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The high intensity rainfall has a significant contribution in urban area flooding and understanding this
high intensity rainfall over urban areas may help us to reduce the damage caused by urban floods. In this
study, the changes in Hyderabad city daily and sub-daily (4-h) extreme rainfall are analyzed using var-
ious climate change detection indices. Our analysis indicates that there is increasing trend in intensity
and frequency of Hyderabad city daily extreme rainfall. In addition, increasing trend in intensity and fre-
quency of monsoon months’ (June–August) 1 a.m. to 4 a.m., 5 p.m. to 8 p.m. and 9 p.m. to 12 a.m. and
non-monsoon months’ 5 p.m. to 8 p.m. extreme rainfall is also observed. Based on recent theoretical
development in the Extreme Value Theory (EVT), the changes in extreme rainfall of Hyderabad city are
further attributed through modelling the non-stationarity (trend) present in the extreme rainfall
intensity and frequency. The extreme rainfall intensity is modelled with peaks-over-threshold (POT)
based Generalized Pareto Distribution (GPD) and frequency is modelled using inhomogeneous Poisson
distribution. The trend is incorporated as covariate in the scale parameter (r) of the GPD and the rate
parameter (k) of the Poisson distribution. In this study, four physical processes, i.e. Urbanization, El
Niño-Southern Oscillation (ENSO) cycle, local temperature changes, and global warming are used as
covariates. Further, the combinations of these covariates are also considered for modelling the
non-stationarity.
Based on covariates and their combinations, fifteen non-stationary models and one stationary model

are constructed and the best model is chosen based on the corrected Akaike Information Criterion
(AICc) value. The covariate(s) in the best chosen non-stationary statistical model is/are attributed as
the most significant physical process/processes which causes non-stationarity in the series. The study
results indicate that the non-stationarity in daily extreme rainfall of Hyderabad city is mostly associated
with global processes, i.e. ENSO cycle and global warming and the non-stationarity in sub-daily (4-h)
extreme rainfall is mostly associated with local processes, i.e. Urbanization and local temperature
changes. It is also observed that, in most of the cases, the stationary model is not even considerable based
on AICc value.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

By 2030, towns and cities will be home to almost 5 billion peo-
ple and it will be around 80% of the world population. The urban
population of Africa and Asia will double in less than a generation
(UNFPA, 2007). By the middle of 2009, for the first time, the popu-
lation living in urban areas reached more than half of the world’s
population (DESA, 2010). At the same time, urban flooding and
the damage to infrastructure and society are problems in both
developing and developed countries. The high intensity (extreme)
rainfall has a significant contribution in urban area flooding and
the key challenge in urbanized area is to provide good quality
detailed forecasts.

In addition, recent studies report that the frequency and inten-
sity of extreme precipitation events are intensifying due to global
climate change (Allen and Ingram, 2002; Trenberth et al., 2003;
Emori and Brown, 2005; Cavanaugh et al., 2015; Xu et al., 2015).
In specific, the impact of different climate processes on
daily extreme precipitation has been analyzed, such as El
Niño-Southern Oscillation (ENSO) cycle (Revadekar and Kulkarni,
2008; Kenyon and Hegerl, 2010; Zhang et al., 2010; Mondal and
Mujumdar, 2015; Villafuerte and Matsumoto, 2015), global
warming (Kunkel et al., 2013; Mondal and Mujumdar, 2015;
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Fig. 1. Location map of Hyderabad city.
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Villafuerte and Matsumoto, 2015). Furthermore, reasonable
literature reported the possible changes in precipitation due to
urbanization (Changnon et al., 1971; Shepherd et al., 2001;
Shepherd and Burian, 2003; Burian and Shepherd, 2005; Lei
et al., 2008; Kishtawal et al., 2009; Min et al., 2011; Zhang et al.,
2014; Yang et al., 2015). Especially Burian and Shepherd (2005)
hypothesized the possible role of urbanization in diurnal rainfall
distribution. In addition, recent studies reported the influence of
urbanization in extreme rainfall events as well (Lei et al., 2008;
Miao et al., 2011). Thus, especially in urban areas, it is very
important to understand how and why precipitation extremes
have changed in the past and how they will change in the future.

In this study, the changes in daily and sub-daily (4-h) extreme
rainfall intensity and frequency of Hyderabad city are analyzed.
Further, positive trends in intensity and frequency of extreme rain-
fall are attributed through modelling the non-stationarity present
in the series. In hydrology, usually, two approaches can be used
to model the extreme values: block maxima and peaks over thresh-
old (POT). The block maxima approach consists of modelling a
sequence of maximum values taken from blocks of equal length,
usually annual maximum. The probability distribution of values
selected by this way converges asymptotically to the Generalized
Extreme Value (GEV) distribution (Katz, 2013). But, the block max-
ima approach may miss real extreme events and the maximum
value of some blocks may not be the extreme event. In addition,
it is difficult to estimate the distribution parameters with small
sample size. The POT approach utilizes the available data in a more
efficient manner. POT selects all excesses over a given large thresh-
old in each block. The asymptotic distribution of POT data set is the
Generalized Pareto Distribution (GPD) (Coles, 2001; Katz, 2013). In
case POT approach, some form of declustering is necessary to
remove the temporal dependence within each extreme rainfall
spell (Coles, 2001). The non-stationarity in the extreme values
can be incorporated with both block maxima and POT approach.
In this study, the POT approach is chosen because of its advantages
over block maxima.

The non-stationarity present in the series can be modelled by
incorporating covariates in parameters of the distribution (Katz
et al., 2002; Khaliq et al., 2006; Katz, 2013). The covariate can be
time (Sugahara et al., 2009; Cheng et al., 2014) or any independent
physical processes, i.e. climate variables (Nogaj et al., 2007;
Mondal and Mujumdar, 2015). In this study, four physical pro-
cesses (i.e. Urbanization, ENSO cycle, local temperature changes,
and global warming) and their combinations are used as covariates
to model the non-stationarity present in the Hyderabad city daily
and sub-daily (4-h) extreme rainfall intensity and frequency. The
covariate(s) in the best chosen non-stationary statistical model
is/are the most significant physical process/processes which causes
non-stationarity in the series.
2. Study area

The Hyderabad city is the capital of the state of Telangana in
India. Location map of the Hyderabad city is shown in Fig. 1. The
Hyderabad city lies between latitude of 17.25�N and 17.60�N and
longitude of 78.20�E and 78.75�E and situated at a height of about
500 m above the mean sea level. It is classified as a semi-arid
region and the Köppen-Geiger classification is BSh (Peel et al.,
2007). The major urbanization of Hyderabad city took place after
1990. During 1971–1990, the average rainfall of Hyderabad city
was 796 mm per year. But, it has increased to 840 mm per year



Table 1
Satellite images used to model the urbanization.

Year Satellite Sensor Date of accusation Spatial
resolution (m)

1972 Landsat-1 MSS 17-12-1972 (NASA, 1972) 60
1981 Landsat-3 MSS 14-10-1981 (NASA, 1981) 60
1989 Landsat-5 TM 22-02-1989 (NASA, 1989) 30
1994 Landsat-5 TM 25-04-1994 (NASA, 1994) 30
2000 Landsat-7 ETM+ 29-02-2000 (NASA, 2000) 30
2003 Landsat-7 ETM+ 20-01-2003 (NASA, 2003) 30
2006 Landsat-5 TM 10-04-2006 (NASA, 2006) 30
2010 Landsat-5 TM 21-04-2010 (NASA, 2010) 30
2013 Landsat-8 OLI-TIRS 25-12-2013 (NASA, 2013) 30
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during 1991–2013. The wettest month of the city is August and the
average rainfall of this month is 163 mm.

3. Data

3.1. Rainfall data

For this study, the hourly observed rainfall data for Hyderabad
city is procured from the India Meteorological Department (IMD)
for the period of 01-01-1971 to 31-12-2013 (43 years). This data
is gauge observation and it is observed at the center of Hyderabad
city i.e. 78.46�E and 17.45�N. The location of this gauge is given in
Fig. 1 (star mark). Further, the current version of (V1101) APHRO-
DITE gridded daily rainfall has been used to find the difference in
urban rainfall with respect to non-urban rainfall and it is available
at http://www.chikyu.ac.jp/precip/ for the period 1951–2007.
APHRODITE is high resolution (0.25� longitude � 0.25� latitude)
gridded daily rainfall data set which was developed for the Asian
Regions under the Asian Precipitation Highly Resolved Observa-
tional Data Integration Towards Evaluation of the Water Resources
(APHRODITE) project (Yatagai et al., 2012). The justification for
using APHRODITE gridded daily rainfall is given in Section 4.2.

3.2. Covariates

The non-stationarity in the Hyderabad city extreme rainfall
intensity and frequency is modelled with four physical processes
(i.e. Urbanization, ENSO cycle, local mean temperature, and global
warming) and their possible combinations. The data used to repre-
sent the four physical processes and justification to use them is
given in this section.

3.2.1. Urbanization
In urban area, natural land surfaces are replaced with artificial

surfaces that have different thermal properties (e.g., heat capacity
and thermal inertia). Such surfaces are typically more capable of
storing solar energy and converting it to sensible heat. As sensible
heat is transferred to the air, the temperature of the air in urban
areas tends to be 2–10 �C higher than surrounding non-urban areas
(Shepherd et al., 2001). Thus, urban areas modify boundary layer
processes through the creation of an Urban Heat Island (UHI) and
the UHI can have a significant influence on mesoscale circulations
and resulting convection (Shepherd et al., 2001). In the early 19th
century, the issue about the influence of urbanization process on
precipitation distribution was put forward (XiQuan et al., 2009).
The initial investigation by Changnon et al. (1971) showed that
the urbanization lead to increased precipitation during the sum-
mer months. In recent year, the possible changes in urban area
rainfall due to urbanization have been analyzed by Burian and
Shepherd (2005), Zhang et al. (2014) and Yang et al. (2015).
Burian and Shepherd (2005) hypothesized the possible role of
urbanization in diurnal rainfall distribution. Kishtawal et al.
(2009) reported changes in extreme rainfall over India due to
urbanization.

In this study, to know the urbanization pattern, the urban
growth (growth in built-up land) of Hyderabad city from 1971 to
2013 is modelled using high resolution remote sensing data. In
particular, the Level I (terrain information level (Anderson et al.,
2001)) Land Use Land Cover (LULC) map is prepared with satellite
images and used for identifying growth in built-up land. The Land-
sat satellite images are used to create Level I LULC maps of Hyder-
abad city to model the urban growth and it is worth to note that
the Level I LULC map can be prepared with greater than 80% accu-
racy using satellite images (Avei and Akyurek, 2004).

The list of Landsat satellite images selected to model the Hyder-
abad city urban growth are listed in Table 1. The Maximum Likeli-
hood Classification (MLC) algorithm is used to classify the satellite
images. Because, the tolerance of the MLC algorithm to insufficient
(less representative) training samples is high compared to other
classification algorithms for Landsat images (Li et al., 2014) and
it is often preferred by many remote sensing data users to classify
land covers worldwide (Lu and Weng, 2007).

MLC algorithm is supervised pixel based image classification
algorithm and it requires training samples of each class. Based on
the preliminary analysis, four Level I classes are identified over
the study area, i.e. Urban or Built-up Land, Water, Agricultural Land
(Vegetation cover) and Barren Land. For each class minimum 5
training samples have been collected and merged. More details
about the MLC algorithm can be obtained from Gibson and
Power (2000).

Further, the class accuracy (Congalton and Green, 2009) is used
to assess the accuracy of built-up land class. Based on 2013 extent
of Hyderabad city, an area of 1913 km2 is chosen and Landsat satel-
lite images (Table 1) have been clipped for selected region and
classified with the MLC algorithm. The steps involved in creating
LULC map from Landsat satellite image is shown in Fig. 2. In
Fig. 2, the four band multi spectral image is the Landsat satellite,
blue, green, red and NIR band multi spectral image and the
convergence is 80% class accuracy. The training samples are tuned
until 80% class accuracy of built-up land class is achieved (see
Table 2).

The Level I LULC maps prepared form Landsat images are shown
in Fig. 4. From the LULC maps, the area of built-up land is calcu-
lated and the urban growth is modelled by an exponential function
(Eq. (1)). The modelled urban growth is plotted in Fig. 3.

y ¼ 6:322� 10�46 � eð0:05485�xÞ ð1Þ

Here, y is built-up land in square kilometer and x is corresponding
year. This model (Eq. (1)) is valid only between 1971 and 2013. The

http://www.chikyu.ac.jp/precip/


Fig. 2. Methodology of image classification.

Table 2
Satellite image classification results.

Year Built-up land (km2) Percentage (%) Class accuracy

1972 86.63 4.53 86.6
1981 104.89 5.48 86.36
1989 141.26 7.38 85.71
1994 180.41 9.43 97.22
2000 277.52 14.51 91.66
2003 313.02 16.36 91.52
2006 405.87 21.22 96.97
2010 479.07 25.04 94.93
2013 561.96 29.38 95.5
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coefficient of determination (R2) and RMSE of the model (Eq. (1)) is
0.992 and 16.35 respectively.

The built-up land area of each year between 1971 and 2013 is
calculated using Eq. (1). As the urbanization follows the exponen-
tial function, it is unrealistic to use this modelled value directly.
Thus, the modelled urbanization is first transformed using natural
logarithm and used as the one of the covariate to model the
characteristics of extreme precipitation of Hyderabad city.
3.2.2. El Niño-Southern Oscillation (ENSO) cycle
The ENSO cycle is the fluctuations in temperature between the

ocean and the atmosphere in the east-central Equatorial Pacific
(Zelle et al., 2004). In ENSO cycle, the cold phase is referred as La
Niña and the warm phase is referred as El Niño. These deviations
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from normal surface temperatures can have large-scale impacts
not only on ocean processes, but also on global weather and cli-
mate (Zelle et al., 2004). The ENSO cycle is the most important cou-
pled ocean–atmosphere phenomenon to cause global climate
variability on inter-annual time scales. The recent studies show
the effect of ENSO cycle on extreme precipitation at local and
regional scale (Kenyon and Hegerl, 2010; Zhang et al., 2010;
Agilan and Umamahesh, 2015). Revadekar and Kulkarni (2008)
studied the effect of ENSO cycle on extreme rainfall over India.
Recently, Mondal and Mujumdar (2015) modelled the non-
stationarity in intensity, duration and frequency of daily extreme
rainfall over India with ENSO cycle as one of the covariate.

The ENSO cycle is represented by several ENSO indices such as
Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI)
and Sea Surface Temperature (SST). Different studies use different
ENSO indices to model the non-stationarity i.e. SOI (Katz et al.,
2002), SST (Mondal and Mujumdar, 2015). Further, Revadekar
and Kulkarni (2008) reported that the intensity and frequency of
extreme precipitation in Southern India have strong correlation
with NINO 3.4 SST anomalies 4–6 months in advance. In addition,
some earlier studies reported that the MEI is better for monitoring
ENSO than the SOI or various SST indices because the MEI inte-
grates more information than other indices, it reflects the nature
of the coupled ocean–atmosphere system better than either com-
ponent, and it is less vulnerable to occasional data glitches in the
monthly update cycles (Wolter and Timlin, 1998). Thus, MEI, SOI
and SST are used as ENSO indicators with lag up to 12 months
and the best ENSO indicator among them is chosen for monsoon
and non-monsoon months and used for further analysis (refer Sec-
tions 5.3.1 and 5.4.1).

The ENSO index MEI is based on six main observed variables
over the tropical Pacific i.e. sea-level pressure (P), zonal (U) and
meridional (V) components of the surface wind, sea surface
temperature (S), surface air temperature (A), and total cloudiness
fraction of the sky (C). For this study, monthly MEI for the period
of 1970–2013 is used and it is available at http://www.esrl.noaa.
gov/psd/enso/mei/index.html (accessed on 01-04-2015). The SOI
is a standardized index based on the observed sea level pressure
differences between Tahiti and Darwin, Australia and it is available
at http://www.cpc.ncep.noaa.gov/data/indices/soi (accessed on 01-
04-2015). The more common SST index, i.e. monthly sea surface
temperature anomaly over NINO 3.4 (17�E–120�W, 5�S–5�N)
region with respect to 1981–2010 mean is used as a third ENSO
indicator and it is available at http://www.cpc.ncep.noaa.gov/
data/indices/sstoi.indices (accessed on 01-04-2015).

3.2.3. Global and local temperature anomaly
During the past century, human activities caused an increase in

global temperature (Min et al., 2011; IPCC, 2013). The rising
1995 2000 2005 2010 2015
ear

lt Model (Eq. (1))

rabad city (1971–2013).
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Fig. 4. Level I LULC map of (a) 2013, (b) 2010, (c) 2006, (d) 2003, (e) 2000, (f) 1994, (g) 1989, (h) 1981 and (i) 1972.
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temperatures boost the atmosphere’s water holding capacity by
about 7% per 1 �C warming, thus directly affecting precipitation
(Trenberth, 2011). And the recent studies show that the higher
atmospheric water vapor can lead to more intense precipitation
events (Berg et al., 2013; Kunkel et al., 2013). Furthermore, rising
temperatures and subsequent increases in atmospheric moisture
content may increase the probable maximum precipitation or the
expected extreme precipitation (Kunkel et al., 2013). In addition,
the physical mechanisms linking local temperatures with precipi-
tation may not be the same as those linking global warming to
extreme precipitation changes (Trenberth, 2011). In some part of
India, the non-stationarity in intensity and frequency of extreme
gridded rainfall is associated with local and global temperature
anomaly (Mondal and Mujumdar, 2015). Hence, the choice of
local and global temperatures as covariates for modelling
non-stationarity in Hyderabad city extreme rainfall intensity and
frequency is appropriate.

The hourly observed temperature data for Hyderabad city is
procured from India Meteorological Department (IMD) for the per-
iod of 01-01-1971 to 31-12-2013 (43 years). This data is station
observation and it is observed at the center of Hyderabad city i.e.
78.46�E and 17.45�N. The monthly mean temperature is calculated
from the hourly temperature observations and the monthly Local
Temperature Anomaly (LTA) based on 1971–2013 mean is



Table 3
ETCCDI for daily precipitation.

ID Indicator name Indicator definitions Units

SDII Simple Daily
Intensity Index

The ratio of annual total
precipitation to the number of
wet days (> 1 mm)

mm/day

R10 Number of heavy
precipitation days

Annual count when precipitation
>10 mm

days

R20 Number of very
heavy
precipitation days

Annual count when precipitation
>20 mm

days

CDD Consecutive Dry
Days

Maximum number of
consecutive days when
precipitation <1 mm

days

CWD Consecutive Wet
Days

Maximum number of
consecutive days when
precipitation >1 mm

days

R95p Very wet days Annual total precipitation from
days >95th percentile

mm

R99p Extremely wet
days

Annual total precipitation from
days >99th percentile

mm

PRCPTOT Annual total wet-
day precipitation

Annual total precipitation from
days >1 mm

mm
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calculated. The HadCRUT4 monthly observed Global Temperature
Anomaly (GTA) with respect to the 1961–1990 mean is used as
an indicator of global warming. The GTA is based on average sur-
face air temperature observation and it is available at http://www.
metoffice.gov.uk/hadobs/hadcrut4/ (accessed on 01-04-2015).
4. Change detection in extreme rainfall

4.1. Changes in daily extreme rainfall

The word ‘‘extreme” may refer to many different things in the
climate literature and there is no unique climatological definition
for extreme (Stephenson, 2008). But in the case of climate variable,
such as precipitation, an extreme can be reasonably well defined
referring to values in the tails of the distribution that would be
expected to occur infrequently (Zeng and Zwires, 2013). In this
section, the daily and sub-daily (4-h) precipitation extremes of
Hyderabad city are analyzed. To address the needs of various
aspects of climate research on extremes and to facilitate the mon-
itoring of extremes, the Expert Team on Climate Change Detection
and Indices (ETCCDI) defined a set of descriptive indices of
extremes (Alexander et al., 2006; Zhang et al., 2011; Zeng and
Zwires, 2013). In this study, the precipitation ETCCDI that are used
to analyze the changes in daily extreme precipitation are listed in
Table 3.

The variations in the above listed ETCCDI in each year are ana-
lyzed and fitted with linear regression and tested for statistical sig-
nificance. The F-test is used to check the statistical significance of
linear regression. The variation in Simple Daily Intensity Index
(SDII) is shown in Fig. 5(a). Based on F-test, the linear fit of SDII
is statistically significant. The SDII is following increasing trend.
The SDII is the ratio between annual precipitation and number of
wet days. Thus, the increasing trend in SDII indicates that the rain-
fall in wet days is increasing. In this study, the average wet days in
a year is 65 days. The variation in R10 is plotted in Fig. 5(b). The
linear fit of R10 is statistically insignificant, however, the slight
increasing trend is noted from the linear fit of R10. In this study,
10 mm is the 73rd percentile daily rainfall. The variation in R20
is illustrated in Fig. 5(c). Based on F-test, the linear fit of R20 is sta-
tistically significant. In this study, 20 mm is the 87th percentile
daily rainfall. From the linear fit of R20, it is noted that the
frequency of high intensity rainfall has increased. The changes in
Consecutive Dry Days (CDD) is plotted in Fig. 5(d). Slight decreas-
ing trend is observed in the linear fit of CDD, but the fit is statisti-
cally insignificant. The average CDD of Hyderabad city is 100 days
and it is based on time period 1971–2013. Fig. 5(e) shows the vari-
ation in Consecutive Wet Days (CWD). The linear fit of CWD shows
the decreasing trend and it is statistically significant. From the
variations of SDII and CWD, it is evident that the intensity of
Hyderabad city daily rainfall is increasing. Based on time period
1971–2013, the average CWD of Hyderabad city is 7.4 days. The
variation in high intensity rainfall, i.e. R95p is shown in Fig. 5(f).
From the linear fit of R95p, it is seen that the high intensity rainfall
is increasing and the linear fit is statistically significant. Increasing
trend in R95p may be due to increase in frequency of high intensity
rainfall or increase in magnitude (intensity) of high intensity rain-
fall. The 95th percentile daily rainfall of this study is 38.55 mm.

The variation in very high intensity rainfall, i.e. R99p is plotted
in Fig. 5(g). Based on F-test, the linear fit of R99p is statistically sig-
nificant. The linear fit of R99p shows an increasing trend. This also
may be due to increase in frequency of very high intensity rainfall
or increase in magnitude (intensity) of very high intensity rainfall.
The 99th percentile daily rainfall of this study is 71.625 mm. The
variation in annual total wet-day precipitation (PRCPTOT) is shown
in Fig. 5(h). The linear fit of PRCPTOT shows the increasing trend
and the linear fit is statistically significant. From the variations in
8 indices (Table 3), it is clear that the intensity and (or) frequency
of Hyderabad city daily extreme rainfall has increased. But it is
not clear that during a day when it is increased. Thus, the change
detection study is further extended.
4.2. Change in diurnal rainfall distribution

Burian and Shepherd (2005) analyzed the effect of urbanization
on the diurnal rainfall pattern in Houston, USA. They compared pre
and post urban rainfall patterns and reported that the diurnal
rainfall distribution has changed, especially in noon to 4 p.m. and
4 p.m. to 8 p.m. Houston is a coastal city and located in USA but
our study area is a non-coastal city and located in India. The
diurnal rainfall pattern may be different for the current study area.
The similar study has been conducted to detect the changes in the
diurnal rainfall distribution of Hyderabad city. As the hourly
rainfall record before 1971 is not available for Hyderabad city,
two time periods after 1971 i.e. 1971–1980 and 2004–2013 are
chosen to detect the changes in diurnal distribution. Between
1980 and 2013, there is around 25% increase (refer Section 3.2.1)
in urban built up land.

The impact of urbanization in rainfall is more during the warm
season, i.e. June–August (Changnon et al., 1971; Burian and
Shepherd, 2005; Zhang et al., 2009). But there is variability associ-
ated with Indian rainfall (Krishnamurthy and Shukla, 2000). Hence,
to find the difference in monthly rainfall distribution in urban area,
the variation of monthly rainfall distribution of urban area is
compared with non-urban area monthly rainfall distribution. The
APHRODITE gridded daily rainfall has been used to analyze the
difference between urban and non-urban area monthly rainfall
distribution. APHRODITE is high resolution daily rainfall data set
(Yatagai et al., 2012) and studies conducted comparing daily
rainfall estimates from APHRODITE with those from the Indian
Meteorological Department’s (IMD) rain gauges indicated a high
correlation (Indu and Kumar, 2014). Further, Rajeevan and Bhate
(2009) carried a quantitative analysis of this product over India
and reported a difference of less than 3 mm/day. Four APHRODITE
data set grids represent the Hyderabad city. However, a most
urbanized grid in the Hyderabad city and one non-urban grid point
attached to the Hyderabad city grid are chosen for this study. The
average monthly rainfall is calculated from daily APHRODITE
rainfall and the average monthly rainfall distribution of urban area

http://www.metoffice.gov.uk/hadobs/hadcrut4/
http://www.metoffice.gov.uk/hadobs/hadcrut4/
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Fig. 5. Variations in (a) SDII, (b) R10, (c) R20, (d) CDD, (e) CWD, (f) R95p, (g) R99p and (h) PRCPTOT of daily rainfall of Hyderabad city and linear best fit of the variation
(dashed lines).
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and non-urban area are plotted in Fig. 6. In addition, the monthly
rainfall distribution of urban area is analyzed with IMD station
observation and plotted in Fig. 6 and these plots are based on
1971–2007 time period.

From the variations in average monthly rainfall distribution, it
is clear that the average monthly rainfall in urban area is different
during June–August when compared to non-urban area. In India,
June–August is often referred as monsoon months. Hence, the diur-
nal rainfall distribution of monsoon months and non-monsoon
months (except June–August) are analyzed separately.

As Burian and Shepherd (2005) divided the day into 4-h time
increments (i.e. midnight to 4 a.m., 4 a.m. to 8 a.m., and so on) to
study the diurnal rainfall distribution of Houston (USA), the same
approach has been followed to analyze the changes in the diurnal
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Table 4
ETCCDI for 4 h precipitation.

ID Indicator name Indicator definitions Units

R10-4 h Number of heavy 4 h precipitation Annual count when precipitation >10 mm during corresponding 4 h and season days
R20-4 h Number of very heavy 4 h precipitation Annual count when precipitation >20 mm during corresponding 4 h and season days
R95p-4 h Very wet 4 h Annual total precipitation from days >95th percentile rainfall of corresponding 4 h and season mm
PRCPTOT-4 h Annual total wet 4 h precipitation Annual total precipitation from days >1 mm during corresponding 4 h and season mm
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Fig. 8. Variations in (a) R10-4 h, (b) R20-4 h, (c) R95-4 h and (d) PRCPTOT-4 h of monsoon 1 a.m. to 4 a.m. rainfall and linear best fit of the variation (dashed lines).
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rainfall distribution of Hyderabad. The diurnal rainfall distribution
of monsoon and non-monsoon months are shown in Fig. 7
(a) and (b) and the diurnal rainfall percentage distribution of mon-
soon and non-monsoon months are shown in Fig. 7(c) and (d).
From the diurnal rainfall and percentage distribution, it is clear
that the diurnal rainfall distribution of both monsoon and non-
monsoon months have changed significantly between 1971–1980
and 2004–2013.

During the monsoon months, except 9 a.m. to 12 p.m., the rain-
fall that occurred in other 4-h time periods have increased after
urbanization and it may be due to the increasing trend in total
rainfall (refer Section 4.1). But the diurnal rainfall percentage dis-
tribution confirms that the percentage rainfall occurring between
1 a.m. and 4 a.m. has increased by 4.5% and nearly 1% increase in
percentage rainfall that occurred between 5 a.m. and 8 a.m. Apart
from this, the percentage of rainfall that occurred in all other time
periods has decreased during monsoon months. The maximum
decrease in percentage rainfall occurrence during monsoon
months is 2.22% and it is during 1 p.m. to 4 p.m.

From Fig. 7(a)–(d), it is noted that the change in the diurnal
rainfall distribution of non-monsoon months is significantly differ-
ent from monsoon months. Fig. 7(b) shows that the rainfall that
occurred during non-monsoon months’ 5 a.m. to 8 a.m. and 5 p.
m. to 8 p.m. has increased significantly. But, 9 a.m. to 12 p.m. and
9 p.m. to 12 a.m. rainfall has significantly decreased and it is noted
that there is no significant change in rainfall occurrence during 1 a.
m. to 4 a.m. and 1 p.m. to 4 p.m. Fig. 7(d) reveals the diurnal rain-
fall percentage distribution of non-monsoon months and maxi-
mum of 8.52% increase in percentage rainfall that occurred
between 5 p.m. and 8 p.m. and maximum of 8.67% decrease in per-
centage rainfall that occurred between 9 p.m. and 12 a.m. is
observed.

From the analysis of results, it is evident that the rainfall occur-
ring during 1 a.m. to 4 a.m., 5 p.m. to 8 p.m. and 9 p.m. to 12 a.m.
have increased significantly in the monsoon months. During non-
monsoon months the rainfall that occurred between 5 p.m. and
8 p.m. has increased significantly. However, it is not clear that
the extreme rainfall that occurred during these periods have chan-
ged or not. To examine the changes in extreme rainfall of these 4 h
time periods, some of the ETCCDI of daily precipitation (Table 3)
have been modified for 4 h rainfall and given in Table 4.

4.2.1. Changes in monsoon months’ 1 a.m. to 4 a.m. extreme rainfall
The modified ETCCDI listed in Table 4 are used to analyze the

changes in the monsoon months’ 1 a.m. to 4 a.m. extreme rainfall.
The variations and linear best fit of R10-4 h, R20-4 h, R95p-4 h and
PRCPTOT-4 h are plotted in Fig. 8(a)–(d) respectively. During this
period, the 10 mm/4 h is the 89th percentile rainfall and
20 mm/4 h is 96th percentile rainfall. 19.345 mm/4 h is the 95th
percentile rainfall of the period. Increasing trend in R95p-4 h
may be due to increase in frequency of high intensity rainfall or
increase in magnitude (intensity) of high intensity rainfall. All four
ETCCDI of monsoon months’ 1 a.m. to 4 a.m. rainfall are having sta-
tistically significant increasing trend and it indicates that the
extreme rainfall that occurred between 1 a.m. and 4 a.m. during
monsoon months has increased.

4.2.2. Changes in monsoon months’ 5 p.m. to 8 p.m. extreme rainfall
The extreme rainfall occurring between 5 p.m. and 8 p.m. dur-

ing monsoon months is analyzed with 4-h extreme rainfall ETCCDI
(Table 4). The variations and linear best fit of R10-4 h, R20-4 h,
R95p-4 h and PRCPTOT-4 h are plotted in Fig. 9(a)–(d) respectively.
The linear fits of all four indices are having increasing trend and
except the linear fit of R10-4 h, all other linear fits are statistically
significant. During this period 10 mm/4 h is the 86th percentile
rainfall, 20 mm/4 h is 96th percentile rainfall and 19.69 mm/4 h
is the 95th percentile rainfall of the period. The increasing trend
in linear fits indicate that the extreme rainfall occurring between
5 p.m. and 8 p.m. during monsoon months has also increased.

4.2.3. Changes in monsoon months’ 9 p.m. to 12 a.m. extreme rainfall
Fig. 10 shows the variations in 4-h ETCCDI (Table 4) of extreme

rainfall that occurred between 9 p.m. and 12 a.m. during monsoon
months. Similar to previous time period (i.e. 5 p.m. to 8 p.m.)
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results, the linear fits of all four indices are having increasing trend
and they are statistically significant except the linear fit of R10-4 h.
Based on rainfall that occurred between 9 p.m. and 12 a.m. time
period of monsoon months, 10 mm/4 h is the 85th percentile
rainfall, 20 mm/4 h is 93rd percentile rainfall and 23.345 mm/4 h
is the 95th percentile rainfall. It is noted that the intensity of high
percentile rainfall that occurred between 9 p.m. and 12 a.m. is
comparatively higher than rainfall that occurred between 1 a.m.
to 4 a.m. and 5 p.m. to 8 p.m. and the increasing trend in linear fits
indicate that the extreme rainfall that occurred between 9 p.m. and
12 a.m. during monsoon months has increased.

During the monsoon months, the extreme rainfall frequency
and intensity that occurred between 1 a.m. to 4 a.m., 5 p.m. to
8 p.m. and 9 p.m. to 12 a.m. have increased. The increasing trend
of 1 a.m. to 4 a.m. extreme rainfall is steeper than other two time
periods and the intensity of rainfall that occurred between 9 p.m.
and 12 a.m. is comparatively higher than other time periods. These
increasing trends could be due to one or more physical process.



Table 5
List of GPD and Poisson models constructed in this study and their specifications.

GPD model Poisson model

ID Specification ID Specification

GPD-1 Y � GP(r0, n) P-1 F � Pðeðk0ÞÞ
GPD-2 Y � GPðeðr0þr1UÞ; nÞ P-2 F � Pðeðk0þk1UÞÞ
GPD-3 Y � GPðeðr0þr1LTAÞ; nÞ P-3 F � Pðeðk0þk1LTAÞÞ
GPD-4 Y � GPðeðr0þr1GTAÞ; nÞ P-4 F � Pðeðk0þk1GTAÞÞ
GPD-5 Y � GPðeðr0þr1EÞ; nÞ P-5 F � Pðeðk0þk1EÞÞ
GPD-6 Y � GPðeðr0þr1Uþr2LTAÞ; nÞ P-6 F � Pðeðk0þk1Uþk2LTAÞÞ
GPD-7 Y � GPðeðr0þr1Uþr2GTAÞ; nÞ P-7 F � Pðeðk0þk1Uþk2GTAÞÞ
GPD-8 Y � GPðeðr0þr1Uþr2EÞ; nÞ P-8 F � Pðeðk0þk1Uþk2EÞÞ
GPD-9 Y � GPðeðr0þr1LTAþr2GTAÞ; nÞ P-9 F � Pðeðk0þk1LTAþk2GTAÞÞ
GPD-10 Y � GPðeðr0þr1LTAþr2EÞ; nÞ P-10 F � Pðeðk0þk1LTAþk2EÞÞ
GPD-11 Y � GPðeðr0þr1GTAþr2EÞ; nÞ P-11 F � Pðeðk0þk1GTAþk2EÞÞ
GPD-12 Y � GPðeðr0þr1Uþr2LTAþr3GTAÞ; nÞ P-12 F � Pðeðk0þk1Uþk2LTAþk3GTAÞÞ
GPD-13 Y � GPðeðr0þr1Uþr2LTAþr3EÞ; nÞ P-13 F � Pðeðk0þk1Uþk2LTAþk3EÞÞ
GPD-14 Y � GPðeðr0þr1Uþr2GTAþr3EÞ; nÞ P-14 F � Pðeðk0þk1Uþk2GTAþk3EÞÞ
GPD-15 Y � GPðeðr0þr1LTAþr2GTAþr3EÞ; nÞ P-15 F � Pðeðk0þk1LTAþk2GTAþk3EÞÞ
GPD-16 Y � GPðeðr0þr1Uþr2LTAþr3GTAþr4EÞ; nÞ P-16 F � Pðeðk0þk1Uþk2LTAþk3GTAþk4EÞÞ

Note: F – Frequency; P – Poisson distribution.
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4.2.4. Changes in non-monsoon months’ 5 p.m. to 8 p.m. extreme
rainfall

During non-monsoon months, the amount of rainfall that
occurred between 5 p.m. and 8 p.m. has increased around 8.5%
and it may be from normal rainfall and/or extreme rainfall. Thus,
the variations in 4 h rainfall extreme indices of this time period
are analyzed and plotted in Fig. 11. The linear fit of extreme rainfall
indices R10-4 h, R95-4 h and PRCPTOT-4 h are having increasing
trend and they are statistically insignificant. But, the linear fit of
R20-4 h is having increasing trend and it is statistically significant.
Based on rainfall that occurred between 5 p.m. and 8 p.m. time
period of non-monsoon months, 10 mm/4 h is the 83rd percentile
rainfall, 20 mm/4 h is 92nd percentile rainfall and 26.6 mm/4 h is
the 95th percentile rainfall. The increasing trend in linear fits indi-
cate that the extreme rainfall that occurred between 5 p.m. and
8 p.m. during non-monsoon months has also increased.

Based on analysis of results, significant changes in daily and 4-h
extreme precipitation occurred during monsoon months and non-
monsoon months are observed. For further analysis, the monsoon
months’ 1 a.m. to 4 a.m., 5 p.m. to 8 p.m. and 9 p.m. to 12 a.m.
and non-monsoon months’ 5 p.m. to 8 p.m. rainfall are considered
along with the monsoon and non-monsoon months’ daily rainfall.
5. Attribution through modelling non-stationarity

Though it is important to detect the changes in extreme rainfall,
attributing possible cause for the change is very important to
understand the future behavior of the extreme. Just because the
changes are detected in urban area, it is unrealistic to attribute
urbanization as a cause for the changes. In this section, the possible
cause(s) for the changes in Hyderabad city extreme rainfall
intensity and frequency are attributed through modelling
non-stationarity in the extreme rainfall intensity and frequency.
The intensity and frequency of POT rainfall series can be modelled
simultaneously through Point Process approach (Katz, 2013).
However, it is still not commonly used to model trend
(non-stationarity) in climate or hydrological extremes (Katz,
2013). Thus, the more common Poisson-GP approach (Katz, 2013)
is used to model the non-stationarity in extreme rainfall intensity
and frequency. In particular, the intensity of extreme rainfall is
modelled with non-stationary Generalized Pareto (GP) distribution
and frequency of extreme rainfall is modelled with inhomogeneous
Poisson distribution.
5.1. Modelling non-stationarity in intensity of extreme rainfall

5.1.1. GPD model
Consider a sequence of M independent and identically dis-

tributed (iid) random variable X1, X2, . . ., XM conditioned on X > u,
where u is a given high threshold. For sufficiently high threshold
(u), the excesses Y = X � u converges to GPD and it is given by Eq.
(2) (Coles, 2001; Khaliq et al., 2006).

Fðy;r; nÞ ¼ PðX 6 uþ yjX P uÞ ¼ 1� 1þ y
r n

� ��1=n
; r > 0; 1þ y

r n > 0
1� exp �y

r

� �
; r > 0; n ¼ 0

(

ð2Þ
where r and n are the scale and shape parameters respectively. The
scale parameterr is the function of chosen threshold u and it charac-
terizes the spread of the distribution. As the precise estimation of
shape parameter is difficult, it is unrealistic to assume it as a smooth
function of time (Coles, 2001). Thus, the shape parameter is kept con-
stant and the non-stationarity is introduced only in scale parameter
r. The general formof non-stationary setting for the shape parameter
of GPD as a function of physical covariates is given by Eq. (3).

rðiÞ ¼ expðr0 þ r1c1 þ r2c2 þ r3c3 þ r4c4Þ
nðiÞ ¼ n

ð3Þ

where i denotes the day or 4-h; c1, c2, c3 and c4 are physical covari-
ates i.e. Urbanization (U), ENSO cycle (E), GTA and LTA. For the sta-
tionary GPD, the physical covariates c1, c2, c3 and c4 values are zero.
The exponential function in Eq. (3) ensure the positive value of the
scale parameter. The slope parameters r1, r2, r3 and r4 represent
the trend due to the effect of covariates c1, c2, c3 and c4 respectively.
Apart from stationary model, based on four covariates and their
combinations, fifteen non-stationary models are constructed (refer
Table 5). The physical covariate(s) of the best GPD model is/are
the most significant physical process/processes which is/are
responsible for the change in intensity of extreme rainfall.

5.1.2. Threshold selection
The next critical step is to select an adequate threshold value

that preserves the asymptotic property of the GPD. i.e. too low a
threshold is likely to violate the asymptotic basis of the model,
leading to bias; too high a threshold will generate few excesses
which may lead to high variance in the model estimate. The stan-
dard practice is to adopt as low a threshold as possible, subject to
the limit model providing a reasonable approximation (Coles,



Table 6
MRL selected threshold values for different rainfall.

Rainfall Threshold in mm (Percentile) Number of exceedance (after declustering)

Daily – monsoon months 38.57 (95) 106 (99)
Daily – non-monsoon months 38.49 (95) 84 (79)
Monsoon months – 1 a.m. to 4 a.m. 12.083 (91) 74 (60)
Monsoon months – 5 p.m. to 8 p.m. 17 (94) 66 (58)
Monsoon months – 9 p.m. to 12 a.m. 16.856 (92) 77 (66)
Non-monsoon months – 5 p.m. to 8 p.m. 16.4 (90) 76 (76)

Fig. 12. MRL plot for monsoon 5 p.m. to 8 p.m. rainfall. Solid and dashed jagged lines are MRL and 95% confidence intervals respectively. The sloping down straight line is MRL
implied by ML parameter estimates for threshold u = 17 mm. Vertical dashed lines indicates threshold and its exceedance.
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2001). A number of procedures for selecting thresholds have been
proposed in the literature, but there is no universally accepted rule
for it (Scarrott and MacDonald, 2012). In this study, the threshold
values for different rainfall are interpreted through MRL plot and
are given in Table 6. For more information about MRL plot, the
interested reader is referred to Coles (2001). The MRL plot for mon-
soon months’ 5 p.m. to 8 p.m. rainfall is shown in Fig. 12. For brev-
ity, the MRL plots of other rainfall are not shown in this paper.

Further, to remove the temporal dependence within each
extreme rainfall spell, some form of declustering is necessary
(Coles, 2001). An extreme rainfall cluster is consecutive days when
rainfall is higher than u and these clusters are separated from each
other by one or more days when rainfall is lower than u. Then the
clustered extreme rainfall is declustered by retaining only maxi-
mum extreme rainfall in each cluster. In case of 4-h rainfall, the
non-monsoon months’ 9 p.m. to 12 a.m. extreme rainfall is auto-
matically separated by 20 h or more. But, monsoon months’ 1 a.
m. to 4 a.m., 5 p.m. to 8 p.m. and 9 p.m. to 12 a.m. may have tem-
poral dependency because it is a continuous time period i.e. 5 p.m.
to 4 a.m. (next day). In these three 4-h time period, if two or three
continuous 4-h time period have rainfall intensity more than cor-
responding 4-h threshold, the maximum among them is selected
and remaining one/two 4-h extreme rainfall is/are removed.

5.1.3. Parameter estimation
Once the threshold is selected and extreme rainfall series is

declustered, the parameters of the GP distribution can be esti-
mated by the method of maximum likelihood. Because the method
of maximum likelihood can be easily extended to the non-
stationary case (Coles, 2001; Katz, 2013). Let the values Y = y1, y2
. . ., yn are the n excesses of a threshold u. The log likelihood derived
from Eq. (2) is given as

Lðr; njYÞ ¼ �n logr� ð1þ 1=nÞ
Xn
i¼1

logð1þ nyi=rÞ; ð1þ nyi=rÞ > 0; n–0

LðrjYÞ ¼ �n logr� 1=r
Xn
i¼1

yi; n ¼ 0

ð4Þ
For non-stationary case, the scale parameters r in the above
equation is replaced with Eq. (3). Minimization of negative log like-
lihood (�L(b/Y); b = (r,n)) through Nelder–Mead (Nelder and
Mead, 1965) optimization method is adopted to estimate the
parameters (Coles, 2001). The maximum likelihood estimation is
not recommended when the n is less than 25. Because it estimates
physically infeasible shape parameter values for small samples
(Martins and Stedinge, 2001; Sugahara et al., 2009).
5.1.4. Identification of the best model
The Akaike Information Criterion (AIC), which penalizes the

minimized �L(b/Y) for the number of parameters estimated, can
be used to select the best model (Katz, 2013). In this study, the
small-sample version of AIC, called corrected Akaike Information
Criterion (AICc), is used to select the best model among several
non-stationary models and one stationary model. The AICc is rec-
ommended in practical application because it outperforms AIC, in
such way that it helps in avoiding over fitting the data more than
conventional AIC (Sugahara et al., 2009). If a candidate model with
k parameters, b, fitted to a sample of n exceedances of threshold u,
then the AICc of the model is as follows

AICc ¼ �2LðbjYÞ þ 2kþ 2kðkþ 1Þ
n� k� 1

ð5Þ

where �L(b/Y) is the minimized negative log likelihood function.
The first two terms of AICc are same as conventional AIC and AICc
converges to AIC if n gets large. In addition, the rescaled form of
AICc i.e. Di (Burnham and Anderson, 2004) is used to rank the
non-stationary models and given in Eq. (6).

Di ¼ AICc�minðAICcÞ ð6Þ

where min(AICc) is the smallest AICc among all the models. The
model which has Di value zero is the best model and the models
having Di 6 2 are considered reasonable choices (Burnham and
Anderson, 2004).



Table 7
Non-stationary GPD models’ performance for monsoon daily extreme rainfall with different ENSO indices as covariate.

S. no. MEI AICc S. no. SOI AICc S. no. SST AICc

1 MEI-0 836.77 14 SOI-0 836.76 27 SST-0 836.67
2 MEI-1 836.92 15 SOI-1 836.53 28 SST-1 836.62
3 MEI-2 836.81 16 SOI-2 836.43 29 SST-2 836.86
4 MEI-3 836.52 17 SOI-3 835.01 30 SST-3 836.89
5 MEI-4 836.28 18 SOI-4 836.61 31 SST-4 836.41
6 MEI-5 834.67 19 SOI-5 834.39 32 SST-5 835.47
7 MEI-6 833.75 20 SOI-6 833.34 33 SST-6 834.25
8 MEI-7 831.65 21 SOI-7 834.50 34 SST-7 833.49
9 MEI-8 829.73 22 SOI-8 830.10 35 SST-8 830.70

10 MEI-9 827.54 23 SOI-9 828.39 36 SST-9 827.63
11 MEI-10 826.68 24 SOI-10 832.30 37 SST-10 827.59
12 MEI-11 827.57 25 SOI-11 829.76 38 SST-11 828.30
13 MEI-12 830.71 26 SOI-12 831.76 39 SST-12 828.46
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5.1.5. Quality of fitted non-stationary model
The probability–probability (PP) plots and quantile–quantile

(QQ) plots can be used to check the quality of a fitted model
(Coles, 2001; Katz et al., 2002; Sugahara et al., 2009). Let the values
Y = y1, y2 . . ., yn are the n excesses of a threshold u and it is fitted
with non-stationary GP distribution. As the n exceedances are
not identically distributed, they have to be transformed to residu-
als (e) (exponential distribution with unit scale parameter) for
obtaining the PP and QQ plots (Katz et al., 2002; Katz, 2013).

ei ¼ 1
n̂
log 1þ n̂

r̂
yi

 !
ð7Þ

where n̂ and r̂ are estimated shape and scale parameter of the dis-
tribution. If ê is the ordered values of e, then the PP plot points (Katz
et al., 2002) are given by Eq. (8) and the QQ plot points (Katz et al.,
2002) are given by Eq. (9).

i
nþ 1

;1� expð�êÞ
� �

ð8Þ

� log 1� i
nþ 1

� �
; ê

� �
ð9Þ
5.2. Modelling non-stationarity in frequency of extreme rainfall

The frequency of extreme rainfall (i.e. the rate at which the
threshold is exceeded), can be approximated by a one dimensional
Poisson process with rate parameter k > 0 (Katz, 2013). Specifically,
the number of exceedance (N(T)) of threshold (u) within a time
period (T) is approximately Poisson distribution with mean kT
(Katz, 2013). Further, The Generalized Linear Model (GLM) frame-
work is used to incorporate trend in rate parameter k and Eq. (11)
gives the non-stationary Poisson rate parameter.

E½NðTÞ� ¼ kT ð10Þ

kðiÞ ¼ expðk0 þ k1c1 þ k2c2 þ k3c3 þ k4c4Þ ð11Þ
The slope parameters k1, k2, k3 and k4 represent the trend due to

the effect of physical covariates c1, c2, c3 and c4 respectively. Apart
from stationary model, based on four covariates and their
combinations, fifteen non-stationary models are constructed (refer
Table 5). For stationary model, the values of c1, c2, c3 and c4 are
zero. The parameters are estimated by the method of maximum
likelihood and AICc is used to select the best model. The physical
covariate(s) of the best Poisson model is/are the most significant
physical process/processes which is/are responsible for the change
in frequency of extreme rainfall. The list of GPD and Poisson
models constructed to model non-stationarity in the intensity
and frequency of extreme rainfall of Hyderabad city and their
specifications are listed in Table 5. The R programming language
and R packages ‘‘ismev”, ‘‘stats” and ‘‘extRemes” are used to model
the non-stationarity.

5.3. Monsoon months

5.3.1. Daily extreme rainfall
The MRL estimated extreme daily rainfall value for monsoon

months is 38.57 mm and it is the 95th percentile rainfall of the per-
iod. Between 1971 and 2013, during the monsoon months, the
number of rainfall events which has intensity more than
38.57 mm/day is 106 and after declustering the number of events
is reduced to 99. As MEI, SOI and SST are used as ENSO indicators
with lag up to 12 months, the best ENSO index with best lag which
represents the non-stationarity in monsoon rainfall need to be
identified first. Thus, the non-stationary GPD models are con-
structed for monsoon months’ daily rainfall POT series with differ-
ent ENSO indices with different lag as covariate. The best ENSO
index with best lag is identified based on AICc value. Table 7 shows
the non-stationary GPDmodels’ performance for monsoon months’
daily extreme rainfall with different ENSO indices as covariates.
The ENSO index MEI with lag 10 months is chosen as the best ENSO
index for monsoon months. Thus, the MEI with lag 10 months is
used for further modelling of non-stationarity in intensity and fre-
quency of daily and 4-h extreme rainfall of monsoon months. With
chosen ENSO index (i.e. MEI-10), the GPD and Poisson models
(refer Table 5) are constructed based on four physical covariates
and their combinations.

The different GPD model’s performance for monsoon months’
daily extreme rainfall with different physical covariates and their
combinations are given in Table 8. Among 16 GPD models the
GPD-11 is found to be the best model for monsoon months’ daily
extreme rainfall intensity. It is worth to note that the stationary
model (GPD-1) is ranked 12 and it is not even considerable model
based on Di value (Burnham and Anderson, 2004). The PP plot and
QQ plot can be used to check the quality of a fitted model, however,
the PP plot is less helpful than the QQ plot for discerning differ-
ences in the quality of fitting (Sugahara et al., 2009). For brevity,
the QQ plots of GPD-1 (stationary) and GPD-11 (best model) are
shown in Fig.13(a) and (b) respectively. The QQ plots clearly show
the superiority of GPD-11 against GPD-1.

The different Poisson model’s performance for monsoon
months’ daily extreme rainfall frequency with different physical
covariates and their combinations are listed in Table 9. Among
16 Poisson models the P-2 is found to be the best model based
on Di and the stationary model P-1 is ranked 6.

5.3.2. Monsoon months’ 1 a.m. to 4 a.m. extreme rainfall
12.083 mm/4-h is the MRL plot interpreted extreme rainfall

value for 1 a.m. to 4 a.m. monsoon rainfall and it is the 91th



Table 8
GPD models’ performance with monsoon daily extreme rainfall. Models are sorted according to Di value.

Rank Model ID r0 (SE) r1 (SE) r2 (SE) r3 (SE) r4 (SE) n (SE) AICc Di

1 GPD-11 2.917 (0.240) 0.753 (0.532) �0.319 (0.097) 0.086 (0.124) 826.65 0.00
2 GPD-5 3.17 (0.167) �0.330 (0.092) 0.042 (0.130) 826.68 0.03
3 GPD-8 1.798 (1.064) 0.247 (0.189) �0.293 (0.100) 0.083 (0.127) 827.00 0.35
4 GPD-10 3.148 (0.172) �0.021 (0.036) �0.329 (0.091) 0.020 (0.136) 828.51 1.85
5 GPD-15 2.918 (0.241) �0.007 (0.04) 0.724 (0.556) �0.319 (0.096) 0.079 (0.131) 828.84 2.19
6 GPD-14 2.775 (1.926) 0.030 (0.405) 0.683 (1.139) �0.316 (0.107) 0.087 (0.125) 828.87 2.21
7 GPD-13 1.838 (1.122) 0.239 (0.202) �0.004 (0.041) �0.294 (0.100) 0.078 (0.135) 829.21 2.56
8 GPD-2 0.816 (1.046) 0.406 (0.191) 0.197 (0.125) 832.32 5.67
9 GPD-4 2.708 (0.231) 0.990 (0.564) 0.213 (0.126) 833.76 7.10

10 GPD-7 0.454 (1.851) 0.488 (0.396) �0.279 (1.161) 0.192 (0.127) 834.44 7.78
11 GPD-6 0.787 (1.077) 0.412 (0.20) 0.004 (0.043) 0.199 (0.128) 834.49 7.83
12 GPD-1 19.821 (3.276) 0.209 (0.133) 834.79 8.14
13 GPD-9 2.707 (0.232) �0.003 (0.043) 0.98 (0.581) 0.211 (0.129) 835.92 9.27
14 GPD-12 0.408 (1.873) 0.499 (0.402) 0.005 (0.043) �0.293 (1.161) 0.194 (0.129) 836.64 9.99
15 GPD-3 2.964 (0.173) �0.019 (0.041) 0.193 (0.135) 836.71 10.06
16 GPD-16 7.911 (2.202) �1.117 (0.472) �0.007 (0.043) 4.265 (1.375) �0.415 (0.116) 0.186 (0.139) 840.04 13.39

Fig. 13. The QQ plots of (a) GPD-1, (b) GPD-11 from monsoon months’ daily extreme rainfall.

Table 9
Poisson models’ performance with monsoon daily extreme rainfall. Models are sorted according to Di value.

Rank Model ID k0 (SE) k1 (SE) k2 (SE) k3 (SE) k4 (SE) AICc Di

1 P-2 �5.233 (0.801) 0.295 (0.149) 927.76 0.00
2 P-4 �3.886 (0.155) 0.838 (0.454) 928.26 0.50
3 P-8 �5.319 (0.817) 0.308 (0.152) 0.103 (0.096) 928.62 0.85
4 P-11 �3.889 (0.156) 0.805 (0.458) 0.073 (0.095) 929.68 1.92
5 P-7 �4.922 (1.388) 0.224 (0.298) 0.248 (0.908) 929.69 1.93
6 P-1 �3.685 (0.101) 929.70 1.94
7 P-6 �5.238 (0.806) 0.296 (0.152) 0.002 (0.031) 929.76 2.00
8 P-9 �3.890 (0.162) �0.003 (0.031) 0.833 (0.458) 930.26 2.50
9 P-13 �5.310 (0.822) 0.305 (0.155) �0.003 (0.031) 0.105 (0.097) 930.61 2.85

10 P-14 �5.383 (1.473) 0.322 (0.315) �0.050 (0.955) 0.105 (0.101) 930.62 2.85
11 P-5 �3.700 (0.102) 0.091 (0.095) 930.78 3.01
12 P-3 �3.705 (0.118) �0.010 (0.031) 931.60 3.83
13 P-15 �3.900 (0.163) �0.007 (0.031) 0.789 (0.464) 0.077 (0.097) 931.63 3.87
14 P-12 �4.929 (1.401) 0.226 (0.302) 0.001 (0.031) 0.246 (0.911) 931.69 3.93
15 P-10 �3.730 (0.121) �0.015 (0.031) 0.099 (0.096) 932.54 4.78
16 P-16 �5.368 (1.480) 0.318 (0.318) �0.003 (0.031) �0.045 (0.955) 0.106 (0.101) 932.61 4.85
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percentile rainfall of the period. Total 74 rainfall events are
identified as extreme rainfall events in this period and after
declustering the number of extreme events count is 60. The 16
GPD models fitted with these extreme rainfall events are given in
Table 10 and the GPD-2 is found to be the best model for monsoon
months’ 1 a.m. to 4 a.m. extreme rainfall intensity.

Further, it is noted that the GPD-1 model is ranked 8 and it is
not even considerable based on Di value. The QQ plots of GPD-1
(stationary) and GPD-2 (best model) are shown in Fig. 14
(a) and (b) respectively. Table 11 reveals the different Poisson
model’s performance for monsoon months’ 1 a.m. to 4 a.m.
extreme rainfall frequency with different physical covariates and
their combinations. Among 16 Poisson models, the stationary
model P-1 itself found to be the best model for monsoon months’
1 a.m. to 4 a.m. extreme rainfall frequency.

5.3.3. Monsoon months’ 5 p.m. to 8 p.m. extreme rainfall
The MRL estimated extreme rainfall value for 5 p.m. to 8 a.m.

monsoon rainfall is 17 mm and it is the 94th percentile rainfall
of the period. Total 66 rainfall events are identified as extreme



Table 10
GPD models’ performance with monsoon 1 a.m. to 4 a.m. extreme rainfall. Models are sorted according to Di value.

Rank Model ID r0 (SE) r1 (SE) r2 (SE) r3 (SE) r4 (SE) n (SE) AICc Di

1 GPD-2 0.239 (1.022) 0.514 (0.191) �0.014 (0.153) 477.48 0.00
2 GPD-7 �0.811 (1.546) 0.762 (0.331) �0.926 (1.040) �0.048 (0.173) 479.04 1.56
3 GPD-8 0.323 (1.061) 0.501 (0.195) �0.032 (0.110) �0.024 (0.159) 479.70 2.22
4 GPD-6 0.229 (1.023) 0.518 (0.193) 0.007 (0.043) �0.011 (0.153) 479.75 2.27
5 GPD-4 2.62 (0.249) 1.095 (0.640) 0.073 (0.145) 480.92 3.44
6 GPD-12 �0.819 (1.549) 0.765 (0.332) 0.006 (0.043) �0.921 (1.041) �0.044 (0.173) 481.40 3.92
7 GPD-14 �0.845 (1.747) 0.769 (0.372) �0.949 (1.136) 0.005 (0.115) �0.048 (0.173) 481.42 3.94
8 GPD-1 17.311 (3.654) 0.126 (0.168) 481.48 4.00
9 GPD-13 0.300 (1.063) 0.507 (0.198) 0.006 (0.043) �0.030 (0.110) �0.019 (0.160) 482.06 4.58

10 GPD-11 2.672 (0.261) 1.089 (0.621) �0.088 (0.118) 0.029 (0.156) 482.73 5.25
11 GPD-9 2.628 (0.255) 0.006 (0.047) 1.095 (0.642) 0.076 (0.147) 483.21 5.73
12 GPD-5 2.896 (0.228) �0.073 (0.124) 0.089 (0.182) 483.38 5.90
13 GPD-3 2.859 (0.219) 0.007 (0.051) 0.132 (0.173) 483.68 6.20
14 GPD-15 2.672 (0.264) 0.002 (0.045) 1.091 (0.627) �0.085 (0.120) 0.035 (0.162) 485.11 7.63
15 GPD-10 2.896 (0.230) 0.001 (0.051) �0.073 (0.128) 0.090 (0.195) 485.68 8.20
16 GPD-16 �12.451 (7.930) 3.240 (1.695) 0.098 (0.093) �9.624 (5.552) 0.161 (0.231) 1.331 (0.987) 512.58 35.10

Fig. 14. The QQ plots of (a) GPD-1, (b) GPD-2 from monsoon 1 a.m. to 4 a.m. extreme rainfall.

Table 11
Poisson models’ performance with monsoon 1 a.m. to 4 a.m. extreme rainfall. Models sorted according to Di value.

Rank Model ID k0 (SE) k1 (SE) k2 (SE) k3 (SE) k4 (SE) AICc Di

1 P-1 �4.189 (0.129) 624.64 0.00
2 P-2 �4.942 (1.007) 0.144 (0.190) 626.06 1.42
3 P-4 �4.284 (0.189) 0.415 (0.580) 626.13 1.49
4 P-3 �4.222 (0.153) �0.017 (0.040) 626.46 1.82
5 P-5 �4.193 (0.130) 0.034 (0.123) 626.57 1.93
6 P-8 �4.962 (1.015) 0.147 (0.191) 0.038 (0.123) 627.97 3.33
7 P-6 �4.910 (1.013) 0.134 (0.194) �0.011 (0.040) 627.99 3.35
8 P-9 �4.304 (0.150) �0.013 (0.040) 0.390 (0.583) 628.02 3.38
9 P-7 �4.770 (1.768) 0.105 (0.380) 0.137 (1.161) 628.05 3.41

10 P-11 �4.284 (0.190) 0.403 (0.584) 0.024 (0.124) 628.09 3.45
11 P-10 �4.232 (0.156) �0.019 (0.040) 0.044 (0.124) 628.34 3.70
12 P-13 �4.926 (1.021) 0.135 (0.195) �0.014 (0.041) 0.044 (0.124) 629.87 5.23
13 P-15 �4.307 (0.201) �0.015 (0.040) 0.369 (0.590) 0.033 (0.125) 629.95 5.31
14 P-12 �4.700 (1.778) 0.086 (0.385) �0.012 (0.040) 0.166 (1.159) 629.97 5.33
15 P-14 �4.918 (1.850) 0.137 (0.398) 0.035 (1.218) 0.037 (0.129) 629.98 5.34
16 P-16 �4.856 (1.850) 0.119 (0.399) �0.014 (0.041) 0.055 (1.209) 0.042 (0.130) 631.87 7.23
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rainfall events in this period and after declustering the number of
extreme events count is 58. Table 12 shows the performances of 16
GPD model fitted with monsoon months’ 5 p.m. to 8 p.m. extreme
rainfall events. For monsoon months’ 5 p.m. to 8 p.m. extreme
rainfall intensity, the non-stationary model GPD-5 is found to be
the best model. In addition, it is noted that the model GPD-1 is
ranked 9 and it is not even considerable based on Di value and
the superiority of GPD-5 against GPD-1 can be observed from
Fig. 15(a) and (b). The different Poisson model’s performance for
monsoon months’ 5 p.m. to 8 p.m. extreme rainfall frequency with
different physical covariates and their combinations are given in
Table 13. In the monsoon months’ 5 p.m. to 8 p.m. extreme rainfall
frequency, the P-1 is found to be the best model based on Di value.

5.3.4. Monsoon months’ 9 p.m. to 12 a.m. extreme rainfall
16.856 mm/4-h is the MRL estimated extreme rainfall value for

9 p.m. to 12 a.m. monsoon rainfall and it is the 92nd percentile
rainfall of the period. Total 77 rainfall events are identified as



Table 12
GPD models’ performance with monsoon 5 p.m. to 8 p.m. extreme rainfall. Models are sorted according to Di value.

Rank Model ID r0 (SE) r1 (SE) r2 (SE) r3 (SE) r4 (SE) n (SE) AICc Di

1 GPD-5 3.015 (0.194) �0.259 (0.086) �0.321 (0.146) 431.43 0.00
2 GPD-8 2.000 (0.940) 0.182 (0.158) �0.288 (0.102) �0.271 (0.168) 431.90 0.47
3 GPD-11 2.822 (0.294) 0.532 (0.495) �0.307 (0.104) �0.259 (0.176) 432.06 0.62
4 GPD-10 2.971 (0.211) �0.033 (0.029) �0.269 (0.088) �0.350 (0.150) 432.33 0.90
5 GPD-13 2.242 (1.172) 0.135 (0.211) �0.014 (0.043) �0.287 (0.101) �0.291 (0.181) 434.21 2.78
6 GPD-14 1.934 (2.261) 0.198 (0.499) �0.052 (1.547) �0.286 (0.118) �0.273 (0.181) 434.30 2.87
7 GPD-15 2.858 (0.303) �0.017 (0.042) 0.356 (0.629) �0.298 (0.105) �0.288 (0.191) 434.31 2.88
8 GPD-2 1.205 (1.201) 0.296 (0.214) �0.053 (0.125) 435.22 3.79
9 GPD-1 17.457 (3.209) �0.143 (0.129) 435.32 3.89

10 GPD-3 2.770 (0.187) �0.047 (0.038) �0.156 (0.108) 435.97 4.54
11 GPD-4 2.599 (0.300) 0.691 (0.681) �0.052 (0.140) 436.27 4.84
12 GPD-16 2.144 (2.272) 0.158 (0.496) �0.014 (0.043) �0.081 (1.483) �0.283 (0.117) �0.296 (0.193) 436.70 5.27
13 GPD-7 �0.554 (2.221) 0.716 (0.500) �1.536 (1.659) �0.140 (0.171) 436.76 5.32
14 GPD-6 1.463 (1.472) 0.244 (0.275) �0.016 (0.053) �0.068 (0.135) 437.44 6.01
15 GPD-9 2.666 (0.333) �0.035 (0.052) 0.322 (0.877) �0.103 (0.171) 438.14 6.71
16 GPD-12 �0.242 (2.333) 0.655 (0.516) �0.018 (0.051) �1.549 (1.600) �0.163 (0.189) 439.03 7.60

Fig. 15. The QQ plots of (a) GPD-1, (b) GPD-2 from monsoon 5 p.m. to 8 p.m. extreme rainfall.

Table 13
Poisson models’ performance with monsoon 5 p.m. to 8 p.m. extreme rainfall. Models are sorted according to Di value.

Rank Model ID k0 (SE) k1 (SE) k2 (SE) k3 (SE) k4 (SE) AICc Di

1 P-1 �4.223 (0.131) 607.82 0.00
2 P-4 �4.273 (0.188) 0.223 (0.589) 609.67 1.86
3 P-2 �4.584 (1.016) 0.069 (0.193) 609.69 1.87
4 P-3 �4.216 (0.151) 0.003 (0.040) 609.81 2.00
5 P-5 �4.224 (0.132) 0.009 (0.125) 609.81 2.00
6 P-9 �4.265 (0.197) 0.005 (0.040) 0.233 (0.594) 611.66 3.84
7 P-6 �4.602 (1.023) 0.075 (0.197) 0.006 (0.041) 611.67 3.85
8 P-7 �4.384 (1.786) 0.024 (0.385) 0.159 (1.175) 611.67 3.86
9 P-11 �4.272 (0.188) 0.221 (0.593) 0.004 (0.126) 611.68 3.86

10 P-8 �4.588 (1.018) 0.070 (0.193) 0.011 (0.126) 611.68 3.87
11 P-10 �4.218 (0.154) 0.003 (0.041) 0.008 (0.128) 611.81 3.99
12 P-12 �4.420 (1.807) 0.034 (0.392) 0.006 (0.041) 0.144 (1.183) 613.66 5.84
13 P-15 �4.265 (0.198) 0.005 (0.041) 0.232 (0.600) 0.000 (0.129) 613.67 5.85
14 P-13 �4.604 (1.025) 0.075 (0.197) 0.006 (0.041) 0.008 (0.128) 613.67 5.85
15 P-14 �4.409 (1.859) 0.030 (0.401) 0.142 (1.230) 0.006 (0.132) 613.68 5.86
16 P-16 �4.433 (1.871) 0.037 (0.405) 0.006 (0.041) 0.135 (1.236) 0.003 (0.134) 615.66 7.85

692 V. Agilan, N.V. Umamahesh / Journal of Hydrology 530 (2015) 677–697
extreme rainfall events in this period and after declustering the
number of extreme events count is reduced to 66. The 16 GPD
models fitted with these extreme rainfall events are given in
Table 14. The GPD-2 is found to be the best model for monsoon
months’ 9 p.m. to 12 a.m. extreme rainfall intensity. Further, it is
noted that the GPD-1 model is ranked 11 and it is not even consid-
erable based on Di value. The QQ plots of GPD-1 (stationary) and
GPD-2 (best model) are shown in Fig. 16(a) and (b) respectively.
The QQ plots clearly show the superiority of GPD-2 against GPD-1.

Table 15 reveals the different Poisson model’s performance for
monsoon months’ 9 p.m. to 12 a.m. extreme rainfall frequency.
The P-5 is found to be the best model for monsoon months’ 9 p.
m. to 12 a.m. extreme rainfall frequency. It is worth to note that
the model P-1 is not even considerable and it is ranked 5 among 16.

5.4. Non-monsoon months

5.4.1. Daily extreme rainfall
The MRL estimated extreme rainfall value for daily non-

monsoon rainfall is 38.49 mm and it is the 95th percentile rainfall
of the period. Between 1971 and 2013, during non-monsoon
months, the number of rainfall events which has intensity more



Table 14
GPD models’ performance with monsoon 9 p.m. to 12 a.m. extreme rainfall. Models are sorted according to Di value.

Rank Model ID r0 (SE) r1 (SE) r2 (SE) r3 (SE) r4 (SE) n (SE) AICc Di

1 GPD-2 0.629 (0.876) 0.412 (0.161) �0.261 (0.115) 467.05 0.00
2 GPD-4 2.513 (0.195) 1.146 (0.484) �0.263 (0.107) 468.13 1.08
3 GPD-8 0.459 (0.964) 0.435 (0.172) 0.054 (0.127) �0.234 (0.129) 469.13 2.09
4 GPD-6 0.673 (0.903) 0.400 (0.167) �0.007 (0.027) �0.254 (0.121) 469.24 2.19
5 GPD-7 0.952 (1.481) 0.339 (0.315) 0.253 (0.959) �0.265 (0.115) 469.25 2.20
6 GPD-9 2.470 (0.216) �0.025 (0.024) 1.177 (0.481) �0.274 (0.117) 469.35 2.30
7 GPD-11 2.492 (0.248) 1.162 (0.503) 0.017 (0.127) �0.252 (0.133) 470.38 3.33
8 GPD-13 0.494 (0.981) 0.421 (0.176) �0.011 (0.029) 0.066 (0.131) �0.222 (0.132) 471.32 4.27
9 GPD-12 1.448 (1.833) 0.224 (0.399) �0.015 (0.031) 0.563 (1.181) �0.261 (0.121) 471.36 4.31

10 GPD-15 2.419 (0.259) �0.028 (0.026) 1.215 (0.503) 0.042 (0.127) �0.253 (0.129) 471.58 4.54
11 GPD-1 15.951 (2.746) �0.227 (0.124) 471.74 4.70
12 GPD-3 2.739 (0.186) �0.016 (0.026) �0.226 (0.129) 473.55 6.50
13 GPD-16 1.159 (1.956) 0.272 (0.418) �0.017 (0.032) 0.484 (1.221) 0.058 (0.131) �0.23 (0.134) 473.58 6.54
14 GPD-5 2.748 (0.212) 0.022 (0.129) �0.214 (0.143) 473.91 6.86
15 GPD-10 2.701 (0.220) �0.019 (0.028) 0.039 (0.129) �0.208 (0.139) 475.72 8.67
16 GPD-14 6.641 (2.244) �0.918 (0.489) 3.790 (1.401) 0.056 (0.126) �0.144 (0.147) 484.77 17.73

Fig. 16. The QQ plots of (a) GPD-1, (b) GPD-2 from monsoon 9 p.m. to 12 p.m. extreme rainfall.

Table 15
Poisson models’ performance with monsoon 9 p.m. to 12 a.m. extreme rainfall. Models are sorted according to Di value.

Rank Model ID k0 (SE) k1 (SE) k2 (SE) k3 (SE) k4 (SE) AICc Di

1 P-5 �4.157 (0.131) 0.255 (0.114) 671.41 0.00
2 P-10 �4.127 (0.146) 0.016 (0.037) 0.248 (0.116) 673.23 1.82
3 P-11 �4.114 (0.176) �0.201 (0.573) 0.260 (0.115) 673.29 1.88
4 P-8 �3.847 (0.978) �0.060 (0.188) 0.253 (0.114) 673.31 1.90
5 P-1 �4.093 (0.123) 674.32 2.91
6 P-15 �4.094 (0.183) 0.014 (0.037) �0.171 (0.579) 0.253 (0.117) 675.15 3.74
7 P-13 �3.898 (0.987) �0.045 (0.192) 0.014 (0.038) 0.247 (0.115) 675.18 3.77
8 P-14 �4.065 (1.751) �0.011 (0.377) �0.172 (1.149) 0.259 (0.121) 675.30 3.88
9 P-3 �4.042 (0.136) 0.029 (0.037) 675.71 4.30

10 P-2 �3.732 (0.941) �0.060 (0.181) 676.17 4.76
11 P-4 �4.086 (0.171) �0.036 (0.551) 676.32 4.91
12 P-16 �4.170 (1.785) 0.017 (0.386) 0.015 (0.038) �0.214 (1.165) 0.255 (0.122) 677.15 5.74
13 P-6 �3.813 (0.949) �0.045 (0.185) 0.027 (0.038) 0.000 (0.129) 677.65 6.24
14 P-9 �4.046 (0.178) 0.029 (0.037) 0.015 (0.558) 677.71 6.30
15 P-7 �3.009 (1.632) �0.234 (0.354) 0.581 (1.079) 677.89 6.48
16 P-12 3.160 (1.662) �0.194 (0.362) 0.026 (0.038) 0.522 (1.097) 679.43 8.02
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than 38.49 is 88 and after declustering the number of events is
reduced to 79. Similar to monsoon months, first the best ENSO
index with best lag is identified for non-monsoonmonths. Table 16
shows the non-stationary GPD models’ performance for non-
monsoon months’ daily extreme rainfall with different ENSO
indices as covariate. The ENSO index SOI with lag 11 months is
chosen as the best ENSO index for non-monsoon months. Thus,
the SOI with lag 11 months is used for further modelling of
non-stationarity in intensity and frequency of daily and 4-h
extreme rainfall of non-monsoon months.

Table 17 reveals the different GPD model’s performance for
non-monsoon months’ daily extreme rainfall with different physi-
cal covariates and their combinations. Among 16 GPD models the
GPD-5 is found to be the best model for non-monsoon months’
daily extreme rainfall intensity. In addition, it is worth to note that
the stationary model (GPD-1) model is ranked 9 and it is not even



Table 16
Non-stationary GPD models’ performance for non-monsoon daily extreme rainfall with different ENSO indices as covariate.

S. no. MEI AICc S. no. SOI AICc S. no. SST AICc

1 MEI-0 635.66 14 SOI-0 635.44 27 SST-0 635.94
2 MEI-1 635.50 15 SOI-1 635.00 28 SST-1 635.80
3 MEI-2 635.71 16 SOI-2 635.88 29 SST-2 635.88
4 MEI-3 635.80 17 SOI-3 635.93 30 SST-3 635.77
5 MEI-4 635.94 18 SOI-4 635.90 31 SST-4 635.92
6 MEI-5 635.81 19 SOI-5 635.91 32 SST-5 635.84
7 MEI-6 635.84 20 SOI-6 634.67 33 SST-6 635.44
8 MEI-7 635.96 21 SOI-7 635.58 34 SST-7 635.96
9 MEI-8 635.73 22 SOI-8 635.96 35 SST-8 635.56

10 MEI-9 635.79 23 SOI-9 635.96 36 SST-9 635.11
11 MEI-

10
635.02 24 SOI-

10
635.94 37 SST-

10
635.05

12 MEI-
11

635.18 25 SOI-
11

629.82 38 SST-
11

635.26

13 MEI-
12

635.82 26 SOI-
12

635.09 39 SST-
12

635.76

Table 17
GPD models’ performance with non-monsoon daily extreme rainfall. Models are sorted according to Di value.

Rank Model ID r0 (SE) r1 (SE) r2 (SE) r3 (SE) r4 (SE) n (SE) AICc Di

1 GPD-5 3.018 (0.164) �0.165 (0.068) 0.022 (0.121) 629.82 0
2 GPD-10 2.869 (0.205) �0.048 (0.039) �0.163 (0.069) 0.014 (0.111) 630.58 0.76
3 GPD-8 3.856 (0.839) �0.165 (0.164) �0.162 (0.068) 0.016 (0.122) 631.03 1.21
4 GPD-11 3.047 (0.182) �0.155 (0.402) �0.164 (0.068) 0.018 (0.123) 631.89 2.07
5 GPD-13 3.689 (0.872) �0.164 (0.170) �0.049 (0.041) �0.159 (0.069) 0.023 (0.115) 631.98 2.17
6 GPD-14 4.795 (1.441) �0.373 (0.308) 0.613 (0.769) �0.165 (0.067) 0.024 (0.119) 632.64 2.82
7 GPD-15 2.889 (0.222) �0.047 (0.040) �0.090 (0.413) �0.163 (0.069) 0.013 (0.111) 632.81 2.99
8 GPD-16 4.849 (1.478) �0.426 (0.319) �0.054 (0.041) 0.804 (0.806) �0.164 (0.069) 0.027 (0.111) 633.29 3.47
9 GPD-1 19.44 (3.182) 0.018 (0.119) 633.80 3.98

10 GPD-3 2.788 (0.209) �0.055 (0.040) 0.014 (0.109) 634.07 4.25
11 GPD-2 3.941 (0.856) �0.190 (0.166) 0.005 (0.121) 634.68 4.86
12 GPD-6 3.698 (0.894) �0.181 (0.174) �0.054 (0.042) 0.021 (0.113) 635.20 5.38
13 GPD-4 3.017 (0.186) �0.231 (0.414) 0.008 (0.122) 635.66 5.84
14 GPD-9 2.817 (0.230) �0.054 (0.041) �0.147 (0.433) 0.015 (0.110) 636.17 6.36
15 GPD-7 4.621 (1.409) �0.343 (0.302) 0.466 (0.758) 0.017 (0.122) 636.50 6.68
16 GPD-12 4.692 (1.465) �0.407 (0.317) �0.061 (0.042) 0.695 (0.804) 0.028 (0.112) 636.69 6.88

Fig. 17. The QQ plots of (a) GPD-1, (b) GPD-5 from non-monsoon daily extreme rainfall.
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considerable model based on Di value. The superiority of GPD-5
against GPD-1 can be observed from QQ plots shown in Fig. 17
(a) and (b). Table 18 provides the different Poisson model’s perfor-
mance with different physical covariates and their combinations
for non-monsoon months’ daily extreme rainfall frequency. Based
on Poisson models’ performances, the non-stationary model P-9
is found to be the best model for non-monsoon months’ daily
extreme rainfall frequency. The stationary model P-1 is ranked
10 and it is not even considerable based on Di value.

5.4.2. Non-monsoon months’ 5 p.m. to 8 p.m. extreme rainfall
16.4 mm/4-h is theMRL estimated extreme rainfall value for 5 p.

m. to 8 p.m. non-monsoon rainfall and it is the 90th percentile rain-
fall of the period. Total 76 rainfall events are identified as extreme



Table 18
Poisson models’ performance with non-monsoon daily extreme rainfall. Models are sorted according to Di value.

Rank Model ID k0 (SE) k1 (SE) k2 (SE) k3 (SE) k4 (SE) AICc Di

1 P-9 �5.074 (0.173) �0.082 (0.034) �0.663 (0.420) 944.54 0.00
2 P-3 �5.214 (0.154) �0.084 (0.034) 945.00 0.46
3 P-6 �4.118 (0.844) �0.214 (0.163) �0.085 (0.034) 945.28 0.74
4 P-15 �5.089 (0.174) �0.080 (0.034) �0.647 (0.417) 0.038 (0.054) 946.03 1.49
5 P-10 �5.228 (0.155) �0.082 (0.034) 0.041 (0.054) 946.42 1.88
6 P-12 �4.979 (1.307) �0.020 (0.277) �0.082 (0.034) �0.620 (0.721) 946.53 1.99
7 P-13 �4.154 (0.837) �0.209 (0.162) �0.083 (0.034) 0.040 (0.054) 946.74 2.20
8 P-16 �4.994 (1.304) �0.020 (0.276) �0.080 (0.034) �0.603 (0.719) 0.038 (0.054) 948.03 3.49
9 P-4 �4.856 (0.137) �0.710 (0.433) 949.43 4.89

10 P-1 �5.001 (0.113) 950.10 5.56
11 P-11 �4.884 (0.141) �0.687 (0.427) 0.053 (0.056) 950.54 6.00
12 P-2 �3.981 (0.854) �0.198 (0.166) 950.67 6.13
13 P-5 �5.026 (0.117) 0.056 (0.057) 951.12 6.58
14 P-7 �5.105 (1.315) 0.053 (0.278) �0.822 (0.733) 951.39 6.85
15 P-8 �4.023 (0.843) �0.195 (0.164) 0.056 (0.057) 951.69 7.15
16 P-14 �5.105 (1.310) 0.047 (0.277) �0.787 (0.731) 0.052 (0.056) 952.51 7.97

Table 19
GPD models’ performance with non-monsoon 5 p.m. to 8 p.m. extreme rainfall. Models are sorted according to Di value.

Rank Model ID r0 (SE) r1 (SE) r2 (SE) r3 (SE) r4 (SE) n (SE) AICc Di

1 GPD-4 2.917 (0.190) �0.799 (0.479) �0.077 (0.114) 558.58 0.00
2 GPD-1 15.378 (2.729) �0.079 (0.136) 559.52 0.94
3 GPD-2 3.749 (0.822) �0.199 (0.160) �0.052 (0.121) 559.99 1.41
4 GPD-9 2.986 (0.209) 0.031 (0.035) �0.822 (0.475) �0.057 (0.117) 560.01 1.43
5 GPD-11 2.919 (0.191) �0.824 (0.491) 0.016 (0.062) �0.074 (0.116) 560.75 2.17
6 GPD-7 2.866 (1.025) 0.011 (0.219) �0.830 (0.678) �0.076 (0.118) 560.81 2.23
7 GPD-3 2.776 (0.186) 0.026 (0.035) �0.053 (0.141) 561.10 2.52
8 GPD-6 3.802 (0.828) �0.199 (0.160) 0.026 (0.035) �0.035 (0.124) 561.64 3.06
9 GPD-5 2.734 (0.179) �0.003 (0.063) �0.080 (0.137) 561.69 3.11

10 GPD-8 3.761 (0.826) �0.201 (0.161) 0.007 (0.062) �0.052 (0.121) 562.21 3.63
11 GPD-15 2.987 (0.209) 0.030 (0.036) �0.840 (0.486) 0.012 (0.063) �0.055 (0.118) 562.27 3.68
12 GPD-12 2.847 (1.027) 0.031 (0.219) 0.031 (0.036) �0.890 (0.672) �0.060 (0.120) 562.28 3.70
13 GPD-14 2.873 (1.020) 0.010 (0.218) �0.845 (0.683) 0.015 (0.062) �0.075 (0.119) 563.04 4.46
14 GPD-10 2.78 (0.189) 0.026 (0.035) �0.007 (0.064) �0.055 (0.142) 563.32 4.74
15 GPD-13 3.807 (0.831) �0.201 (0.161) 0.025 (0.035) 0.004 (0.063) �0.035 (0.124) 563.93 5.35
16 GPD-16 2.851 (1.027) 0.030 (0.219) 0.031 (0.036) �0.905 (0.679) 0.012 (0.063) �0.058 (0.121) 564.61 6.03

Fig. 18. The QQ plots of (a) GPD-1, (b) GPD-4 from non-monsoon 5 p.m. to 8 p.m. extreme rainfall.
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rainfall events in this period and these rainfall events are separated
by 20 h or more. Thus, no declustering is carried out for 5 p.m. to
8 p.m. non-monsoon rainfall. The 16 GPD models fitted with these
extreme rainfall events are given in Table 19. The GPD-4 is found
to be the best model for non-monsoon months’ 5 p.m. to 8 p.m.
extreme rainfall. The stationary model GPD-1 is ranked 2 and it is
considerable based on Di value. Unlike other rainfall, the difference
between non-stationary best GPDmodel and stationary GPDmodel
is very less for 5 p.m. to 8 p.m. non-monsoon rainfall. The QQ plots
of GPD-1 and GPD-4 of 5 p.m. to 8 p.m. non-monsoon rainfall are
shown in Fig. 18(a) and (b) respectively. The different Poissonmod-
el’s performance for non-monsoon months’ 5 p.m. to 8 p.m.
extreme rainfall frequency with different physical covariates and
their combinations are given in Table 20. Among 16 Poissonmodels,
the P-3 is found to be the best model. The stationary model P-1 is
ranked 9 and it is not even considerable based on Di value.



Table 20
Poisson models’ performance with non-monsoon 5 p.m. to 8 p.m. extreme rainfall. Models are sorted according to Di value.

Rank Model ID k0 (SE) k1 (SE) k2 (SE) k3 (SE) k4 (SE) AICc Di

1 P-3 �5.200 (0.149) �0.065 (0.033) 917.81 0.00
2 P-6 �6.344 (0.900) 0.219 (0.169) �0.063 (0.033) 918.10 0.29
3 P-10 �5.190 (0.149) �0.067 (0.033) �0.059 (0.053) 918.59 0.78
4 P-9 �5.314 (0.188) �0.065 (0.033) 0.470 (0.445) 918.68 0.87
5 P-13 �6.374 (0.914) 0.227 (0.172) �0.064 (0.033) �0.060 (0.053) 918.82 1.01
6 P-15 �5.308 (0.189) �0.067 (0.033) 0.489 (0.452) �0.060 (0.053) 919.41 1.60
7 P-12 �6.289 (1.297) 0.207 (0.271) �0.063 (0.033) 0.042 (0.722) 920.10 2.29
8 P-2 �6.305 (0.907) 0.241 (0.170) 920.18 2.37
9 P-1 �5.041 (0.115) 920.21 2.40

10 P-16 �6.304 (1.303) 0.211 (0.273) �0.065 (0.033) 0.055 (0.726) �0.060 (0.053) 920.82 3.01
11 P-4 �5.159 (0.164) 0.484 (0.453) 921.06 3.25
12 P-8 �6.342 (0.921) 0.251 (0.173) �0.058 (0.055) 921.08 3.27
13 P-5 �5.028 (0.115) �0.056 (0.055) 921.21 3.40
14 P-11 �5.150 (0.165) 0.501 (0.460) �0.057 (0.055) 922.01 4.20
15 P-7 �6.371 (1.303) 0.256 (0.272) �0.052 (0.733) 922.18 4.37
16 P-14 �6.404 (1.309) 0.265 (0.273) �0.049 (0.737) �0.058 (0.055) 923.08 5.27

Table 21
Most significant physical process/processes which are causing non-stationarity in extreme rainfall intensity and frequency.

Rainfall Most significant physical covariate(s) causing
non-stationarity in extreme rainfall intensity
(stationary model)

Most significant physical covariate(s) causing
non-stationarity in extreme rainfall frequency
(stationary model)

Daily-monsoon rainfall Global temperature anomaly with ENSO cycle (NC) Urbanization (C)
Daily non-monsoon rainfall ENSO cycle (NC) Local temperature anomaly with global temperature anomaly (NC)
1 a.m. to 4 a.m. monsoon rainfall Urbanization (NC) Stationary
5 p.m. to 8 p.m. monsoon rainfall ENSO cycle (NC) Stationary
9 p.m. to 12 p.m. monsoon rainfall Urbanization (NC) ENSO cycle (NC)
5 p.m. to 8 p.m. non-monsoon rainfall Global temperature anomaly (C) Local temperature anomaly (NC)

Note: NC – not considerable; C – considerable.
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6. Summary and conclusions

With the help of IMD hourly rainfall observations and
APHRODITE high resolution daily gridded rainfall data, the changes
in Hyderabad city rainfall are analyzed. Our analysis reveals that
the monthly rainfall of urban area (Hyderabad city) is more
during the monsoon months (June–August) when compared to
surrounding non-urban areas. Further, during the monsoon
months (June–August), the rainfall that occurred during 1 a.m. to
4 a.m., 5 p.m. to 8 p.m. and 9 p.m. to 12 a.m. has increased
significantly. In particular, during the monsoon months, percent-
age rainfall that occurred between 1 a.m. and 4 a.m. has increased
by 4.5% and nearly 1% increase in percentage rainfall that occurred
between 5 a.m. and 8 a.m. Though the percentage rainfall that
occurred between 9 p.m. and 12 a.m. is remains same, a significant
increase in rainfall is observed. During non-monsoon months,
maximum of 8.52% increase in percentage rainfall that occurred
between 5 p.m. and 8 p.m. and maximum of 8.67% decrease in
percentage rainfall that occurred between 9 p.m. and 12 a.m. is
observed. The rainfall and percentage of rainfall that occurred in
other time periods of non-monsoon months are nearly same.
Further, with the help of various climate change detection indices,
the changes in daily extreme rainfall, monsoon months’ 1 a.m. to
4 a.m., 5 p.m. to 8 p.m. and 9 p.m. to 12 a.m. extreme rainfall and
non-monsoon months’ 5 p.m. to 8 p.m. extreme rainfall are
analyzed and increasing trend in extreme rainfall intensity and
frequency of these periods is observed.

In addition, to attribute the possible cause for the change in
extreme rainfall, the extreme rainfall intensity is modelled with
POT based non-stationary GPD and frequency is modelled using
inhomogeneous Poisson distribution. The extreme rainfall value
(threshold) is interpreted using MRL plots. The trend is incorpo-
rated as a covariate in the scale parameter (r) of GPD and the rate
parameter (k) of the Poisson distribution. Four physical processes
(i.e. Urbanization, ENSO cycle, local temperature change, and glo-
bal warming) are used as covariates and based on these four
covariates and their combinations, fifteen non-stationary models
and one stationary model are constructed and the best model is
chosen based on AICc value. The covariate(s) in the best chosen
non-stationary statistical model is/are attributed as the most sig-
nificant physical process/processes which causes non-stationarity
in the series. Table 21 reveals the most significant physical
process/processes which are causing non-stationarity in intensity
and frequency of Hyderabad city extreme rainfall. Except, monsoon
months’ 1 a.m. to 4 a.m. and 5 p.m. to 8 p.m. extreme rainfall
requency, all other extreme rainfall intensity and frequency are
associated with one or two physical processes. It is also observed
that, in most of the cases, the stationary model is not even consid-
erable. In addition, it is observed that the MEI with lag 10 months
is the best ENSO cycle indicator for monsoon months and SOI with
11 months lag is the best ENSO cycle indicator for non-monsoon
months.

From the study results, it is observed that the non-stationarity
in daily extreme rainfall of Hyderabad city is mostly associated
with global processes, i.e. ENSO cycle and global warming and
the non-stationarity in sub-daily (4-h) extreme rainfall is mostly
associated with local processes, i.e. Urbanization and local temper-
ature changes. The results of this study may help us to develop
non-stationary Intensity–Duration–Frequency (IDF) relationship
for urban infrastructural design. Further, the flood prediction in
urban areas can be improved by incorporating attributed physical
processes of this study.
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