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Abstract-Elliptic Curve Cryptography (ECC) has been gain­
ing popularity due to its shorter key size requirements. It uses 
arithmetic operations including addition, subtraction, multiplica­
tion and inversion in finite fields. For an efficient implementation of 
ECC, it is very important to carry out these operations faster using 
lesser resources. The in version operation consumes most of the 
time and more resources. The ltoh-Tsujii algorithm can be used to 
carry out the computation of multiplicative inverse by making use 
of Brauer addition chains in less time. This work presents an FPGA 
implementation of the multiplicative inversion for the key lengths 
of 194-, 233-, and 384- bits. A resource comparison for these key 
lengths is also made. This work uses Sunar-Koc multiplier for the 

finite field, GF(2
m) multiplication. 

Keywords: ECC; multiplication; inversion. 

I. INTRODUCTION 

Finite fields are widely used while implementing various 
cryptographic techniques. Finite field operations, mainly 
inversion plays a key role in the Elliptic curve cryptography 
(ECC) implementation. Consider an element a D GF (2m). The 
inverse of a is a-I D GF (2m) for which a.a-l = 1. There are 
many algorithms that have been proposed to compute 
multiplicative inverse such as Extended Euclidean algorithm, 
Binary inversion algorithm, Itoh-Tsujii (IT) inversion algorithm, 
and so on. Among these, the Itoh-Tsujii algorithm consumes 
fewer clock cycles to carry out the multiplicative inversion of an 
element. The basis for this algorithm is Fermat's little theorem. 
According to this theorem, for a non-zero element a D GF (2m), 
a-I = a2m -2. This exponentiation can be carried out by 
squaring and multiplication operations. 

The Itoh-Tsuj ii algorithm makes use of Brauer addition 
chains to decrease the number of multiplication operations 
required to compute a2m-2. The squaring operation in normal 
basis representation, which is achieved by using cyclic shift 
operations, is less compute intensive. The multiplication 
operation is more complex. Hence, it is required to choose an 
efficient algorithm to carry out the multiplication operation. The 
Sunar-Koc finite field multiplication algorithm is the one in 
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which the numbers are converted into optimal normal basis of 
type-II, then multiplied and then converted back. It requires only 
1.5 x (m2 - m) number of XOR gates for GF(2m). 

We have implemented the algorithm using Field 
programmable gate array (FPGA) with key lengths of 194-, 233-
, and 384- bits. A resource comparison of the implementation of 
the IT algorithm for different fields: GF(2194), GF(2233), 
GF(2384) based on the utilized LUTs, flip-flops, and maximum 
allowable clock frequency is also presented. The rest of the 
paper is organized as follows: section II provides literature 
review, section III presents mathematical preliminaries which 
include the optimal normal basis of type II and Brauer addition 
chains. The Sunar-Koc multiplier is discussed in section IV. The 
Itoh-Tsujii inversion algorithm and its implementation for GF 
(2384) are presented in section V. The results and comparison 
are given in section VI and section VII concludes the work. 

II. LITERA TURE REVIEW 

The IT inversion algorithm is generalized for extension 
fields, GF(qm) in [1]. But the implementation is done using 
standard basis representation. The algorithm is generalised for 
standard basis and required expressions for complexity are 
derived. Frobenius map is explored for exponentiations and it is 
shown that the standard basis complexity is almost similar to 
that of normal basis. The inversion algorithm using standard 
basis with minimum number of clock cycles is implemented in 
[2]. The algorithm is implemented and compared using squarer 
ITA, quad ITA, Full ITA, etc. 

It perform the inversion over GF(2233) or GF(2409) 
within 10 clock cycles. Wang proposed the implementation 
of the algorithm using normal basis, which uses (m - 2) 
multiplication operations and (m - 1) cyclic shifts in GF(2m). 
Itoh and Tsujii have proposed a fast algorithm by making use of 
normal bases [3]. Normal basis has a useful property that the 
squaring can be achieved by mere cyclic shift operation. It is 
proved that the proposed algorithm is capable of computing the 
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multiplicative inverse with a maximum of 2 log2(m - 1) 
multiplications and (m - 1) cyclic shifts. 
The ltoh-Tsujii algorithm is modified for the binary fields which 
are generated by irreducible trinomials for efficient 
implementation on FPGA platforms in [4]. It makes better uti­
lization of FPGA resources and also requires shorter addition 
chains. The LUT utilization is maximized in this algorithm. 
Also, this has flexibility of scaling with respect to finite-field 
sizes. A theoretical model for the ITA for any Galois field and k­
input (k > 3) LUT based FPGA is given in [5]. A fast hardware 
implementation of multiplicative inversion in GF(2m) based on 
Sunar-Koc mUltiplier and ltoh-Tsujii inversion is presented in 
[6] using the optimal normal basis of type II. The IT algorithm 
implementation for GF(2233) is discussed. The required area and 
clock frequency for this algorithm is compared with the previous 
works [7], [8], [9]. A detailed discussion on Sunar-Koc is given 
in [10], [11]. It is shown that this algorithm requires only 1.5(m2 

- m) XOR gates for the implementation. 

III. MATHEMATICAL BACKGROUND 

A. Optimal normal basis of type II 
Consider an element � D  GF(2m). 

Then the set, M, where M ={�, �2, �22 , �23 ...... �2m-l}, is 
called the normal basis with � as the normal element. The 
optimal normal basis of type II for GF(2m) can be calculated by 
making use of � if there exists y such that � = y + y-

I
, and y is 

the primitive (2m + l)th root of unity. 
i.e. y2m+1 = 1 and yi =6 1 for any 1 :s i < (2m + 1). There-fore,an 
optimal normal basis of type II can be constructed only if p is 
prime, where (p = 2m + 1) and also if either of the following 
conditions hold [10]: 

2 is a primitive root modulo p 
p = (7 mod 8) and the multiplicative order of (2 mod p) is 
m. 

It is found that there are 319 values of m in the range m EO [2, 
2001]. Therefore the optimal normal basis of type II 

N = { l' + .,-1 , -y'2 + 1'-2, �l + 1'-22
, • • •  -1"'-' + 1'-2m-1 } 

(1) 
B. Brauer chains 
Fermat's little theorem says that the multiplicative inverse of an 
element a D GF(2m) is a2m-2. The inverse can be given by 
equation (2). 

Where f3k = 0;2"'-1 E GF 2""'-) [ 4 ] _ 

(2) 

Let �k(a) be represented by �k' The inverse is computed using 
addition chain recursively as given in equation (3). 

(3) 
Consider an example of fmding the inverse in GF (2384). 

(4 ) 

It requires the calculation of �383' Therefore,the Brauer addi-tion 
chain for 383 is obtained from Table -I and is given by equation 
(5). 

u= {1,2,4 5 1 0 ,11 , 22, 2 3,4647, 94, 95 190, 1 91,3 2,3 3} 
(5) 

The square of �383 provides the inverse of a. 

TABLE I BRAUER ADDITION CHAIN FOR GF(2384) EXTRACTION 
TABLE 

(1j((I') Ii; 1« <1 . .1 
1. Ih(a) 
2. thea ) 61+j (a) 
J. JJ4 (a ) .82+'1 (a) 
4. tJs(a) fia+l (a) 
5. .810 (a) Jj5+5 (aJ 
n. Rl1 (n.) thO+l(n) 
7. ,821)(0) PH I 11(0.) 
8. .B2!l(a ) tl22t-l (0) 
9. 1340 ( 0.) .823t-23( a) 
10. 1347 ( 0.) �4.6t-l (0) 
I l. ,89';"(0.) .84·r-t4·'( a.) 
12. /39<'(0.) ,894-t-1 (a) 
13. PWJ (u,) ,OU5+1I5(a) 
Io:!.. �191 la) .8190+1 (a) 
15. S382 ( a ) ;) 1 91+1 9 1 (a) 
16. /1383Ia) P382+1 ( a ) 

I-'.!ponenhllholl 
a 

(;3d�· ill = a�:'- l 
(i3'2)!."l:' fl? = a2- 1 
(.'ltP' /h = a2"-1 

( tfS) 2 ' .8r, = a2 -1 

(fhO)2- fh = n2;U-t 
Ll ) "" (,Bu)2 i311 = a.2 -1 

(1322)'1.: P1 = a��;;-t 

(;123 ) '1.�" i32'J - a :.!�. -1 
(/346 )2: .81 = a.2'" , -l 

(/347 )2'" f34'( = a�2"�-l 
(/39 4 )2 - lit - CL 2�" l 

({JIJ5)'l."" (JU T:> = u'l ' '''' - l 
2- 2191 1 (P190 ) fh = a -

(.8191 ) '} " .. fi191 = a 2 °o,"-: 

( P382 )'2:.81 = a'l",,3-1 

IV. SUNAR-KOC MULTIPLICATION 

The IT algorithm requires squaring and multiplication oper­
ations, while carrying out an inversion operation. The squaring 
operation is a simple cyclic shift in normal basis. The multi­
plication can be performed efficiently using Sunar-Koc. In this 
algorithm, the numbers are fust converted into shifted form of 
canonical basis (optimal normal basis of type II) and then the 
product is computed, The nwnbers are then converted back into 
normal basis. This involves three steps: 
1. Conversion of the normal basis into its equivalent shifted 
form of canonical basis 
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2. Computation of the product of the numbers 
3. Conversion of the resultant product into its normal basis 

The conversion technique of the normal basis into its equivalent 
shifted form of canonical basis is as follows: 

If 2 is primitive modulo p, the set of powers of (2 modulo p) 
{2, 22, 23, .. .22m- l, 22m} (modp) is equivalent to {I, 2, 3, 
.. .2m- 1, 2m}. Therefore the elements in the normal basis 
y2i + i2i can take the form yi + y-j for j E [1, 2m]. The 
powers can be brought into the range [I,m] by writing the 
elements yi + y-j as y(2m+I)-j + y -(2m+I)+j for j � m + 1. 
If the multiplicative order of (2 modulo p) is equal to m, 
then the set of powers of (2 modulo p) {2, 22, 23, • • •  22m- l, 
22m} are m distinct integers in [1, 2m]. Then the powers are 
brought into the range [1, m] as given in equation (6). 

(6a) 

j = (2 m + 1 ) - 2i(mod p) if 2t(modp) E [m+ 1 , 2m] 
( li b) 

Second step involves the multiplication of numbers in the shifted 
form of canonical basis. Let us consider two numbers X, Y D GF 
(2m). They can be expressed in basis N as given in equation (7). 

m m 

x = L xi/3i = L xiCl + ,-i) (7 a) 
(i=l) (i=l) 

m m 

Y = L Yj,Bj = L Yj(Y + ,-j) 
(j=1 ) (j=1) 

m m 

Z = X.Y = (L xd3i).( L Yj{3j) 
(i=1 ) (j=1 ) 

m m 

(7b) 

= (L xibi + ,-i)).( L Yj(-yj + ,-i ) ) 
(i=l) (i=l) 
m m 

= L L XiYi(f(i-i) + ,- ( i-j » ) 
i=1 j=l 

m m 

+ L L XiYj(-y(i+j) + ,- (Hj» ) 
i=l j=l 

= Zl + Z2 

Z 1 and Z2 can be further expressed by 

(8) 

m m 

Zl = L 2::= T,Yj (-y(i-j) + "(-(i-j») 

i=1 j=1 
i;t.j 
L xi Yi(,(i-j) +,-(i-J)) 

ls;i,j.'S:m 
,n m. 

Z2 = L L TiYj er(i+j) + "(-(i+j») 
;=1 j=1 

'Pn m-i 

.=1 j=1 
m Tn 

= W l + W2 

(9 a) 

(9b) 
Hence, the product, Z, can be calculated as given [6] by 
equation (10). 

Z=Zl+" 1 +W2 10 
The third step involves the conversion of the product back into 
its normal basis. The Sunar-Koc multiplication uses 1.5 x (m2 -
m) XOR gates, whereas Massey-Omura algorithm uses 2 x (m2 
- m) XOR gates. And the time complexities of both these 
algorithms are almost same. Hence Sunar-Koc algorithm is 
preferred for multiplication. 

V. ITOH-TSUJII INVERSION ALGORITHM 

Let us consider an element a E GF(2m). The inverse of the 
element can be calculated using Itoh-Tsuj ii inversion algorithm 
as given in equation (11). 

-] 2=-2 a =a 

2rn-2 2(.2 = - 1 _ 1 ) a =a 
when (m-I) is even, 

2m-1 _ 1 = (2 "';-1 _ 1 ) ( 2 Tn; 1 + 1) 
When (m-I) is odd, 

11 

12a) 

2111-1 -1 = 2(2"'2'). _ 1 )( 2 m.2� + 1 ) -1 12b) 

The exponents are further simplified in a similar manner. An 
example is worked out with m = 384. 
Let us consider an element a E GF(2384). 
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a-I = a2:l�"-2 = a2(2���-1) 
2383_1 _ 2(2362_1 }+1 _ 2(2 1 91 + 1 )('2191_1'1 + 1 a -a -0, 

a2L91-1 = a2(2190-1)+1 = a2(2!i5 + 1)(�5-1)+1 
a29 5 _1 = a2 ( 294-1 )+1 = a2(247 +1) ( 247 -1)+1 
(1,247_1 = (1,2(241>-1)+1 = (£2(223+1)(223_1)+1 

a2 23-1 = a2(22.�-1)+1 = a2(21l+1)(211_1)+1 
a2L1-1 = a 2(21D -l) + 1 = a2(25+ 1){25-1)+1 
a 2.'i-1 = a2(24-1)+1 = a2(22+1:(22-1)+1 

= a2(22+1)(21_1)('21 1)+1 = u2(2 2 +1 ) ( 21 + 1)+1 

The inverse in GF(2384) is computed as given in Algorithm -I. 

Algorit.hm 1 Algorithm for the calculation of M ulti plic ative 

Lnve rse 
Input: a, Output: a-I 

Calculate a = a2 

Store 0: and calculate j3 = 0:2(2Igl+1) 
Store f3 and calculate 'Y = f32(2%+1) 
Store 'Y and calculate 0 = 'Y2(29�+1) 
Store 15 and calculate T} = 02(241 +1) 
Store and calcu late {) = T}2(223 +1) 
Store {) and ca l cul ate ,\ = {)2(2"+J) 

Store ,\ and c alculate /-L = ,\2(25+1) 
Store /-L and calculate a = /-L2(2'+1)(2' +1) 
Com pute the product of 0: j3, 'Y, 0, T} {),'\, /-L and a 

The algorithm for the calculation of mUltiplicative inverse in 
GF(2384) is presented below: 
It can be implemented using three registers:(TI, Tz and invout), a 
multiplier and a squarer. Multiplicative inverse algorithm for 
GF(2384): 

Input : a 
Output : a-

I 

Registers : T" T z, invout 
1. TI <-- a, Tz <-- a 

TI = a, Tz = a 
2. invout<-- TITz, TI <-- TITz 

TI = aZ, invout = aZ 
3. TI <-- Tl

z
, Tz <-- nZ 

TI = aZ(2), Tz = aZ(Z) 

4. cyclic shift Tz 191 times:Tz <-- rt9l 

Tz = aZ(z(z'91) 
5. TI <-- TIT2 

Let t = 2(2191 + 1) 
TI = a2(t) 

6. invout<-- invout.TI 
invout = a2[t+l] 

7. TI <-- TIZ, Tz <-- Tl
z 

TI =aZt(Z), T2= aZt(Z) 

8. cyclic shift Tz 95 times: Tz <-- rtS 
Tz = aZt(Z)(z9S) 

9. TI <-- TITz 
Let u = 2(295 + 1) 
TI = aZtu 

10. invout<-- invout.TI 
invout = aZ[t[u+I]+I] 

11. TI <-- TIZ, Tz <-- Tl
z 

TI = aZtu(2), Tz = aZtu(2) 

12. cyclic shift Tz 47 times:Tz <-- rt7 

T2 = aZtU(Z)(z47) 
13. TI <-- TITz 

Let v = (2)(247 + 1) 
TI = aZtuv 

14. invout<-- invout. T I 
invout = a2[t[u[v+I]+I]+I] 

15. TI <-- T1
2, Tz <-- TI2 

T I = aZtuv(2), 
T2 = ituv(Z) 

16. cyclic shift T2 23 times:Tz <-- rt3 

Tz = aZtuv(Z)(z23) 
17. TI <-- TITz 

Let w = 2(223 + 1) 
TI = aZtuvw 

18. invout<-- invout. T I 
invout = aZ[t[u[v[w+I]+I]+I]+I] 

19. TI <-- TIZ, T2 <-- Tl
z 

T I = ituvw(2), 
T 2 = ituvw(2) 

20. cyclic shift Tz 11 times:Tz <-- Tt' 
Tz = aZtuvw(Z)(z") 

21. TI <-- TITz 
Let x = (2)(211 + 1) 
TI = ituvwx 

22. invout<-- invout. T I 
invout = a2[t[u[v[w[x+I]+I]+I]+I]+I] 

23. TI <-- T1
2, Tz <-- TI2 

T I = aZtuvwx(2), 
T Z = aZtuvwx(2) 

24. cyclic shift T2 5 times:Tz <-- rt 
Tz = aZtuvwx(Z)(zS) 

25. TI <-- TITz 
Let y = 2(25 + 1) 
T I = aZtuvwxy 

26. invout<-- invout. T I 
invout = a2[t[u[v[w[x[y+I]+I]+I]+I]+I]+I] 

27. TI <-- TIZ, Tz <-- Tl
z 

T I = ituvwxy(Z), 
T 2 = ituvwxy(Z) 

28. cyclic shift T2 2 times:Tz <-- rt 
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T2 = a2tuvwXY(2)(22) 
29. TI +-TIT2 

T, =a2tuvwxy(2)(22+1) 
30. cyclic shift T2 1 times:T2 +-rt 

T2 = a2tUVWXY(2)(22+1)(21) 
3l. T, +-T,T2 

Let z = (2)(22 + 1)(21 + 1) 
T, = a2tuvwxyz 

32. invout+-invout.T, 
invout = i[t[u[v[w[x[y[z+lj+lj+lj+lj+lj+lj+lj 

TIle inverse of a, a-I is available at invout. 
invout = a2[t[u[v[w[x[y[z +II+1I+1J+IJ+IJ+1J+I J 

= a 2 [t [-U [ U [W [X [1 [2 ( 2'+1) ( 2 ' +1 )(2' -1)+1] +1 ] +1]+1 ] +1] + 1]+ 1] 
= a2[t[1L[v(w[x[2(2"+I) [2"-1]+1]+1]+ 1]+1 )+1]+1] 
= a2[t [II [v[w[2(2 1 1 + 1)[21'-1]+1]+1]+1]+1]+ 1] 
= a2[t[II[V[2(223+1*23 -1]+1] +1 ] + 1)+1 ] 
= a2[t[II [2 ( 2 4 7 +11[2H -1]+1]+1]+1] 
= a4t[2(�9o+1)[:l90-11+11+1] 

= a2 [2 ( 219 0+1)[2 ( 219 1 -J))+ I ] 
= a2[23B3-'l = a23S4-2 = 

a-I 

VI. RESULTS 

The ltoh-Tsujii inversion algorithm has been implemented for 
key lengths of 194-, 233-, and 384- bits on the Virtex 7 
XC7V2000T-IFLG1925 FPGA device. The mUltiplier is 
implemented using Sunar-Koc technique. The numbers are first 
converted into basis N. They are mUltiplied in N basis and the 
result is converted back into basis M. The squarer is nothing but 
a cyclic shifter which is implemented using a register. The 
synthesis results are included in Table -II. The number of LUTs 
and flip-flops used are compared for different key lengths. Also, 
the maximum frequency of operation is also compared for these 
key lengths. The simulation results are also provided in Figure 
l. 

The implementation for 194-, 233-, and 384- bit key lengths 
consumed 20, 21 and 32 clock cycles respectively. 

TABLE II FPGA SYNTHESIS RESULTS FOR DIFFERENT KEY 

LENGTHS 

Parameter 
Logic Avai l -
Util izatio n able 
No. of LUT's 1221600 
No. of FF's 2443200 
No . of 10's 1200 
Max. freq.(MHz) 

VII. 

194-
Used 

62431 
587 
390 

103.27 

Key length in biis 
233-
Used 

87742 
704 
468 

92.32 

CONCLUSIONS 

3 84- I 
Used 

51227 
966 
770 
99.5 

The implementation of ltoh-Tsujii inversion algorithm using 
Sunar-Koc multiplier for optimal normal basis of type II is pre-

sented. The inversion operation for GF (2384) has been illus­
trated with an example. A resource comparison of the FPGA 
implementations of the algorithm for GF(2194),GF(2233), and 
GF(2384) is given. 

Now: 
10100", 

.. � .. - 'a�;;;;;;;;;;��;;;;��;;��;;�;;��� lii iil( 041n.0I 1U" O '94'nCl0��1'OOOOOOOOOO' 
1Il 1ijl(: *"" nOl 194'_�'94l1OOOOOOOOOOOOO� 1901''''6725ED8l3C.3Ioa8UE7 4C0CC02 1�2!I 

(b) Key length = 233 
Now: 

.. � 

�� , �i���iiiiiiiiiiiiiiiiiiiiiiiiiiii;;��� iII i( >(lIlOl 38-1' 0 J8.1'h0210< 100201 'OOOOOOCOCC 2COOCCHlOOOOOOOOOOOOOOOl OJ 
i!I (( ,;",ptJ,0) 38oI'.'-I7EBCOEEEI�11571if17ClQ'� 

(c) Key length = 384 
Fig. I. Simulation results for three different key lengths 
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