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This paper presents equal embedded algorithm (EEA) to solve the economic dispatch (ED) problem with
quadratic and cubic fuel cost functions and transmission losses. The proposed algorithm involves selec-
tion of lambda values, then the expressions of output powers of generators are derived in terms of
lambda by interpolation and finally optimal value of lambda is evaluated from the power balance equa-
tion by Muller method. The proposed method is implemented and tested by considering 3, 15 and 26 gen-
erators to solve the ED problem. Simulation results such as quality of solution, convergence characteristic
and computation time of the proposed method are compared with some existing methods like genetic
algorithm (GA), particle swarm optimization (PSO) and Lambda iterative method. It is observed from dif-
ferent case studies that the proposed EEA algorithm provides the qualitative solution with less computa-
tional time irrespective of the size of the system.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Main objective of the economic dispatch (ED) problem is to
determine the allocation of output powers of generators so as to
meet the power demand at minimum operating cost under various
system and operating constraints [1-3]. The fuel cost function of
each generator is represented by a quadratic function [4]. The min-
imization of cost of power generation depends on the efficiency of
generator, fuel cost and minimization of transmission loss [5]. It is
necessary to consider the incremental transmission losses for the
ED problem.

Earlier, conventional optimization techniques such as Lambda
iteration method, Lambda projection method and gradient meth-
ods [6] have been employed to solve the ED problems. In these
methods, computational time increases when the size of the sys-
tem increases and therefore more time is needed to get the optimal
solution. In real time power system operation, the incremental fuel
cost may not always monotonically increase. To overcome the
above difficulty, dynamic programming (DP) [8,9,25] was used
for solving the ED problem with monotonically increased and de-
creased fuel cost functions as it will not impose any restrictions
on the nature of the cost curve. However, the DP suffers from
problem of increase of computational time with increased
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dimensionality. Thus, this method is not suitable for online appli-
cation of the ED problem.

In order to get the qualitative solution for the ED problem, arti-
ficial neural network techniques such as back propagation (BP)
algorithm based neural network [10] and Hopfield neural network
(HNN) [11,12] have been successfully applied for thermal genera-
tors with piecewise quadratic function and prohibited zone con-
straints [13]. The BP algorithm takes more iterations due to
improper selection of learning and momentum rates. Similarly,
the Hopfield model suffers from excessive iterations due to an
unsuitable sigmoid function [14]. Therefore, it takes more time to
give optimal solution at required power demand. In the past dec-
ade, global optimization technique like genetic algorithm (GA)
has been used to solve the ED problem with quadratic, piece wise
quadratic fuel cost function and valve point loading [15]. It is a par-
allel search technique, which imitates natural genetic operation.
Due to its high potential for global optimization, the GA has re-
ceived great attention in solving the ED problems with a quadratic
and piecewise quadratic cost function and valve point loading
including transmission losses, ramp rates and prohibited zones
[16]. But recent research identified some deficiencies in the GA
performance as the cross over and mutation operations cannot en-
sure the better fitness of offspring because the chromosomes in the
population have similar structures and their average fitness is high
towards the end of the evolutionary process [17]. Recently, meta-
heuristic techniques such as evolutionary programming (EP) [19],
particle swarm optimization (PSO) [20], ant colony searching
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algorithm (ACSA) [21] and the tabu search algorithm (TSA) [22]
have been used to solve various kinds of ED problems. In these
methods, the quality of solution depends on user-defined factors.
The improper selection of these factors may increase the computa-
tional time for getting optimal solution.

The main aim of the present paper is to develop a new method
by employing equal embedded algorithm for solving the ED prob-
lem with generator constraints and transmission losses. The pro-
posed method is formulated based on numerical methods such
as interpolation and Muller method. It is observed from the litera-
ture available for solution of ED problems that most of the existing
methods have failed to provide optimal solution with reduced
computational burden. In the present approach, the qualitative
solution can be achieved with less computational time. Further,
the proposed method provides qualitative solution than the exist-
ing algorithms including the evolutionary programming [18], the
Hopfield neural network [23], the genetic algorithm [15], the lamb-
da iterative method and the particle swarm optimization method
[20].

Organization of the paper is given here. In Section 2, formula-
tion of the ED problem is introduced. Section 3 addresses descrip-
tion of equal embedded algorithm to solve the ED problem. Section
4 gives the details of implementation of the equal embedded algo-
rithm for solving the ED problem. Case studies with various num-
ber of generators are presented in Section 5. Conclusions are finally
presented in the last section.

2. Formulation of the economic dispatch problem

The ED problem is a non-linear programming optimization
problem. Objective of the ED problem is to minimize the total fuel
cost of the generators subjected to the operating constraints of
power system.

The formulation of ED problem is given below.

Fi(P,') :ai+b,»P,-+c,«Pi2/$h (1)

The objective function is

ng
Minimize Fr=_Fi(P)) 2)
i1
subjected to
(a) Equality constraint given by the power balance equation

i=1,2,3...... Ng. 3)
where the total transmission loss is assumed as a quadratic function
of the generator power outputs [24] and given by

ng g

PL=>"" "PB;P; + BioP; + Boo (4)

i=1 j=1

(b) Inequality constraints given by minimum and maximum of
output power of each generating unit

Pimin < Pi < P;nax (5)

From the Egs. (2)-(5), the formulation of Lagrange function for the
ED problem is given by

ng
XFT+zx<PD+PL—ZPi> (6)

i=1

The expressions of lambda and output power are

= bi + (Zn: Ci X P,) (7)
1- (2 X ZBUPI +Bi0>
i=1
ng
X (] —Bi() —2x ZB,‘ij) —bi
P = = 8)

2 x (C,‘ + ).,'Bﬁ)

From (8), it is observed that numerator and denominator of the out-
put power of the generator are in linear relation with lambda.
Therefore, the output power of the generator can be viewed as

ng
PiNum = /1,‘ X (1 — B,‘O —2x ZBUPJ) — bi (9)
i1
Pipen = 2 x (i + 4iBi;) (10)
where
a;, b;, ¢; Fuel cost co-efficients of ith generator
Fi(P;) Fuel cost ($) of generator of ith generator
Ai Incremental fuel cost ($/MW) of ith generator
F; Total fuel cost ($)
P; Output power of ith generator
Pp Power demand (MW)
PL Transmission losses (MW)
Ng Number of generators.
p;"“i" Minimum output power of ith generator
prax Maximum output power of ith generator
Byj, Boi» Boo Coefficients of Bjoss matrix
Pinum Numerator of generator of ith generator
Pipen Denominator of generator of ith generator

3. Equal embedded algorithm for solving economic dispatch
problem

In this section, a new algorithm has been proposed based on
well established numerical methods such as interpolation and
Muller method.

The power balance Eq. (3) is written as

ZP

From (1

(Pb+P)=0 (11)
1), the power balance equation is written as

f(2,Pp) ZP, — (Pp+Py) (12)

3.1. Mathematical formulation of equal embedded algorithm

3.1.1. Selection of lambda values
Two values of lambda are selected such that

f(%1,Pp) <0 and f(%2,Pp) >0 (13)

Suitable values of lambda are selected from RMPPD table, which
is explained in Section 3.2.1.

It is observed from Eqgs. (9) and (10) that the numerator and
denominator of output power of generator are linear relation with
lambda. The expressions of numerator and denominator of output
powers are derived in terms of lambda for all generators by
interpolation.

3.1.2. Interpolation
It is a process used to estimate an unknown value between two
known values by utilizing a common mathematical relation. It is
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Table 1
Interpolation table.
A PiNum Pipen Py = fpum.
iDen
a Ain B C=f
2 En Fin G =k

most often used in situations where a table of values has missing
data. A polynomial can be estimated from the known input and
the known output data by an interpolation [7,25,26]. At desired in-
put, the unknown output value is evaluated from the polynomial.

In the ED problem with transmission losses, the output power
of generating unit is a non-linear relation with lambda whereas
numerator and denominator expressions of output power of gener-
ators are linear relation with lambda. Here, the lambda is assumed
as an input and the numerator and denominator of the output
power are taken as two outputs. A simple interpolation table for
the problem is shown in Table 1.

The expressions of numerator and denominator of output
power are derived in terms of lambda by linear interpolation from
Table 1. The corresponding equations are given below.

E:— A

Pinum = Ain + <¥ x (4 — il)) (14)
A — M
Fu —B;

Posn = + (T2 1 1)) (15)
D — M

Pi _ PiNum (16)

P iDen

where the expression of the output power is in terms of A. Since, Pp
is fixed at a particular power demand in the ED problems. Therefore
Eq. (12) can be written as,

f2)=0 (17)

where f{4) = 0 is non-linear relation in /. This equation has one var-
iable. The non-linear equation with one variable can be solved with
root finding techniques available in numerical methods. Here, Mul-
ler method is used. Description of the Muller method is given
below.

3.1.3. Muller method

It is a root finding algorithm for solving equation of the form of
f(x) =0, where f(x) is a non-linear function of x. it was first pre-
sented by Muller in 1956. It is based on the secant method and
is used to find the root of the f{x) =0, when no information about
the derivative exists. In this method, three points are used to find
an interpolating quadratic polynomial.

In Muller method, higher order polynomial is approximated by
a quadratic curve in the vicinity of a root. The roots of quadratic
equation are then assumed to be approximately equal to be the
roots of the equation flx)=0. This method is iterative and con-
verges almost quadratically [7,25,26].

Let x; 5, X;_1, X; are three distinct approximations to a root of
fix)=0 and y; 5, yi.1 and y; are the corresponding values of
y =f(x). The relation between y and x can be represented by

Y =AX=x)" +Bx —X) +¥; (18)
where
_ X2 = Xi1)Wisg —Yi) — Ko —X)Via — i)
A= (X1 — Xi—2) (Xio1 — Xi) (Xi2 — Xp) 19)
_ (2 = %) Wit = Y1) — K1 — %)’ 0ia — Y1)
B= (Xi—1 — Xi—2) (Xio1 — Xi) (Xi_2 — Xi) 20
AT 1 /- e1)

B+ +\/B* — 4Ay,

The sign in the denominator should be chosen properly so as to
make the denominator largest in magnitude. With this choice, Eq.
(21) gives the next approximation to the root.

The advantage of this method is that it converges quadratically
to find the root of the polynomial, which in the present case is the
value of lambda.

The lambda values of all generators are varying from minimum
to maximum lambda for different power demands. At required
power demand, lambda values of all generators are embedded at
one value to provide an optimal solution and it is equal for all gen-
erators. Hence the proposed algorithm is named as “equal embed-
ded algorithm”.

3.2. Equal embedded algorithm for solving the economic dispatch with
transmission losses

The proposed equal embedded algorithm for solving the ED
problem is given below.

3.2.1. Selection of lambda values
From the Eq. (7), lambda values are evaluated at the minimum
and maximum output powers for all generators.

_ bi+(2><Ci><Pi)
1— (2 x 3% ByP; + Bio)

Ji at p; = pin pimax (22)

where 7; = 2" at P; = PM" and J; = 4™ at P; = P

All the lambda values are arranged in ascending order.

3.2.2. Formation of PPD, MPPD and RPPD tables

Purpose of PPD, MPPD and RPPD table is to find the suitable
range of the lambda values at desired power demand. The proce-
dure of formulation of these tables is given below

I. Pre-prepared power demand (PPD): Table output powers and
transmission losses are computed for all values of lambda by
using (8). All lambda values, output powers, transmission
loss, sum of output power minus transmission loss
(SOP) are formulated as a table. This table is called PPD
table.

Il. Modified pre-prepared power demand (MPPD): Table numera-
tor and denominators of the output powers, output power,
transmission loss and SOP (sum of output powers at lambda
minus transmission loss) are calculated and arranged in a
table for all lambda values is known as modified pre-pre-
pared power demand (MPPD) table.

IIl. Reduced modified pre-prepared power demand (RMPPD): Table
at required power demand, the upper and lower rows of the
MPPD table are selected such that the power demand lies
within the SOP limits and these two rows are formulated
in a table is known as reduced MPPD (RMPPD) table.

3.2.3. Interpolation

At required power demand, the expressions of the numerator
and denominators of the output powers of the generators are ob-
tained in terms of the lambda from RMPPD table by Newton for-
ward interpolation method. In the ED problem, the application of
Newton forward interpolation method to obtain the output power
of the generator in terms of a lambda is as follows:

(i) The expression of output power in terms of lambda is given
in (8). Also the expressions of numerator and denominator of
the output power are given in (9) and (10).

(ii) At desired power demand, 4, 4j+1, Pinum, Pipen and P; obtained
from the MPPD table.
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Table 2

RMPPD table.
% Pinum Pipen P = %%ﬁ Pross SOP = S K78P; — Progs
% An By C=% d S C—d
Ajx1 Ei Fin G ="k h G —h

A simple model of MPPD table is given in Table 2. The expres-
sions of output power numerator and denominator are derived in
terms of lambda from the Table 2 by using Newton forward inter-
polation method and the corresponding equations are

(En — An)

Pivum = Ant + i — 23
iNu il ()~j+1 — )»j) (/L ]) ( )
(Fi —Bp) .
Pien = Bip + 122 (j— J; 24
iDen il (’1141 — ;~j) ( ]) ( )
P;
P — iNum 25
1 PiDen ( )

3.2.4. Muller method

The application of Muller method to find the lambda value from
the power balance equation at required power demand in the ED
problem is as follows:

At specified power demand,

ng
fG) =Y _Pi(2) = (Po + Pu(2)) (26)
i=1
The above equation is non-linear and the solution is obtained by
Muller method.
At the required power demand,

Xi2 = },j and YVio= SOPJ (27)
Xi = /1_,41 and Yi= SOPjH (28)
Xio1 = (j + 2:1)/2 (29)

From (21), the lambda value can be evaluated by an iterative
approach.

4. Implementation of equal embedded algorithm for solving the
ED problem with transmission loss

Step-1: The input data.

e Fuel cost data of generators.

o Co-efficient of Bjyss.

e Power demand.
Step-2: Calculate lambda values by (7) for all generators at their
maximum and minimum output powers and arrange in ascend-
ing order.
Step-3: Compute output powers and transmission loss for all
values of lambda by using (8). All the lambda values, output
powers and transmission loss are formulated as a table is called
as a PPD table. At any lambda value in PPD table, if the power
demand is matched with SOP then it is the optimal solution.
Otherwise go to step-4
Step-4: Obtain themodified pre-prepared power demand (MPPD)
table.
Step-5: At required power demand, obtain reduced MPPD
(RMPPD) table.
Step-6: Find expressions of numerator and denominator of out-
put power in terms of lambda by Newton forward interpolation
from the RMPPD table.

Read the system data

|

Calculate the Lambda values and arrange in
ascending order. Obtain PPD Table

|

| For i=1 to 2*ng

SOP (i) =PD

Obtain MPPD and RMPPD Table and Set
Lambda
Set the generator constraints

LI

v

Interpolation and Muller method Yes

| Set the generator constraints |

[No_|

ng
IEII;(/D —(P[ )+PL(),) )<001

l

A 4

| Obtain the optimal solution |

Fig. 1. Flow chart of the proposed method.

Step-7: Evaluate lambda using Muller method from the power
balance equation at required power demand.
Step-8: Obtain the solution

Flow chart of the proposed EEA algorithm is shown in Fig. 1.

5. Case studies and simulation results

In this section, various test cases are considered to test the per-
formance of the proposed method. Coding of the algorithm is
developed in MATLAB-7.0 and executed on Pentium Dual core,
2.7 GHz personal computer with 1 GB RAM to solve the ED prob-
lem of a power system having 3, 15 and 26 generators with trans-
mission loss. The results obtained from the proposed method are
compared in terms of the solution quality, convergence character-
istics and computation efficiency with various methods such as GA,
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PSO and Lambda iterative method. During the execution of GA and
PSO, the following parameters have been chosen.

PSO method

e Population size = 100

e Iterations = 100

® Wax = 0.7 and Wp,j, = 0.2
o /Mmax 0.1(lmax _ zmin)
eC1=2 and =2

Binary coded GA method

e Population size = 100
e Iterations = 100

e Cross over rate = 0.75
o Elitism rate = 0.1

e Mutation rate = 0.01

Similarly, the lambda value is selected such that the lowest
lambda value among all lambda values of the generators at their
minimum and maximum output powers for the execution of con-
ventional lambda iterative method. In all cases, the lambda is taken
as a control parameter.

5.1. Case studies

In this section, different cases are considered to test the applica-
bility of equal embedded algorithm for solving the ED problems.

5.1.1. Case 1
In this case, three generators are considered. The fuel cost data
of three generators is taken from [25] and is given in Table 3.

Coefficients of B matrix are

0.06760  0.00953 —0.00507
B;; =0.01"| 0.00953  0.05210 0.00901
—0.00507 0.00901 0.0294
Bip =[-0.0766 —0.00342 0.01890], By =4.0357

The power demand in this case is 210 MW.

This case shows the results of the proposed method when all
the constraints including generator constraints and system trans-
mission loss are involved. The PPD table of three generating system
is shown in Table 4. The dimension of PPD table is 6 x 7. Similarly,
the MPPD table is also formulated and is shown in Table 5. Dimen-
sion of the MPPD table is 6 x 13. At required power demand, the
RMPPD is obtained from the MPPD table for three generators. It
is shown in Table 6. Numerator and denominator of output powers
of all generators are derived in terms of lambda by linear interpo-
lation. Finally, lambda is evaluated by the Muller method. The opti-
mal solution satisfies the system constraints such as the generator
constraints and transmission losses. Table 7 listed the statistical

Table 7
The optimum solution of each unit by various methods.

Unit power output Iterative GA PSO Proposed
(MW) method method
Table 3 P1 73.5275 73.8324 73.8124  73.9723
Fuel cost data of three generators system. P2 69.5074 69.9595 69.9460 69.6656
- _ _ _ > — _ P3 75.7826 75.0201 749962  75.1645
Unit a($) biB/MW) G (S/MWT)  Pimin (MW)  Pimax (MW) Power loss (MW)  8.8165 8.827 8813 8.8024
1 2131 11.660 0.00533 050.0 200.0 Fuel cost ($/h) 3163.9 3163.63 3162.938 3163.694
2 200.0 10.330 0.00889 037.5 150.0 Iterations 11 13 29 3
3 240.0 10.833 0.00741 045.0 180.0 CPU time (s) 0.015 0.7 0.16 0.015
Table 4
PPD table of three generators system.
Lambda ($/MW) P1 (MW) P2 (MW) P3 (MW) Z?:]Pi Pioss SOP — 21_3:1131. — Ploss
11.57 27.952 39.309 21.705 88.966 3.9438 85.022
12.091 47.795 52.526 44.409 144.73 5.2793 139.45
12.138 49.522 53.679 46.41 149.61 5.4507 144.16
15.679 160.97 128.95 184.74 474.66 36.203 438.46
16.421 180.29 14213 210.7 533.13 45.701 487.43
17.495 206.31 159.93 246.65 612.89 60.569 552.32
Table 5
MPPD Table of three generators system.
Lambda  Numerator terms Denominator terms Output powers E?, P Pross SOP = 21_37 1P = Ploss
P11 P12 P13 P21 P22 P23 P1 (MW) P2 (MW) P3 (MW)
11.57 0.73522 1.1728 0.46933  0.026303 0.029836  0.021623 50 39.309 45 134.31 44774 129.83
12.091 1.2908 1.5957 0.97386  0.027007 0.030379 0.02193 50 52.526 45 147.53 5.2977 142.23
12.138 1.3406 1.6333 1.019 0.02707 0.030428 0.021957 50 53.679 46.41 150.09 5.4489 144.64
15.679 5.1281 43994 4441 0.031858  0.034117 0.024039 160.97 128.95 180 469.92  35.572 43435
16.421 5.9245 4.9591 5.157 0.032861 0.03489 0.024475 180.29 142.13 180 50243 41.37 461.06
17.495 7.0789 5.7589  6.1927 0.034313 0.036009 0.025107 200 150 180 530 46.826 483.17
Table 6
RMPPD table of three generators system.
Lambda Numerator terms of output powers Denominator terms of output powers Output powers >3 P Puoss SOP = 37, P; — Pioss
P11 P12 P13 P21 P22 P23 P1 (MW) P2 (MW) P3 (MW)
12.138 1.3406 1.6322 1.0196 0.02707 0.030428 0.021957 50 53.643 46.437 150.08 5.4477 144.63
15.679 5.1206 4.4128 4.441 0.031858 0.034117 0.024039 160.73 129.34 180 470.07 35.613 434.46
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results that involved fuel cost, convergence characteristics and
computational time. The convergence characteristic of the pro-
posed method is shown in Fig. 2.

The proposed method provides optimal solution with minimum
fuel cost. It is observed during the execution of the algorithm that
the proposed method gives the optimal solution within three iter-
ations at a specified power demand. Also, it is observed that the
proposed method provide optimal solution within 3-4 iterations
for any power demand.

5.1.2. Case 2
In this case, the system contains 15 generators [9]. The fuel cost
data is given in Table 8. Power demand is 2630 MW.

rt4 12 07 -01 -03 -01 -01 -0.1
12 15 13 0 -05 -02 O 0.1
07 13 76 -01 -13 -09 -0.1 0
-01 0 -01 34 -07 -04 11 5
-03 -05 -13 -07 9 14 -03 -12
-01 -02 -09 -04 14 16 0 -06
-0 0 -01 11 -03 O 15 17
B;j=10"-|-01 0.1 0 5 -12 -06 17 1638
-03 -02 -08 29 -1 -05 15 82
-05 -04 -12 32 -13 -08 09 79
-03 -04 -17 -11 07 11 -05 -23
-02 0 0 0 -02 -01 07 -36
04 04 -26 01 -02 -02 O 0.1
03 1 111 01 -24 -17 -02 05
|1-01 -02 -28 -26 -03 03 -08 -78
Bo=[-1 -2 28 -1 1 -3 -2 6 39 -17 -00 -32
By = 0.0055

PSO, GA, lambda iterative method and proposed method are exe-
cuted for 15 generators with generator constraints and transmis-
sion losses. The main aim here is to enlighten the effectiveness of
the proposed method to solve large scale ED problem with mixed
generators. The output powers are given in Table 9.

It has been observed from the Table 9 that the qualitative solu-
tion is nearly same for all methods. But, huge computational time
and more iterations are taken by the other methods compared to
the proposed method.

5.1.3. Case 3

In this case, 26 generators system is considered. The fuel cost
data of 26 generators system is given in Table 10. Here, higher or-
der (cubic) cost functions are considered in the ED problem with-
out transmission loss to prove the applicability of the proposed
method. Here, the power expressions in terms of lambda are ob-
tained directly from the PPD table using quadratic interpolation
and then Muller method is applied to get the optimal solution.
The simulation results for various power demands are shown in
Table 11.

505

It is clear from the Table 11 that the proposed equal embedded
algorithm provides solution in two iterations for different power
demands.

5.2. Comparison of methods

5.2.1. Solution quality

Various tables in the different cases demonstrate the effective-
ness of the proposed method for getting the qualitative solution.
The proposed method yields better solution with low generation
cost with considerable computational time. Quality of the solution
depends on the error tolerance (the difference between the gener-
ated power and power demand includes transmission loss) In GA,
PSO and lambda iterative method. Fixation of the tolerance is abso-

03 -05 -03 -02 04 03 —01]
—02 -04 -04 0 04 1 -02
—08 -12 -17 0 -26 111 -28
29 32 -11 0 01 01 -26
-1 -13 07 -02 -02 -24 -03
05 -08 11 -01 -02 -17 03
15 09 -05 07 0 -02 -08
82 79 -23 -36 01 05 -78
129 116 -21 -25 07 -12 -72
116 20 -27 -34 09 -11 -88
21 -27 14 01 04 -38 168
-25 -34 01 54 -01 -04 28
07 09 04 -01 103 -101 28
12 -11 -38 -04 -101 578 -94
~72 -88 168 28 28 -94 1283]
67 —64]

lute value of 0.01 for fast convergence. But, the optimal value of
lambda is solution of the power balance equation in the proposed
method. It indicates that the proposed method provides qualitative

100

Convergence Characteristic of Proposed method

80 | for 3 generators

60 -

40t

20 +

-20 . . . . . . 1 1 1
1 12 14

Fig. 2. Convergence characteristic of the proposed method of three generators
system.
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Table 8
Fuel cost data of fifteen generators.
Unit a; () bi ($/MW) Ci ($/MW2) Pimin (MW) Pimax (MW)
1 671 10.1 0.000299 150 455
2 574 10.2 0.000183 150 455
3 374 8.8 0.001126 20 130
4 374 8.8 0.001126 20 130
5 461 10.4 0.000205 150 470
6 630 10.1 0.000301 135 460
7 548 9.8 0.000364 135 465
8 227 11.2 0.000338 60 300
9 173 11.2 0.000807 25 162
10 175 10.7 0.001203 25 160
11 186 10.2 0.003586 20 80
12 230 9.9 0.005513 20 80
13 225 13.1 0.000371 25 85
14 309 121 0.001929 15 55
15 323 124 0.004447 15 55
Table 9
Optimal solution of 15 generating unit system by various methods.
Output powers Iterative method GA PSO Proposed
(MW) method
P1 455 455 455 455
P2 455 455 455 455
P3 130 130 130 130
P4 130 130 130 130
P5 172.640590480130 172.591 172.691 172.63
P6 460 460 460 460
P7 465 465 465 465
P8 60 60 60 60
P9 25 25 25 25
P10 119.403390991819 119.51 119.41 119.42
P11 80 80 80 80
P12 50.6174846428085 50.62 50.62 50.61
P13 25 25 25 25
P14 15 15 15 15
P15 15 15 15 15
Total power 2657.67 2658.224 2657.67  2657.6722
(MW)
Power loss 27.67 28.224 27.67 27.6722
(MW)
Fuel cost ($/h)  32594.436 32588.54 32589.16 32588.80
Iterations 64 13 24 3
CPU time (s) 0.04 2.56 04 0.039

solution than the other methods, which are mentioned in the case
studies.

5.2.2. Convergence characteristics

The proposed method provides the qualitative solution within
few iterations. It is clear from the different tables that the proposed
method converges within 3-6 iterations for different case studies.
Irrespective of the system complexity, the proposed method con-
verges within few iterations at any power demand. Convergence
characteristics of the GA depend on various factors such as the
selection of chromosomes, the cross over probability, elitism rate
and mutation rate. Depending upon the system complexity, these
factors are selected by the system operator judiciously. Similarly,
PSO takes more iterations due to the velocity modification by ran-
dom process and identification of best particle. Usually number of
iterations is varying with the increasing of system size in the GA
and the PSO method. But, the convergence characteristics of the
proposed method will not depends on the size of the system.

5.2.3. Computational time
Due to the less iterations, the proposed method has better com-
putation performance than the GA, PSO and lambda iterative meth-

Table 10
Fuel cost data of 26 generators system with cubic fuel cost function.
Unit a($)  bi($/ ci($/ d; ($/MW?)  Pimin Pimax
MW) MW?2) (MW) (MW)
1 2438 25.54 0.025 5.08E-09 2.40E+00 12
2 2441 25.67 0.026 —1.01E-08 2.40E+00 12
3 2463 258 0.028 1.01E-08 2.40E+00 12
4 2476 2593 0.028 —5.08E—-09 2.40E+00 12
5 2488 26.06 0.028 —5.72E-16  2.40E+00 12
6 117.75 37.55 0.011 8.31E-08 4.00E+00 20
7 118.1 37.66 0.012 8.56E-08 4.00E+00 20
8 11845 37.77 0.013 8.15E-08  4.00E+00 20
9 118.82 37.88 0.014 8.29E-08 4.00E+00 20
10 81.13 13.32 0.008 —5.80E-10 1.52E+01 76
11 81.29 1335 0.008 —5.47E-10 1.52E+01 76
12 8146 13.38 0.009 —5.49E-10 1.52E+01 76
13 81.62 134 0.009 —5.50E-10 1.52E+01 76
14 217.89 18 0.006 1.25E-18 2.50E+01 100
15 218.33 18.09 0.006 —1.19E-18 2.50E+01 100
16 218.77 182 0.005 2.44E-18 2.50E+01 100
17 142.73 10.69 0.004 1.11E-10 5.43E+01 155
18 143.02 10.71 0.004 1.03E-10 5.43E+01 155
19 14331 10.73 0.004 1.03E-10 5.43E+01 155
20 143.59 10.75 0.004 1.03E-10 5.43E+01 155
21 259.3 23 0.002 1.07E-10 6.90E+01 197
22 259.64 23.1 0.002 1.04E-10 6.90E+01 197
23 260.17 232 0.002 1.00E-10 6.90E+01 197
24 177.05 10.86 0.001 —4.42E-19 1.40E+02 350
25 310 7.49 0.001 —1.10E-19 1.00E+02 400
26 31191 7.5 0.001 —3.55E-20 1.00E+02 400
Table 11

Simulation results of 26 generators by proposed method for different power demands.

Output power of
generator (MW)

Power demand (MW)

2400 2600 2900
1 2.4 24 2.4
2 2.4 24 24
3 2.4 24 2.4
4 2.4 24 2.4
5 24 24 2.4
6 4 4 4
7 4 4 4
8 4 4 4
9 4 4 4
10 76 76 76
11 76 76 76
12 76 76 76
13 76 76 76
14 36.76 99.50 100
15 29.38 92.14 100
16 25.00 99.49 100
17 155 155 155
18 155 155 155
19 155 155 155
20 155 155 155
21 68.95 68.95 190.99
22 68.95 68.95 166
23 68.95 68.95 141.00
24 350 350 350
25 400 400 400
26 400 400 400
Incremental fuel cost ($/MW) 18.4419 19.195 23.764
Fuel cost ($) 32642.41 36406.3 43436.5
Computational time (s) 0.015 0.01 0.01
No. of iterations 2 2 2

ods. The evaluation process involved in the proposed method is
that the power expressions are derived in terms of lambda by
interpolation and the lambda is evaluated from the power balance
equation by the Muller method. So, the computational time is less.
But, the evolution process involved in the GA is the decoding of
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chromosomes, evaluation of fitness function and then genetic
operators like parent selection, reproduction, elitism and mutation.
Therefore, it takes more computational time to give the optimal
solution. Similarly, the evolution process involved in the PSO is
the fitness function evaluation, velocity modification by random
process and identification of best particle.

6. Conclusion

This paper suggested equal embedded algorithm for solving the
ED problem of a power system having 3, 15 and 26 generators with
the generator constraints and transmission loss. A salient feature of
the proposed method is that it gives qualitative solution with fast
convergence characteristics, which are mentioned in the case stud-
ies. Due to the fast convergence, the computational time is less for
getting the optimal solution. The additional advantages of the pro-
posed method are mentioned below.

(i) It will not depend on user defined parameters.

(ii) System constraints such as ramp rate limits and prohibited
zones can be incorporated easily.

(iii) Irrespective of the system complexity, the proposed method
provides qualitative solution within few iterations.

(iv) The proposed method can easily implemented for the ED
problems with higher order fuel cost function such as cubic
cost function.

In real time operation of power system, mixed generators in
large scale are usually involved in the ED problem. Irrespective of
the size of the system, the proposed EEA algorithm provides the
solution in less iteration at different power demands. Therefore,
the algorithm can be used in real time environment for solving
the ED problems effectively.
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