, Codes and Cryptography,
vol. 25, no. 2, pp. 207-216, 2002. [Online]. Available:
http://dx.doi.orglI0.1023/A%3AI013860532636

[2] L. Parrilla, A. Lloris, E. Castillo et al., "Minimum-clock-cycle itoh-tsujii
algorithm hardware implementation for cryptography applications over gf
(2j sup!. mj/sup!.) fields, " Electronics letters, vol. 48, no. 18, pp. 1126-
1128, 2012.

[3] T. Itoh and S. Tsujii, "A fast algorithm for computing multiplicative
inverses in gf(2m) using normal bases, " information and Computation, vol.
78, no. 3, pp. 171 177, 1988. [Online]. Available:
http://www.sciencedirecLcom/science/article/pi i/0890540 188900247

[4] C. Rebeiro, S. S. Roy, D. Reddy, and D. Mukhopadhyay, "Revisiting the
itoh-tsujii inversion algorithm for fpga platforms, " Very Large Scale
integration (VLSi) Systems, iEEE Transactions on, vol. 19, no. 8, pp.
1508-1512, 2011.

[5] S. S. Roy, C. Rebeiro, and D. Mukhopadhyay, "Theoretical modeling of
the itoh-tsujii inversion algorithm for enhanced performance on k-Iut based
fpgas, " in Design, Automation & Test in Europe Cotiference & Exhibition
(DATE), 2011. IEEE, 2011, pp. 1-6.

[6] Q. Deng, X. Bai, L. Guo, and Y. Wang, "A fast hardware implementation
of multiplicative inversion in gf(2m), " in Microelectronics Electronics,
2009. PrimeAsia 2009. Asia Pacific Conference on Postgraduate Re­
search in, 2009, pp. 472-475.

[7] A. A.-A. Gutub, A. F. Tenca, E. Savas., and R. K. Koc., "Scalable and
unified hardware to compute montgomery inverse in gf (p) and gf (2n), " in
Cryptographic Hardware and Embedded Systems-CHES 2002. Springer,
2003, pp. 484-499.

[8] J. Goodman and A. P. Chandrakasan, "An energy-efficient reconfigurable
public-key cryptography processor, " Solid-State Circuits, iEEE Journal of,
vol. 36, no. II, pp. 1808-1820, 2001.

[9] F. Rodr'lguez-Henr'lquez, G. Morales-Luna, N. A. Saqib, and N. Cruz­
Cort' es, "A parallel version of the itoh-tsujii multiplicative inversion
algorithm, " in Recotifigurable Computing: Architectures, Tools and Ap­
plications. Springer, 2007, pp. 226-237.

[10] B. Sunar and C. K. Koc., "An efficient optimal normal basis type ii
multiplier, " Computers, iEEE Transactions on, vol. 50, no. I, pp. 83- 87,
2001.

[II] R. K. Kodali, P. Gomatam, and L. Boppana, "Implementations of sunar­
koc multiplier using fpga platform and wsn node, " in TENCON 2013 -
20i 3 iEEE Region iO Conference (31194), Oct 2013, pp. 1-4.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on December 26,2024 at 06:33:07 UTC from IEEE Xplore. Restrictions apply.

