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a  b  s  t  r  a  c  t

A  novel  stochastic  optimization  approach  to solve  optimal  bidding  strategy  problem  in a  pool  based
electricity  market  using  fuzzy  adaptive  gravitational  search  algorithm  (FAGSA)  is presented.  Generating
companies  (suppliers)  participate  in  the bidding  process  in  order  to  maximize  their  profits  in an  electricity
market.  Each  supplier  will  bid strategically  for choosing  the  bidding  coefficients  to  counter  the  competi-
tors  bidding  strategy.  The  gravitational  search  algorithm  (GSA)  is tedious  to solve  the optimal  bidding
strategy  problem  because,  the  optimum  selection  of  gravitational  constant  (G).  To  overcome  this  prob-
lem,  FAGSA  is applied  for the  first  time  to tune  the gravitational  constant  using  fuzzy  “IF/THEN”  rules.  The
fuzzy  rule-based  systems  are  natural  candidates  to design  gravitational  constant,  because  they provide  a
arket clearing price (MCP)
uzzy inference
ravitational search algorithm

way  to  develop  decision  mechanism  based  on  specific  nature  of search  regions,  transitions  between  their
boundaries  and  completely  dependent  on  the  problem.  The  proposed  method  is tested  on  IEEE  30-bus
system  and  75-bus  Indian  practical  system  and compared  with  GSA,  particle  swarm  optimization  (PSO)
and genetic  algorithm  (GA).  The  results  show  that, fuzzification  of  the  gravitational  constant,  improve
search  behavior,  solution  quality  and  reduced  computational  time  compared  against  standard  constant
parameter algorithms.
. Introduction

Restructuring of the power industry mainly aims at abolishing
he monopoly in the generation and trading sectors, thereby, intro-
ucing competition at various levels wherever it is possible. But
he sudden changes in the electricity markets have a variety of new
ssues such as oligopolistic nature of the market, supplier’s strategic
idding, market power misuse, price-demand elasticity and so on.
heoretically, in a perfectly competitive market, supplier should
id at their marginal production cost to maximize payoff. However,
ractically the electricity markets are oligopolistic nature, and
ower suppliers may  seek to increase their profit by bidding a
rice higher than marginal production cost. Knowing their own
osts, technical constraints and their expectation of rival and
arket behavior, suppliers face the problem of constructing the

est optimal bid. This is known as a strategic bidding problem [1].
In general, there are three basic approaches to model the strate-
ic bidding problem, viz. (i) based on the estimation of market
learing price, (ii) estimation of rival’s bidding behavior and (iii)
n game theory. David [2] developed a conceptual optimal bidding

∗ Corresponding author. Tel.: +91 9290852689; fax: +91 870 2459547.
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© 2012  Elsevier  B.V.  All rights  reserved.

model for the first time in which a dynamic programming (DP)
based approach has been used. Gross and Finlay adopted a
Lagrangian relaxation-based approach for strategic bidding in
England–Wales pool type electricity market [3].  Wang et al. [4]
used evolutionary game approach to analyzing bidding strategies
by considering elastic demand. Ebrahim and Galiana developed
Nash equilibrium based bidding strategy in electricity markets [5].
David and Wen  [6] proposed to develop an overall bidding strategy
using two  different bidding schemes for a day-ahead market using
genetic algorithm (GA). The same methodology has been extended
for spinning reserve market coordinated with energy market by
David and Wen  [7].  Chanwit et al. proposed an optimal risky bid-
ding strategy for a generating company (GenCo) by self-organizing
hierarchical particle swarm optimization with time-varying accel-
eration coefficients (SPSO–TVAC) [8].  To construct linear bid curves
in the Nord-pool market stochastic programming model has been
used by Fleten et al. [9].  The opponents’ bidding behaviors are rep-
resented as a discrete probability distribution function solved using
Monte Carlo method by David and Wen  [10].

A new approach based on fuzzy cognitive map  (FCM)
is introduced to model and simulate GENCO’s behavior in

the electricity market with respect to profit maximization
[11]. pay-as-bid (PAB) has been proposed to replace the
market clearing price (MCP) in deregulated electricity mar-
kets, with the expectation that it would lower market prices

dx.doi.org/10.1016/j.asoc.2012.12.003
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:jvkeee@gmail.com
mailto:vinodkumar.dm@gmail.com
dx.doi.org/10.1016/j.asoc.2012.12.003
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nd reduce price volatility [12]. Mahvi et al. presented a
ew method for determination of the optimal bidding strate-
ies among generating companies (GenCo) in the electricity
arkets using agent-based approach and numerical sensitivity

nalysis (NSA). While agent-based approach provides for decision
aking, NSA can help with identifying the critical control points

hat lead to proper decisions to be taken by GenCos [13]. Hos-
ein et al. illustrates how a generator profit may  be affected by the
ricing method of an oligopoly market model. Through utilizing a
i-level optimization technique and game theory concepts, supply
unction equilibria (SFE) of pay-as-bid pricing (PABP) and marginal
ricing (MP) mechanisms are derived [14].

Azadeh et al. formed optimal bidding problem for a day-ahead
arket as a multi objective problem and solved using GA [15]. Jain

nd Srivastava considered risk constrained bidding strategy and
olved using GA [16]. Ahmet et al. used PSO to determine bid prices
nd quantities under the rules of a competitive power market [17].
anakasabhapathy and Swarup [18] developed strategic bidding

or pumped-storage hydroelectric plant using evolutionary tristate
SO. Bajpai and Singh developed blocked bid model bidding strat-
gy in a uniform price spot market using fuzzy adaptive particle
warm optimization (FAPSO) [19]. Venkaiah and Vinod Kumar used
uzzy adaptive bacterial foraging algorithm (FABFA) for optimal
escheduling of active power of generators [20]. The combination
f PSO and simulated annealing (SA) is used to predict the bidding
trategy of generation companies [21]. Fevrier et al. developed a
ew hybrid approach by combing the advantages of PSO and GA
sing fuzzy logic [22].

In general, strategic bidding is an optimization problem that can
e solved by various conventional and non-conventional (heuris-
ic) methods. Depending on the bidding models, non-differentiable
ptimization is well established area of the mathematical optimiza-
ion field with well known conventional, non-heuristic methods.
euristic methods such as GA, simulated annealing (SA) and evolu-

ionary programming (EP), and particle swarm optimization (PSO)
ave main limitations of their sensitivity to the choice of param-
ters, such as the crossover and mutation probabilities in GA,
emperature in SA, scaling factor in EP, inertia weight, learning
actors in PSO.

In gravitational search algorithm (GSA) [23] the agent direction
s calculated based on the overall force obtained by all other agents.
herefore, agents with a higher performance have a greater gravi-
ational mass. As a result, the agents tend to move toward the best
gent, but the main drawback of the GSA is the difficulty for the
ppropriate selection of gravitational constant (G), which controls
he search accuracy and may  not give a global solution all the time.
ence, to overcome this drawback, the gravitational constant (G)
as been fuzzified.

The main contribution of this paper is, the gravitational constant
G) has been fuzzified for the first time using “IF/THEN” rules to
vercome the limitations of GSA and thereafter maximization of the
rofit of the suppliers using FAGSA. The paper is organized as fol-

ows. Section 2 presents the mathematical formulation of optimal
idding problem. Section 3 contains a brief over view of the pro-
osed GSA method and application of GSA for solving the optimal
idding problem. Section 4 presents the proposed FAGSA and appli-
ation of FAGSA to the optimal bidding problem. Section 5 reports
he case studies solving optimal bidding problem using FAGSA for
EEE 30-bus system and 75-bus Indian practical system and Section

 summed up the final outcome of the paper as conclusions.
. Problem formulation for optimal bidding strategy

Consider a system consist of ‘m’  suppliers participating in a
ool-based single-buyer electricity market in which the sealed
mputing 13 (2013) 2445–2455

auction with a uniform market clearing price (MCP) is employed.
Assume that each supplier is required to bid a linear supply func-
tion to the pool. The jth supplier bid with linear supply curve
denoted by Gj(Pj) = aj + bjPj for j = 1, 2,. . .,m. where Pj is the active
power output, aj and bj are non-negative bidding coefficients of
the jth supplier. After receiving bids from suppliers, the pool deter-
mines a set of generation outputs that meets the load demand
and minimizes the total purchasing cost. It is clear that generation
dispatching should satisfy the following Eqs. (1)–(3).

aj + bjPj = R, j = 1, 2, . . . , m (1)

m∑
j=1

Pj = Q (R) (2)

Pmin,j ≤ Pj ≤ Pmax,j, j = 1, 2, . . . , m (3)

where R is the market clearing price (MCP) of electricity to be deter-
mined, Q(R) is the aggregate pool load forecast as follows:

Q (R) = Qo − KR (4)

where Qo is a constant number and K is a non-negative constant
used to represent the load price elasticity. When the inequality
constraint Eq. (3) is ignored, the solution to Eqs. (1) and (2) are

R =
Qo +

∑m
j=1(aj/bj)

K +
∑m

j=1(1/bj)
(5)

Pj = R  − aj

bj
, j = 1, 2, . . . , m (6)

Pmin,j and Pmax,j are the generation output limits of the jth sup-
plier. If the solution of Eq. (3) exceeds the maximum limit Pmax,j, Pj
is set to Pmax,j. When Pj is less than Pmin,j, Pj is set to Pmin,j. The jth
supplier has the cost function denoted by Cj(Pj) = ejPj + fjP

2
j

, where
ej and fj are the cost coefficients of the jth supplier. The profit max-
imization objective of supplier j (j = 1, 2,. . .,m)  in a unit time for
building bidding strategy can be described as:

Maximize : F(aj, bj) = RPj − Cj(Pj)

Subject to : Eqs. (5) and (6)
(7)

The objective is to determine bidding coefficients aj and bj so
as to maximize F(aj, bj) subject to the constraints Eqs. (5) and (6)
[10]. It is clear that market participants can set MCP  at the level
that returns the maximum profit to them if they know bidding
strategy of other firms. But in sealed bid auction based electricity
market, information for the next day bidding period is confiden-
tial in which suppliers cannot solve optimization problem given in
Eq. (7) directly. However, bidding information of previous day will
be disclosed after independent system operator (ISO) decide MCP
and everyone can make use of this information to strategically bid
for the next hour of the present day transaction between suppliers.
An immediate problem for each supplier is how to estimate the
bidding coefficients of rivals. It is assumed that the suppliers have
the freedom to price away from their marginal production costs,
and they bid linear supply functions and the market is cleared at a
uniform price.

The bidding coefficients (aj, bj) are interdependent; therefore
one of the coefficient make as a constant and other is randomly var-

ied using probability density function (pdf). The probability density
function of a continuous random variable is a function which can
be integrated to obtain the probability that the random variable
takes a value in a given interval. Let, from the ith supplier’s point
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f view, rival’s jth (j /= i) bidding coefficients (aj, bj) obey a joint
ormal distribution with pdf given by:

dfi(aj, bj) = 1

2˘�(a)
j

�(b)
j

√
1 − �2

j

× exp

⎧⎨
⎩− 1

2(1 − �2
j
)

⎡
⎣
(

aj − �(a)
j

�(a)
j

here �j is the correlation coefficient between aj and bj. �(a)
j

, �(b)
j

,
(a)
j

and �(b)
j

are the parameter of the joint distribution. The
arginal distributions of aj and bj are both normal with mean val-

es �(a)
j

and �(b)
j

, and standard deviations �(a)
j

and �(b)
j

respectively.
ased on historical bidding data these distributions can be deter-
ined [10]. The probability density function Eq. (8) represents the

oint distributions between aj and bj, the task of optimally coordi-
ating the bidding strategies for a supplier with objective function
q. (7),  and constraints (5) and (6),  becomes stochastic optimization
roblem. The proposed Fuzzy Adaptive gravitational search algo-
ithm (FAGSA) is applied to solve the above stochastic optimization
roblem.

. Gravitational search algorithm (GSA)

In this section, a brief review of GSA is introduced. In GSA, agents
re considered as objects and their performance is measured by
heir masses. All these objects attract each other by a gravity force,
nd this force causes a movement of all objects globally toward the
bjects with heavier masses. The heavy masses correspond to good
olutions of the problem [23]. In the Newton gravitational law, each
article attracts every other particle with a “gravitational force”.
he gravitational force between two bodies is directly proportional
o the product of their masses and inversely proportional to the
quare of their distance.

In GSA, each mass (agent) has four specifications: its position,
ts inertial mass, its active gravitational mass, and its passive grav-
tational mass. The position of the mass corresponds to a solution
f the problem, and its gravitational and inertial masses are deter-
ined using a fitness function. In other words, each mass presents

 solution, and the algorithm is navigated by properly adjusting the
ravitational and inertia masses. By lapse of time, we expect that
asses be attracted by the heaviest mass. This mass will present

n optimum solution in the search space. The GSA could be consid-
red as an isolated system of masses. It is like a small artificial world
f masses obeying the Newtonian laws of gravitation and motion.
ore precisely, masses obey the following laws.
Law of gravity.  Each particle attracts every other particle and the

ravitational force between two particles is directly proportional
o the product of their masses and inversely proportional to the
istance ‘R’ between them.

Law of motion.  The current velocity of any mass is equal to the
um of the fraction of its previous velocity of mass and the variation
n the velocity. Variation in the velocity or acceleration of any mass
s equal to the force acted on the system divided by mass of inertia.

Now, consider a system with N agents (masses), the position of
he ith agent is defined by:

i = (x1
i , . . . , xd

i , . . . , xn
i ) for i = 1, 2, . . . , N (9)

here xd
i

presents the position with N agents (masses), the position
f the ith agent in the dth dimension and n is the space dimension.

At a specific time ‘t’ we define the force acting on mass ‘i’ from
ass ‘j’ as following:

M (t) × M (t)
d
ij (t) = G(t) pi aj

Rij(t) + ε
(xd

j (t) − xd
i (t)) (10)

here Maj is the active gravitational mass related to agent j, Mpi is
he passive gravitational mass related to agent i, G(t) is gravitational
mputing 13 (2013) 2445–2455 2447

2�j(aj − �(a)
j

)(bj − �(b)
j

)

�(a)
j

�(b)
j

+
(

bj − �(b)
j

�(b)
j

)2
⎤
⎦
⎫⎬
⎭ (8)

constant at time t, ε is a small constant and Rij(t) is the Euclidian dis-
tance between two  agents i and j. The total force that acts on agent

i in a dimension d is a randomly weighted sum of dth component
of the forces exerted from Kbest agents:

Fd
i (t) =

N∑
j ∈ Kbest1,j /= i

randjF
d
ij (t) (11)

where randj is a random number in the interval [0,1] and Kbest is
the set of first agents with the best fitness value and biggest mass.
Kbest is a function of time, initialized to K0 at the beginning and
decreasing with time. In such a way, at the beginning all agents
apply force and as time passes, Kbest is decreased linearly and at
the end, there will be just one agent apply force to others.

By the law of motion, the acceleration of the agent i at time t,
and in direction d, ad

i
(t), is given as follows:

ad
i (t) = Fd

i
(t)

Mii(t)
, (12)

where Mii is the inertial mass of ith agent. The next velocity of
an agent is considered as a fraction of its current velocity added
to its acceleration. Therefore, its position and its velocity could be
calculated as follows:

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (13)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (14)

where randi is a uniform random variable in the interval [0,1]. This
random number to gives randomized characteristic to the search.
The gravitational constant, G, is initialized at the beginning and will
be reduced with time to control the search accuracy. Hence, G is a
function of the initial value (G0) and time (t):

G(t) = G0e−�
(

iter

itermax

)
(15)

Gravitational and inertia masses are simply calculated by the
fitness evaluation. Here G0 is set to 100. A heavier mass means a
more efficient agent. This means that better agents have higher
attractions and walk more slowly. Assuming the equality of the
gravitational and inertia mass, the value of masses is calculated
using the map of fitness. The gravitational and inertial masses are
updated by the following equations:

Mai = Mpi = Mii = Mi; i = 1, 2, . . . , N (16)

mi(t) = fiti(t) − worst(t)
best(t) − worst(t)

(17)

Mi(t) = mi(t)∑N
j=1mj(t)

, (18)

where fiti(t) represent the fitness value of the agent i at time t,
and worst(t) and best(t) are defined as follows (for a maximization
problem and vice versa for minimization):

best(t) = max
j ∈{1,...,N}

fitj(t) (19)

worst(t) = min fitj(t) (20)

j ∈{1,...,N}

It is obvious that for maximizing the profits of a supplier, bidding
coefficients aj, and bj cannot be selected independently in other
words, a supplier can fix one of these two coefficients and then
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Generate initial population

Evaluate fitness of each agent

Update G, best and worst of the population

Update velocity and position

using Eq. (13) and (14)

Meeting end of criterion?

Return the best solution

Calculate M and a for each agent using

Eq. (18) and (12)

Yes

No

d
r
p

3
b

G(t) = G0e
Fig. 1. Flowchart of the GSA.

etermine the other by using an optimization procedure. In this
egard, GSA is applied to find the optimal bidding coefficients and
rofit of each supplier. Fig. 1 illustrates the flowchart of the GSA.

.1. Gravitational search algorithm (GSA) for finding optimal
idding coefficients (bj)

Step 1. Initialization of the agents
(a) Generate random population of bj solutions (masses), where

bj is the bidding parameter of the jth supplier to be optimized.
(b) Read input data �, �, �, a and maximum iterations, where

� is the mean, � the standard deviation, � the correlation coef-
ficient of Eq. (8),  and a the cost coefficient.

Step 2. Fitness evaluation and best fitness computation for each
agents

best(t) = max
j ∈{1,...,N}

fitj(t)

worst(t) = min
j ∈{1,...,N}

fitj(t)

where fitj(t) represents the fitness of the of jth at iteration t, best(t)
and worst(t) represents the best and worst fitness at generation t
of Eq. (8)
Step 3. Compute gravitational constant G

Compute gravitational constant G at iteration t using the follow-
ing equation:

G(t) = G0e−�
(

iter

itermax

)

where G0 is a constant value and itermax is the maximum number
of iterations.

Update G(t), best(t), worst(t) and Mi(t) for i = 1, 2,. . .,N
Step 4. Calculate the mass of the each agent at iteration t
mi(t) = fiti(t) − worst(t)
best(t) − worst(t)
mputing 13 (2013) 2445–2455

Step 5. Calculate accelerations of the agents at iteration t

ad
i (t) = Fd

i
(t)

Mii(t)
,

where Mii is the inertial mass of ith agent and Fd
i

(t) is the total
force that acts on ith agent calculated as:

Fd
i (t) =

N∑
j ∈ Kbest1,j /= i

randjF
d
ij (t)

Fd
ij

(t) is the force acting on agent i from agent j at dth dimension
and tth iteration is computed as:

Fd
ij (t) = G(t)

Mpi(t) × Maj(t)
Rij(t) + ε

(xd
j (t) − xd

i (t))

where Rij(t) is the Euclidian distance between two agents i and j
Step 6. Update velocity and position of agents

vd
i (t + 1) = randi × vd

i (t) + ad
i (t)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

Step 7. Repeat from steps 2–6 until iteration reaches their maxi-
mum  limit. Return the best fitness (optimal bid value bj) computed
at final iteration as a global fitness. Using bj values, calculate MCP
from Eq. (5).

3.2. Maximization of profit using GSA

Step 1. Initialization of the agents
(a) Generate random population of profit Fj solutions (masses) in

the search space, where Fj is the profit of the jth supplier.
(b) Read input data of generators (i.e. cost coefficients, Pmin, Pmax),

demand (Qo) and maximum number of iterations.
Step 2. Calculate generator output each supplier using Eq. (6)
(a) If generation violates lower limit set as a lower limit If gener-

ation violates upper limit set as an upper limit
(b) Add all generations
(c) Error = total system generation − total system demand
Step 3. Fitness evaluation and best fitness computation for each
agents

best(t) = max
j ∈{1,...,N}

fitj(t)

worst(t) = min
j ∈{1,...,N}

fitj(t)

where fitj(t) represents the fitness of the of jth at iteration t, best(t)
and worst(t) represents the best and worst fitness at generation t
of Eq. (7)
Step 4. Compute gravitational constant G

Compute gravitational constant G at iteration t using the follow-
ing equation:

−�
(

iter
)

itermax

where G0 is a constant value and itermax is the maximum number
of iterations.
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M (medium) and L (large), whereas the output variable (�G) is
presented in three fuzzy sets of linguistic values; NE (negative),
ZE (zero) and PE (positive) with associated triangular membership
functions, as shown in Fig. 3.
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Update G(t), best(t), worst(t) and Mi(t) for i = 1, 2,. . .,N
Step 5. Calculate the mass of the each agent at iteration t

mi(t) = fiti(t) − worst(t)
best(t) − worst(t)

Step 6. Calculate accelerations of the agents at iteration t

ad
i (t) = Fd

i
(t)

Mii(t)
,

where Mii is the inertial mass of ith agent and Fd
i

(t) is the total
force that acts on ith agent calculated as:

Fd
i (t) =

N∑
j ∈ Kbest1,j /=  i

randjF
d
ij (t)

Fd
ij

(t) is the force acting on agent i from agent j at dth dimension
and tth iteration is computed as:

Fd
ij (t) = G(t)

Mpi(t) × Maj(t)
Rij(t) + ε

(xd
j (t) − xd

i (t))

where Rij(t) is the Euclidian distance between two agents i and j.
Step 7. Update velocity and position of agents

vd
i (t + 1) = randi × vd

i (t) + ad
i (t)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

Step 8. Repeat from steps 3–7 until iteration reaches their maxi-
mum  limit. Return the best fitness (maximum profit) computed at
final iteration as a global fitness.
Step 9. Print c.p.u time and plot number of iterations versus %error.

%Error = Generation − demand

Generation
× 100

. Proposed fuzzy adaptive gravitational search algorithm
FAGSA)

Metaheuristic which include the GSA method, are approxi-
ate algorithms designed to be applied to engineering problems.

t is clearly desirable that these algorithms be applicable to real
ptimization problems without the need for highly skilled labor.
owever, till date, their application has required significant time
nd labor for tuning the parameters, and hence, from engineer-
ng perspective, it is desirable to add robustness and adaptability
o these algorithms. The latter adaptability property is especially
mportant from the viewpoint of practical applications.

Two significant relationships must be understood in order to
dd adaptability to an optimization algorithm. One is the analysis
f the qualitative and quantitative relationship between parame-
ers and the behavior of the algorithm. The other is the analysis of
he qualitative and quantitative relation between the behavior of
he algorithm and success, or failure, of the search. The modifica-
ion of the algorithm due to the results of these analyses should

e carefully weighed so that an ideal algorithm behavior may  be
etermined relative to the success of the search, so that an adaptive
lgorithm which feeds back the conditions of the search in order to
aintain this behavior may  be understood.
mputing 13 (2013) 2445–2455 2449

In Eq. (10) of GSA, force acting on the masses is related to the
value of gravitational constant (G). Hence, the acceleration of the
agent varies by varying the value of gravitational constant from Eq.
(12). Therefore, the gravitational constant determines the influence
of agent’s previous velocity in the next iteration and also the search
ability of GSA is reduced when the scale of the problem becomes
large, because the search finishes before the phase of searching
shifts from diversification to intensification. Suitable selection of
the gravitational constant (G) provides a balance between global
exploration, local exploration and exploitation, which results in
less number of iterations on average to find a sufficiently optimal
solution. Although the GSA algorithms can converge very quickly
toward the nearest optimal solution for many optimization prob-
lems, it has been observed that GSA experiences difficulties in
reaching the global optimal solution.

The gravitational constant (G) characterizes the behavior of
agents, and experience shows that the success or failure of the
search is heavily dependent on the value of the gravitational con-
stant. The main causes of the search failures are given by the
following:

• The velocity of the agents (masses) increase rapidly, and agents
go out of the search space.

• The velocity of the agents (masses) decrease rapidly, and agents
become immobile.

• Agents (masses) cannot escape local optimal solutions.

In order to avoid these undesirable situations, it is important to
analyze the relationship between the parameters and the behavior
of agents (masses), with special regard to divergence and con-
vergence of agents (masses). Therefore, the fuzzy adaptive GSA is
proposed, to design a fuzzy adaptive dynamic gravitational con-
stant using fuzzy “IF/THEN” rules for solving the optimal bidding
problem. In FAGSA concept, the velocity and position update equa-
tions are same as in the case of GSA. But the gravitational constant
is dynamically adjusted, as iteration grows, using fuzzy “IF/THEN”
rules. The fuzzy inference system maps crisp set of input variables
into a fuzzy set using membership functions. According to the pre-
defined logic, the output is assigned based on these fuzzy input
sets. The variables selected as input to the fuzzy inference system
are the current best performance evaluation (normalized fitness
value) and current gravitational constant; whereas output variable
is change in the gravitational constant as shown in Fig. 2.

The fuzzy system consists of four principle components: fuzzi-
fication, fuzzy rules, fuzzy reasoning and defuzzification which are
described in the following subsections [24].

4.1. Fuzzification

To obtain a better gravitational constant value under the fuzzy
environment, two inputs are considered: (i) normalized fitness
value (NFV); (ii) current gravitational constant (G) and output is
the correction of the gravitational constant (�G). The triangu-
lar membership functions considered for the fuzzification of the
input variables are presented in three linguistic values, S (small),
Fuzz y Inference Sys tem (FIS)

NFV

G
∆G

Fig. 2. Inputs and outputs of fuzzy inference system for the proposed FAGSA.
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algorithm (FAGSA) for optimal bidding problem

4.5.1. FAGSA for computing optimal bidding coefficients (bj)
(a)

Fig. 3. Membership functions of input variables (a) norm

The membership function of a fuzzy set, usually expressed as
A(x) define how the grade of the membership function (x) associ-

ted with the fuzzy set (A), that depends not only on the concept to
e represented, but also on the context which it is used. The number
f membership functions is problem dependent. Greater resolution
s achieved by using more membership functions at the price of
reater computational complexity. In the manuscript submitted,
riangular membership functions are considered for simplicity as
uzzy set is not too sensitive to variation in shape.

.2. Fuzzy rules

The Mamdani-type fuzzy rules are used to formulate the condi-
ional statements that comprise fuzzy logic. For example:

IF (NFV is S) AND (G is M)  THEN change in gravitational constant
�G) is NE

In this paper, the rule base is designed based on the ideal velocity
haracteristics of the agents (masses) with respect to the genera-
ions shown in Fig. 4.The fuzzy rules are designed to determine the
hange in gravitational constant (�G). From the characteristics it
an be observed that if the NFV is smaller than the G, then NFV
s to be increased to meet G which can be achieved by increasing
he gravitational constant. If NFV is greater than G, then NFV is to
e decreased to meet G which can be achieved by decreasing the
ravitational constant. To incorporate these, three linguistic vari-
bles ‘Negative’, ‘Zero’ and ‘Positive’ (NE, ZE, PE) are considered.
herefore, nine (3 × 3 = 9) fuzzy rules can be designed from Table 1.
hese nine fuzzy rules are sufficient for the fuzzification of change
n gravitational constant. As the number of fuzzy rules increases,
omplexity of the problem increases.

.3. Fuzzy reasoning

The fuzzy control strategy is used to map  the inputs to the out-
ut. The AND operator is typically used to combine the membership

alues for each fired rule to generate the membership values for the
uzzy sets of output variables in the consequent part of the rule.
ince there may  be other rules fired in the rule sets, for some fuzzy

G

Tend Tmax

End of sear ch

Iteration s

Velocit y 

NFV

Fig. 4. NFV and G of agents (masses) for the proposed FAGSA.
(c)

d fitness value (NFV), (b) G, and output variable (c) �G.

sets of the output variables there may  be different membership
values obtained from different fired rules.

To obtain a better gravitational constant under the fuzzy envi-
ronment, the variables selected as input to the fuzzy system are
the current best performance evaluation (NFV) and current gravi-
tational constant (G); whereas the output variable is the change in
the gravitational constant (�G). The NFV is defined as:

NFV = FV − FVmin

FVmax − FVmin
(21)

The fitness value (FV) calculated from Eq. (7) at the first itera-
tion may  be used as FVmin for the next iterations, whereas FVmax is a
very large value and is greater than any acceptable feasible solution.
The gravitational constant (G) is one of the most popular strategies
for tuning the parameters of FAGSA. The value of the parameter
‘G’ is large at the beginning of the search process and gradually it
becomes small as the iterations are increasing. Hence on the uni-
verse of discourse the range is selected between 1 (maximum) and
0.4 (minimum). In this paper (−0.1, +0.1) has been considered on
the universe of discourse as the change in gravitational constant
(�G) is small and requires both positive and negative corrections.

Gt+1 = Gt + �G (22)

4.4. Defuzzification

For defuzzification of every input and output, the method of
centroid (center-of-sums) is used for the membership functions
shown in Fig. 3. The flow chart of the proposed FAGSA is shown in
Fig. 5. The pseudo-code for the proposed FAGSA is given in Table 2.

4.5. Implementation of fuzzy adaptive gravitational search
Step 1. Initialization of the agents

Table 1
Fuzzy rules for variation of the gravitational constant (G).

Rule No Antecedent Consequent

NFV G �G

1 S S ZE
2  S M NE
3  S L NE
4  M S PE
5  M M ZE
6  M L NE
7 L  S PE
8  L M ZE
9 L  L NE
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Generate initial population

Evaluate fitness of each agent

Update G, best and worst of the population

Update velocity and position

using Eq. (13) and (14)

Meeting end of criterion?

Return the best solution

Calculate M and a for each agent

using Eq. (18) and (12)

Yes

No

Design fuzzy IF/THEN rules for the

gravitational constant parameter (G)

T
P

Fig. 5. Flowchart of the proposed FAGSA.

(a) Generate random population of bj solutions (masses), where
bj is the bidding parameter of the jth supplier to be optimized.

(b) Read input data �, �, �, a and maximum iterations, where �
is the mean, � the standard deviation, � the correlation coef-
ficient of Eq. (8),  a is the cost coefficient.

Step 2. Fitness evaluation and best fitness computation for each
agents

best(t) = max
j ∈{1,...,N}

fitj(t)

worst(t) = min
j ∈{1,...,N}

fitj(t)

where fitj(t) represents the fitness of the of jth at iteration t, best(t)
and worst(t) represents the best and worst fitness at generation t
of Eq. (8).
Step 3. Compute gravitational constant parameter (G) using fuzzy

“IF/THEN” rules.

Update G(t), best(t), worst(t) and Mi(t) for i = 1, 2,. . .,N

able 2
seudo-code for the proposed FAGSA.

Begin;
Initialize the number of agents, N
Initialize the positions of a system with N masses
Compute gravitational constant using fuzzy logic
For each individual i ∈ N: calculate fitness (i) and the gravitational and inertial

masse.
Compute the force acting on mass i from mass j at time t
Compute the total force that acts on object i in dimension d
Find the acceleration of object i in dth dimension
Compute the velocity and the position of the object for t = t + 1
If  the norm of two consecutive best values of xi is smaller than a specified

tolerance value, or the best values do not change for a specified number of
iterations stop, otherwise readjust the gravitational constant

End;
mputing 13 (2013) 2445–2455 2451

Step 4. Calculate the mass of the each agent at iteration t

mi(t) = fiti(t) − worst(t)
best(t) − worst(t)

Step 5. Calculate accelerations of the agents at iteration t

ad
i (t) = Fd

i
(t)

Mii(t)
,

where Mii is the inertial mass of ith agent and Fd
i

(t) is the total
force that acts on ith agent calculated as:

Fd
i (t) =

N∑
j ∈ Kbest1,j /=  i

randjF
d
ij (t)

Fd
ij

(t) is the force acting on agent i from agent j at dth dimension
and tth iteration is computed as:

Fd
ij (t) = G(t)

Mpi(t) × Maj(t)
Rij(t) + ε

(xd
j (t) − xd

i (t))

where Rij(t) is the Euclidian distance between two agents i and j.
Step 6. Update velocity and position of agents

vd
i (t + 1) = randi × vd

i (t) + ad
i (t)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

Step 7. Repeat from steps 2–6 until iteration reaches their maxi-
mum  limit. Return the best fitness (optimal bid value bj) computed
at final iteration as a global fitness. Using bj values, calculate MCP
from Eq. (5).

4.5.2. FAGSA for profit maximization
Step 1. Initialization of the agents
(a) Generate random population of profit Fj solutions (masses) in

the search space, where Fj is the profit of the jth supplier.
(b) Read input data of Generators (i.e. cost coefficients, Pmin, Pmax),

demand (Qo) and maximum number of iterations.
Step 2. Calculate generator output each supplier using Eq. (6)
(a) If generation violates lower limit set as a lower limitIf genera-

tion violates upper limit set as an upper limit
(b) Add all generations
(c) Error = total system generation − total system demand
Step 3. Fitness evaluation and best fitness computation for each
agents

best(t) = max
j ∈{1,...,N}

fitj(t)

worst(t) = min
j ∈{1,...,N}

fitj(t)

where fitj(t) represents the fitness of the of jth at iteration t, best(t)

and worst(t) represents the best and worst fitness at generation t
of Eq. (7)
Step 4. Compute gravitational constant parameter (G) using fuzzy
logic
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Table 4
Generator data for IEEE 30-bus system.

Generator e f Pmin (MW)  Pmax (MW)

1 2.0 0.00375 20 160
2 1.75 0.0175 15 150
3 1.0 0.0625 10 120
4  3.25 0.00834 10 100
5  3.0 0.025 10 130
6  3.0 0.025 10 130

Table 5
Optimal bidding strategies of generators for IEEE 30-bus system.

Generator FAGSA GSA [23] PSO [17] GA[15] Traditional
GSS  [6]

bj bj bj bj bj

1 0.021437 0.021004 0.001092 0.001045 0.15800
2  0.121878 0.090472 0.050953 0.048786 0.04745
3 0.337380 0.263450 0.181976 0.174234 0.13099
4  0.023806 0.054320 0.024283 0.023250 0.02458

and agents become immobile. The performance of the PSO greatly
dependent on the inertia weight, therefore, improper selection
of the inertia weight may  lead to premature convergence of the
452 J. Vijaya Kumar et al. / Applied S

Update G(t), best(t), worst(t) and Mi(t) for i = 1, 2,. . .,N
Step 5. Calculate the mass of the each agent at iteration t

mi(t) = fiti(t) − worst(t)
best(t) − worst(t)

Step 6. Calculate accelerations of the agents at iteration t

ad
i (t) = Fd

i
(t)

Mii(t)
,

where Mii is the inertial mass of ith agent and Fd
i

(t) is the total
force that acts on ith agent calculated as:

Fd
i (t) =

N∑
j ∈ Kbest1,j /=  i

randjF
d
ij (t)

Fd
ij

(t) is the force acting on agent i from agent j at dth dimension
and tth iteration is computed as:

Fd
ij (t) = G(t)

Mpi(t) × Maj(t)
Rij(t) + ε

(xd
j (t) − xd

i (t))

where Rij(t) is the Euclidian distance between two  agents i and j.
Step 7. Update velocity and position of agents

vd
i (t + 1) = randi × vd

i (t) + ad
i (t)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

Step 8. Repeat from steps 3–7 until iteration reaches their maxi-
mum  limit. Return the best fitness (maximum profit) computed at
final iteration as a global fitness.
Step 9. Print c.p.u time and plot number of iterations versus %Error.

%Error = Generation − demand

Generation
× 100

. Results and discussions

In order to evaluate the performance of proposed FAGSA for
olving optimal bidding problem, IEEE 30-bus system and 75-bus
ndian practical system are considered. The performance of the pro-
osed FAGSA has been compared with GSA [23], PSO [17], GA [15]
nd a traditional optimization method called golden section search
GSS) method [6].  In this work, the parameters used for GSA, PSO

nd GA (binary coded) are given in Table 3, where N: population
ize; G: gravitational constant for GSA; c1 and c2: learning factors,
: inertia weight for PSO; l: chromosome length; Pe: Elitism prob-

bility; Pc: crossover probability, Pm: mutation probability for GA;

able 3
arameters for different approaches for IEEE 30-bus system and 75-bus Indian
ystem.

GSA PSO GA

N = 50; Max.
iterations = 1000;
G  = 100

No. of particles = 50;
Max.
iterations = 1000;
c1 = c2 = 2.0;
w = 0.9–0.4

Population size = 50;
Generations = 1000;
l  = 12
Pe = 0.15; Pc = 0.85;
Pm = 0.005
5  0.100457 0.108594 0.072791 0.069694 0.05614
6  0.063465 0.108594 0.072791 0.069694 0.56140

simulations are carried on 2.66 GHz, PIV processor, 3GB RAM and
MATLAB 7.8 version is used.

5.1. IEEE 30-bus system

The IEEE 30-bus system consists of six suppliers, who supply
electricity to aggregate load. The generator data is shown in Table 4.
Qo is 500 with inelastic load (K = 0), considered for aggregated
demand. Bidding strategies are shown in Table 5. The optimal bid
prices and profits are shown in Table 6. From Tables 5 and 6 it is
observed that, the proposed FAGSA giving maximum power out-
puts and higher profits. Therefore, the bidding parameters obtained
by FAGSA are optimum compared to GSA, PSO, GA and GSS method.
Fig. 6 shows the convergence characteristics of proposed FAGSA,
GSA, PSO and GA. From Fig. 6 it is observed that, the time taken
for the convergence of the proposed method is drastically reduced
because of the fuzzification of gravitational constant (G). The gravi-
tational constant adjusts the accuracy of the search, so it decreases
with the time, which leads to a fast convergence rate compared to
reported methods. In GSA the optimum selection of gravitational
constant (G) is tedious and improper selection of gravitational con-
stant results the velocity of the agents (masses) decreases rapidly,
Fig. 6. Convergence characteristics of FAGSA, GSA, PSO and GA for IEEE 30-bus
system.
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Table  6
Market clearing price (MCP) ($/MWh) and profit ($) of generators for IEEE 30-bus system.

Generator FAGSA GSA [23] PSO [17] GA [15] Traditional GSS [6]

P (MW) Profit ($) P (MW)  Profit ($) P (MW)  Profit ($) P (MW)  Profit ($) P (MW)  Profit ($)

1 160 1034.9 160 959.38 160.00 772.41 160 741.45 160.00 557
2  60.04 376.38 99.67 417.85 100.83 340.10 101.2 321.32 91.3 249
3  58.91 157.22 38.83 167.06 32.35 125.06 32.68 119.33 38.8 103
4 100 498.47 98.42 441.38 100.00 280.36 100 261.01 100.00 200
5 60.41  275.38 51.53 221.99 53.40 136.32 53 125.56 54.90 94

53.40
.88 
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6  60.41 275.38 51.53 221.99 

MCP  9.06 8.59 6
Total  profit 2617.73 2429.65 1

articles. GA has limitation of sensitivity of the choice of the param-
ters such as crossover and mutation probabilities.

.2. 75-bus Indian practical system

The 75-bus Indian practical system [25] consists of 15 suppliers,
ho supply electricity to aggregate load. Qo is 5000 with inelas-

ic load (K = 0) considered for aggregated load. Bidding coefficients,
enerator output, MCP  and profit of suppliers are calculated
sing FAGSA, shown in Tables 7 and 8. It can be evident from

ables 7 and 8 that, proposed FAGSA method producing higher
rofits compared with other reported algorithms. Therefore, the
idding parameters obtained by FAGSA are optimum compared
o GSA, PSO, GA and GSS method. Fig. 7 shows the convergence

able 7
ptimal bidding strategies of generators for 75-bus Indian practical system.

Generator FAGSA GSA [23] 

bj bj

1 0.002223 0.002924 

2  0.004708 0.004509 

3 0.010916 0.002369 

4  0.008912 0.006296 

5  0.203729 0.334051 

6 0.008007 0.011553 

7  0.024431 0.019105 

8 0.013519 0.004908 

9  0.010950 0.010374 

10  0.006197 0.006258 

11  0.005578 0.005537 

12  0.008748 0.007409 

13  0.008645 0.004727 

14  0.005838 0.002403 

15  0.002253 0.006110 

able 8
arket clearing price (MCP) (Rs/MWh) and profit of generators for 75-bus Indian practica

Generator FAGSA GSA [23] PSO [1

P (MW)  Profit (Rs) P (MW)  Profit (Rs) P (MW

1 95.2 786.72 467.24 315.1 471.3 

2  173.44 305.69 198.71 83.2 175.4 

3  64.92 207.66 180 82.4 174.1 

4 60.52  405.43 100 242.0 92.6 

5  70.15 16.19 175.13 6.2 170.3 

6  375.19 250.58 80.16 56.7 54.2 

7  77.44 383.38 52.17 262.8 60 

8  103.46 218.37 80 114.4 77.2 

9 156.58 237.32 294.09 73.2 227.7 

10  725.38 299.08 80 152.0 80 

11  150 356.25 109 185.4 109 

12  270 613.98 554.31 322.2 252.5 

13  95.2 539.15 329.22 350.8 603.1 

14 173.44  629.541 149.5 425.2 150 

15 64.92  398.51 149.93 96.2 302.1 

MCP  8.83 8.01 7.68 

Total  Profit 5647.91 2768.57 1752.6
 136.32 53 125.56 54.90 94
6.69 6.08

7 1694.23 1297

characteristics of different methods. From Fig. 7 it is observed that
the proposed FAGSA converges fast compared to GSA, PSO and GA
because it has the advantages of agents with higher performance
have a greater gravitational mass, as a result, the agents tend to
move toward the best agent, which avoids premature convergence
and also a bigger inertia causes a higher attraction of agents, this
permits faster convergence. Even if the size of the system increases
still proposed method converges fast. This shows the robustness of
the FAGSA.

The superiority of the FAGSA approach is demonstrated through

comparison of simulation results with GSA, PSO and GA.  Due  to the
randomness of the evolutionary algorithms, their performance can-
not be judged by the result of a single run. Many trails with different
initializations should be made to reach a valid conclusion about

PSO [17] GA [15] Traditional
GSS [6]

bj bj bj

0.002200 0.002944 0.001993
0.003232 0.004774 0.003233
0.006976 0.003918 0.002653
0.006762 0.002844 0.001926
0.134368 0.196915 0.133342
0.011002 0.005410 0.003664
0.006162 0.012133 0.008216
0.009800 0.004973 0.003367
0.008323 0.004177 0.002828
0.003392 0.003222 0.002182
0.002952 0.003222 0.002182
0.005573 0.003063 0.002074
0.002035 0.002964 0.002007
0.005630 0.002665 0.001805
0.002529 0.003640 0.002465

l system.

7] GA [15] Traditional GSS [6]

)  Profit (Rs) P (MW)  Profit (Rs) P (MW)  Profit (Rs)

160.02 571.7 119.7 502.39 86.16
25.6 56.6 22.9 209.62 7.04
27.5 162.6 23.0 141.29 5.68

158.8 94 99.8 94.7 72.61
3.7 163.4 3.5 164.08 2.79

24.3 52.7 22.5 50.82 7.67
225.7 40 149.8 42 128.09

43.5 73.5 40.2 68.17 19.68
37.6 274.3 34.5 291.71 13.543
92.7 76 57.1 74 32.69

116.7 94.5 73.3 92.5 44.91
257.1 225.4 233.1 267.36 186.45
198.1 602.6 182.2 531.48 135.23
343.0 132.5 189.2 145 155.20

37.6 379.1 32.39 318.65 10.66
7.56 7.38

 1283.89 908.40
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Table 9
Performance comparison of different approaches for IEEE 30-bus system.

FAGSA GSA [23] PSO [17] GA [15]

Total profit ($) Best ($) 2617.73 2429.65 1790.57 1694.23
Worst ($) 2591.18 2392.34 1574.85 1464.27
Average ($) 2604.45 2410.99 1682.71 1579.25
PD  (%) 0.010 0.015 0.120 0.135

Average execution time (s) 1.97 1.97 2.06 6.24

Table 10
Performance comparison of different approaches for 75-bus Indian practical system.

FAGSA GSA [23] PSO [17] GA [15]

Total profit (Rs) Best (Rs) 5647.91 2768.57 1752.6 1283.89
Worst (Rs) 5492.18 2643.91 1627.34 1092.06
Average (Rs) 5570.04 2706.24 1689.97 1187.97
PD  (%) 0.027 0.045 0.071 0.149

Average execution time (s) 48.84 63.46 78.37 93.56

Table 11
The statistical results of the t-test for 20 independent runs.

Test system FAGSA GSA t-Value between FAGSA and GSA

Mean Standard deviation Mean Standard deviation

t
g
t
t
T
d
7
i

P

p
s
i
F
t
s
e
a
t

F
s

IEEE 30-bus system 2600.17 304.18 

75-bus  Indian practical system 5557.00 2809.61 

he performance of the algorithms. An algorithm is robust, if it can
uarantee an acceptable performance level under different condi-
ions. Since FAGSA, GSA, PSO and GA random in nature therefore,
he bidding data was executed for 20 runs for all the approaches.
he best, worst, average values, total profit and PD for the given
ata are tabulated in Tables 9 and 10 for IEEE 30-bus and practical
5 bus Indian system respectively. The percentage deviation (PD)

s computed as follows:

D (%) = (Best − Worst)
Best

× 100

From the result it is observed that the PD is minimum for the
roposed FAGSA compared to GSA, PSO and GA, for the given test
ystem and optimal bidding strategies obtained by FAGSA produc-
ng higher profits compared to GSA, PSO and GA. In addition to that,
AGSA shows good consistency by keeping small variation between
he best and worst solution. In other words, the simulation results

how that the FAGSA converges to global solution has a shorter
xecution time and small percentage deviation because, it has the
dvantage of agents with higher performance have greater gravi-
ational mass. As a result, the agents tend to move toward the best

ig. 7. Convergence characteristics of FAGSA, GSA, PSO and GA for 75-bus Indian
ystem.
2409.67 190.42 38.30
2699.35 2134.5 42.93

agent, which avoids premature convergence and also bigger iner-
tia mass cause’s higher attraction of agents, this permits a faster
convergence.

In order to prove further the number of the runs is reasonable
to evaluate the convergence and robustness of FAGSA, a statistical
analysis is carried out by applying t-test to compare the means
of the best results produced by the FAGSA and GSA. The statis-
tical results of the t-test for FAGSA and GSA on IEEE 30-bus and
75-bus Indian practical system are listed in Table 11.  The t-values
between the FAGSA and GSA for both the test systems are 38.30
and 42.93 respectively. From Table 11 it is observed that, when
the t-value is higher than 2.02 (for degrees of freedom = 38 and
probability = 0.05), there is a significant difference between the
two algorithms with a 95% confidence level. Therefore, the per-
formance of the FAGSA is statistically significantly better than that
of other optimization methods with a 95% confidence level. From
these results it is understood that selecting the number of runs to
be 20 is reasonable to evaluate the convergence and robustness of
FAGSA in comparison with reported methods.

6. Conclusion

In this paper, a new optimization algorithm called fuzzy adap-
tive gravitational search algorithm (FAGSA) has been proposed
to achieve a better balance between global and local searching
abilities of the agents (masses). The result of gravitational search
algorithm (GSA) greatly depends on gravitational constant (G) and
the method often suffers from the problem of being trapped in
local optima. To overcome this drawback, gravitational constant
has been adjusted dynamically and nonlinearly by using fuzzy
“IF/THEN” rules in order to reach the global solution.

The performance of the proposed FAGSA is tested on IEEE 30-
bus system and 75-bus Indian practical system. The test results
of proposed method are compared with the well-known heuristic

search methods reported in literature. From the test results, it is
observed that, the proposed FAGSA converge to global best solu-
tion due to fuzzification of gravitational constant. Proper selection
of gravitational constant makes a great intensity of attraction as a
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esult the agents tend to move toward the best agent compared to
ravitational search algorithm (GSA), particle swarm optimization
PSO) and genetic algorithm (GA). The proposed FAGSA takes min-
mum execution time due to the gravitational constant has been
ynamically adjusted using simple “IF/THEN” rules and also FAGSA
utperformed the reported algorithms in a statistically meaningful
ay. Therefore, in conclusion, the proposed FAGSA outperform the
SA, PSO and GA reported in literature in terms of global best solu-

ion, standard deviation and computation time. Thus, the proposed
AGSA is more effective for the optimal bidding strategy in giving
he best optimal solution in comparison to the GSA, PSO and GA
ith respect to total profit and computation time. Future research

hould focus on extending the optimal bidding problem for a day-
head market including inter-temporal constraint of the generating
nits.

eferences

[1] A.K. David, Strategic bidding in competitive electricity markets: a literature
survey, in: Power Engineering Society Summer Meeting 2000, 2000.

[2]  A.K. David, Competitive bidding in electricity supply, IET Generation, Trans-
mission and Distribution 140 (5) (1993) 421–426.

[3] G. Gross, D.J. Finlay, Generation Supply Bidding in Perfectly Competitive Elec-
tricity Markets, Computational and Mathematical Organization Theory, vol. 6,
Springer, 2000, pp. 83–98.

[4] J. Wang, Z. Zhou, A. Botterud, An evolutionary game approach to analyzing
bidding strategies in electricity markets with elastic demand, Energy 36 (2011)
3459–3467.

[5]  D. Ebrahim Hasan, F.D. Galiana, Fast computation of pure strategy Nash equilib-
rium in electricity markets cleared by merit order, IEEE Transactions on Power
Systems 25 (2) (2010) 722–728.

[6] A.K. David, F. Wen, Strategic bidding for electricity supply in a day-ahead energy
market, Electrical Power System Research 59 (2001) 197–206.

[7] A.K. David, F. Wen, Optimally co-ordinate bidding strategies in energy and
ancillary service markets, IET Generation, Transmission and Distribution 149
(3)  (2002) 331–338.

[8] C. Boonchuay, W.  Ongsakul, Optimal risky bidding strategy for a generating

company by self-organizing hierarchical particle swarm optimization, Energy
Conversion and Management 52 (2011) 1047–1053.

[9] S.E. Fleten, E. Pettersen, Constructing bidding curves for a price-taking retailer
in  the Norwegian electricity market, IEEE Transactions on Power Systems 20
(2)  (2005) 701–708.

[

[

mputing 13 (2013) 2445–2455 2455

10] A.K. David, F.S. Wen, Optimal bidding strategies and modeling of imperfect
information among competitive generators, IEEE Transactions on Power Sys-
tems 16 (1) (2001) 15–21.

11] S.F. Ghaderi, A. Azadeh, B. Pourvalikhan Nokhandan, E. Fathi, Behavioral simu-
lation and optimization of generation companies in electricity markets by fuzzy
cognitive map, Expert Systems with Applications 39 (2012) 4635–4646.

12] Z. Liu, J. Yan, Y. Shi, K. Zhu, G. Pu, Multi-agent based experimental analysis on
bidding mechanism in electricity auction markets, Electrical Power and Energy
Systems 43 (2012) 696–702.

13] M. Mahvi, M.M.  Ardehali, Optimal bidding strategy in a competitive electric-
ity market based on agent-based approach and numerical sensitivity analysis,
Energy 36 (2011) 6367–6374.

14] H. Haghighat, H. Seifi, A.R. Kian, Pay-as-bid versus marginal pricing: the role
of suppliers strategic behavior, Electric Power and Energy Systems 42 (2012)
350–358.

15] A. Azadeh, S.F. Ghaderi, B. Pourvalikhan Nokhanandan, M.  Shaikhalishahi, A
new  GA approach for optimal bidding strategy viewpoint of profit maximi-
zation of a generation company, Expert Systems with Applications 39 (2012)
1565–1574.

16] A.K. Jain, S.C. Srivastava, Strategic, Bidding and risk assessment using genetic
algorithm in electricity markets, International Journal of Emerging Electric
Power Systems 10 (2009) 1–10.

17] A.D. Yucekya, J. Valenzuela, G. Dozier, Strategic bidding in electricity market
using PSO, Electrical Power System Research 79 (2009) 335–345.

18] P. Kanakasabhapathy, K. Shanti Swarup, Evolutionary tristate PSO for strategic
bidding of pumped-storage hydroelectric plant, IEEE Transactions on Sys-
tems, Man, and Cybernetics -part c: Applications and Reviews 40 (4) (2010)
460–471.

19] P. Bajpai, S.N. Singh, Fuzzy adaptive particle swarm optimization for bidding
strategy in uniform price spot market, IEEE Transactions on Power Systems 22
(4)  (2007) 2152–2160.

20] Ch. Venkaiah, D.M. Vinod Kumar, Fuzzy adaptive bacterial foraging congestion
management using sensitivity based optimal active power re-scheduling of
generators, Applied Soft Computing 11 (2011) 4921–4930.

21] S. Soleymani, Bidding strategies of generation companies using PSO combined
with SA method in the pay as bid market, Electrical Power and Energy systems
33  (2011) 1272–1278.

22] F. Valdez, P. Melin, O. Castillo, An improved evolutionary method with fuzzy
logic for combining particle swarm optimization and genetic algorithms,
Applied Soft Computing 11 (2011) 2625–2632.

23] E. Rashedi, Nezamabadi-pour, S. Sarazdi, A gravitational search algorithm,
Information Science 179 (2009) 2232–2248.
24] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, A gravitational search algorithm,
Information Science 179 (2009) 2232–2248.

25] I. Jacob Raglend, N.P. Padhy, Solutions to practical unit commitment problems
with operational power flow and environmental constraints, in: Proceedings
of  IEEE 2006, 2006.


	Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market
	1 Introduction
	2 Problem formulation for optimal bidding strategy
	3 Gravitational search algorithm (GSA)
	3.1 Gravitational search algorithm (GSA) for finding optimal bidding coefficients (bj)
	3.2 Maximization of profit using GSA

	4 Proposed fuzzy adaptive gravitational search algorithm (FAGSA)
	4.1 Fuzzification
	4.2 Fuzzy rules
	4.3 Fuzzy reasoning
	4.4 Defuzzification
	4.5 Implementation of fuzzy adaptive gravitational search algorithm (FAGSA) for optimal bidding problem
	4.5.1 FAGSA for computing optimal bidding coefficients (bj)
	4.5.2 FAGSA for profit maximization


	5 Results and discussions
	5.1 IEEE 30-bus system
	5.2 75-bus Indian practical system

	6 Conclusion
	References


