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Hydromagnetic effects on the flow of a micropolar fluid
in a diverging channel
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Steady flow of an incompressible and electrically conducting micropolar fluid through a diverging channel is studied.
The flow is subjected to a uniform magnetic field perpendicular to the flow direction. Perturbation solutions have been
obtained for the velocity and microrotation components in terms of effective Reynolds number. The profiles of velocity and
microrotation components are presented for different micropolar fluid parameters and magnetic parameter. The influence
of magnetic parameter on the pressure gradient is also studied.
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1 Introduction

The flow of a fluid through converging or diverging channels has many industrial and engineering applications, such as flow
through nozzles, diffuser and reducers as encountered in polymer processing operations, to simulate flows of dilute polymer
solutions through porous media [1], the cold-drawing operation in polymer industry to improve mechanical properties of
products such as plastic sheets and rods [2], extrusion of molten polymers through converging dies [3–5] etc. Several au-
thors, Hooper et al. [6], Dennis et al. [7], Drazin [8], to mention but few, have studied the laminar flow of an incompressible
viscous fluid in a converging or diverging channels or tubes.

The increasing number of technical applications using magnetohydrodynamic (MHD) effects has made it desirable to
extend many of the available hydrodynamic solutions to include the effects of magnetic fields for those cases when the
fluid is electrically conducting. The motivations for the studies of the flow of an electrically conducting fluid under the
influence of an external magnetic field are industrial processes where electromagnetic processing of materials (EPM) is
applied. This is very useful for casting of liquid metals as well as for growing of semiconductor crystals. A vast literature
is available regarding the study of MHD flows. A survey of MHD studies in the technological fields can be found in
Moreau [9]. The early works concern fully developed, laminar MHD flows in ducts under a uniform magnetic field. Exact
solutions have been developed by Hartmann [10] for a one-dimensional problem consisting of rectilinear, laminar MHD
flow between two infinite parallel plates. The imposed magnetic field is uniform and normal to the two surfaces. For
sufficiently high Hartmann numbers the flow is characterized by a core with uniform velocity and thin boundary layers
along the plates. These layers are called Hartmann layers and they are present along walls on which the magnetic field has
a normal component. The size of these layers is inversely proportional to the magnetic field strength, which is measured
by the dimensionless Hartmann number. Hartmann and Lazarus [11] took measurements of the pressure loss for laminar
and turbulent Hartmann flows. In the past decade, considerable advances have been made towards a better theoretical
understanding of the problem of transition to turbulence in Hartmann flow. Morecso and Alboussiere [12] investigated
experimentally the transition to turbulence in the Hartmann layers that arise in MHD flows through measurements of the
friction factor in the electromagnetic flow in ducts. Krasnov et al. [13] investigated the instability and transition to turbulence
in the flow of an electrically conducting incompressible fluid between two parallel unbounded insulating walls affected by
a wall-normal magnetic field. Beck et al. [14] analyzed the mean flow properties of turbulent MHD channel flow with
electrically insulating channel walls using high-resolution direct numerical simulations.

Expansions and contractions are important geometric elements in liquid metal devices and the study of the flow in
such geometries is a key issue for applications in fusion reactor blankets where the flow is distributed from small pipes to
large boxes. Another application of the study of the flow of an electrically conducting fluid through converging or diverging
channels under the influence of an external magnetic field can be found in the field of industrial metal casting i.e. the control
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of molten metal flows and may be of interest is in the motion of liquid metals or alloys in the cooling systems of advanced
nuclear reactors. In recent times, many medical diagnostic devices especially those used in diagnosing cardiovascular
diseases make use of the interaction of magnetic fields with tissue fluids. In physiological fluid flow, Barnothy has reported
experiments [15] where the heart rate decreased by exposing biological systems to an external magnetic field. In this line of
application is magnetic resonance imaging, a technique for obtaining high resolution images of various organs within the
human body in the presence of a magnetic field. Walker et al. [16] analyzed MHD flows in smoothly expanding insulating
channels using inertia less approximation. Rao and Deshikachar [17] have considered the MHD Oscillatory flow of blood
through channels of variable cross section. Verma et al. [18] analyzed the Magnetic fluid flow in a two dimensional diverging
channel. Mhone and Makinde [19] have studied the unsteady MHD flow with heat transfer in a diverging channel.

It is known that many of the industrially and technologically important fluids are electrically conducting fluids and
behave like a non-Newtonian fluid. Balmer and Kauzlarich [20] obtained similarity solutions for the steady flow of non-
Newtonian elastic power law fluids in a converging or diverging channel with wall suction or injection. Sinha and Nayak
[21] studied the steady two dimensional incompressible laminar visco-elastic flow in a converging or diverging channel
with suction and injection. Rajagopal et al. [22] studied the slow flow of an incompressible third grade fluid in a converg-
ing/diverging channel. Ozturk et al. [23] considered the slow flow of the Reiner–Rivlin fluid in a converging or diverging
channel with suction and injection. Baris [24] has considered the flow of a second-grade viscoelastic fluid in a porous
converging channel. Hayat et al. [25], studied the Magnetohydrodynamic flow of an Oldroyd 6-constant fluid.

The theory of micro polar fluids initiated by Eringen [26] exhibits some microscopic effects arising from the local
structure and micro motion of the fluid elements. Further, they can sustain couple stresses and include classical Newtonian
fluid as a special case. The model of micro polar fluid represents fluids consisting of rigid randomly oriented (or spherical)
particles suspended in a viscous medium where the deformation of the particles is ignored. The fluids containing certain
additives, some polymeric fluids and animal blood are examples of micro polar fluids. Lukaszewicz [27] has presented the
mathematical theory of equations of micro polar fluids and applications of these fluids in the theory of lubrication and in
the theory of porous media.

Although many MHD devices involve flow in converging or diverging ducts, no theoretical attempts have been made
to analyze them by considering the mechanical behavior of a fluid which possesses substructures, such as dilute polymer
liquids, liquid crystals, animal blood, etc. The aim of this work is to examine the effect of magnetic field on the steady
flow of an incompressible electrically conducting micropolar fluid through a diverging channel. Perturbation solutions
have been obtained for the velocity and microrotation in terms of effective Reynolds number. The effects of different
fluid parameters and magnetic parameter on velocity and microrotation components are shown graphically. The effects of
magnetic parameter on the axial pressure gradient for different flow geometries are examined.

2 Formulation of the problem

Consider an incompressible electrically conducting micropolar fluid flow through a slowly varying diverging symmetrical
channel. Choose the Cartesian coordinate system such that the x-axis lies on the axis of the symmetry of the channel, y-axis
is perpendicular to the channel and the channel is of infinite length in x-direction. A uniform magnetic field B0 is applied
to the fluid normal to the walls of the channel. The boundary of the channel is assumed as −b(x) < y < b(x), where b(x)
defines the wall diverging geometry.

Fig. 1 Geometry of the problem

The equations governing the flow of micropolar fluid under the usual MHD approximations, in the absence of body
forces and body couple are

div q = 0 , (1)

ρ(q · ∇)q = − gradp+ κ curl υ − (μ+ κ) curl curl q + J × B , (2)
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ρj(q · ∇)υ = −2κυ + κ curl q − γ curl curlυ + (α1 + β1 + γ1) grad div υ , (3)

where q is the velocity vector, υ is the micro rotation vector, p fluid pressure, ρ and j are the fluid density and micro gyration
parameter,B the total magnetic field, (B = B0 + b, b is induced magnetic field), J is the current density. μ, κ, α1, β1, and
γ1 are the material constants (viscosity coefficients) which satisfy the following inequalities.

κ ≥ 0, 2μ+ κ ≥ 0, 3α1 + β1 + γ1 ≥ 0, γ1 ≥ |β1| . (4)

Neglecting displacement currents, the Maxwell equations and the generalized Ohm’s law are:

divB = 0, curlB = μmJ, curlE = − ∂B

∂t
, and J = σ(E + q ×B) , (5)

where μm is the magnetic permeability,E is the electric field and σ is the electrical conductivity of the fluid.
Since the flow is along x-direction, the flow variables are assumed to be independent of the co-ordinate z and we choose

the velocity vector as q = u(x, y)̂i + v(x, y)ĵ and the microrotation vector as υ = υ(x, y)k̂. Assuming that the induced
magnetic field is negligible compared to the applied magnetic field so that magnetic Reynolds number is small and the
electric field is zero and μm is constant throughout the flow field, the basic field Eqs. (1)–(5) can be expressed as

∂u

∂x
+
∂v

∂y
= 0 , (6)

ρ

[
u
∂u

∂x
+ v

∂u

∂y

]
= − ∂p

∂x
+ κ

∂υ

∂y
+ (μ+ κ)

(
∂2u

∂x2
+
∂2u

∂y2

)
− σB2

0u , (7)

ρ

[
u
∂v

∂x
+ v

∂v

∂y

]
= − ∂p

∂y
− κ

∂υ

∂x
+ (μ+ κ)

(
∂2v

∂x2
+
∂2v

∂y2

)
, (8)

ρ j

[
u
∂υ

∂x
+ v

∂υ

∂y

]
= −2κυ + κ

(
∂v

∂x
− ∂u

∂y

)
+ γ

(
∂2υ

∂x2
+
∂2υ

∂y2

)
. (9)

The appropriate boundary conditions are

∂u

∂y
= 0, v = 0, υ = 0 at y = 0 (10a)

and

u+ v
∂b

∂x
= 0, v = 0, υ = 0 at y = b(x) . (10b)

Introducing the stream function ψ through

u =
∂ψ

∂y
, v = − ∂ψ

∂x
(11)

into the Eqs. (6)–(9) and eliminating pressure from the resulting equations, we get

ρ
∂(ψ,−∇2ψ)
∂(y, x)

= −κ∇2υ − (μ+ κ)∇4ψ + σB2
0

∂2ψ

∂y2
, (12)

ρj
∂(ψ, υ)
∂(y, x)

= −2κυ − κ∇2ψ + γ∇2υ . (13)

The boundary conditions Eq. (10) in terms of stream function becomes

∂2ψ

∂y2
= 0, ψ = 0, υ = 0 at y = 0 ,

∂ψ

∂y
− ∂ψ

∂x

∂b

∂x
= 0, υ = 0 at y = b(x) .

(14)
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In addition, we prescribe a constant flux (Q) at the boundary of the channel i.e.

ψ = Q at y = b(x) . (15)

The function b(x) is assumed to depend upon a small parameter ε such that

b(x) = S(εx/a0), (0 < ε = a0/L� 1) ,

where a0 is the constant characteristic half width of the channel, L is the constant characteristic length of the channel and
S is the function describing the channel wall divergence geometry. In the limit ε→ 0 the channel is of constant width.

Using the following non dimensional variables

x =
a0x

′

ε
, y = a0y

′, ψ = Qψ′, υ =
Q

a2
0

υ′ (16)

in the Eqs. (12)–(15) and neglecting the terms of ε2 and higher order as well as the primes we get

Re
∂(ψ,−∇2ψ)
∂(y, x)

= − N

1 −N

∂2υ

∂y2
− 1

1 −N

∂4ψ

∂y4
+ Ha2 ∂

2ψ

∂y2
, (17)

Re aj
∂(ψ, υ)
∂(y, x)

= −− 2N
1 −N

υ − N

1 −N

∂2ψ

∂y2
+

(2 −N)N
m2(1 −N)

∂2υ

∂y2
, (18)

∂2ψ

∂y2
= 0, ψ = 0, υ = 0 on y = 0 ,

∂ψ

∂y
= 0, ψ = 1, υ = 0 on y = S(x) , (19)

where Ha2 = σB2
0a2

0
μ is Hartmann number, aj = j

a2
0

is the micro inertia parameter, N = κ
μ+κ is a coupling number

(0 ≤ N ≤ 1), m2 = a2
0κ(2μ+κ)
γ(μ+κ) is the micropolar parameter and Re = ρεQ

μ is the effective flow Reynolds number.

3 Solution of the problem

Assuming the effective flow Reynolds number (Re) to be very small, the stream function ψ and microrotation component
(υ) may be expanded in the power series of Re as

ψ = ψ0 + Re ψ1 + Re2ψ2 + . . .

υ = υ0 + Re υ1 + Re2υ2 + . . . , (20)

where ψj and υj are functions of s(x) and y.
Substituting (20) in (17)–(19) and collecting the coefficients of various powers of Re on both the sides, we obtain the

following set of coupled linear differential equations for ψ0, υ0, and ψ1, υ1.

Zeroth order in Re:

− N

1 −N

∂2υ0

∂y2
− 1

1 −N

∂4ψ0

∂y4
+ Ha2 ∂

2ψ0

∂y2
= 0 (21)

− 2N
1 −N

υ0 − N

1 −N

∂2ψ0

∂y2
+

(2 −N)N
m2(1 −N)

∂2υ0

∂y2
= 0 . (22)

The corresponding boundary conditions are

∂2ψ0

∂y2
= 0, ψ0 = 0, υ0 = 0on y = 0 ,

∂ψ0

∂y
= 0, ψ0 = 1, υ0 = 0 on y = S(x) . (23)
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From (21) and (22), we get

υ0 = − (2 −N)
2m2N

∂4ψ0

∂y4
+

(
2Ha2(2 −N)(1 −N)

2m2N
− 1

2

)
∂2ψ0

∂y2
. (24)

Substituting (24) in (21), we get

∂6ψ0

∂y6
− (α2 + β2)

∂4ψ0

∂y4
+ α2β2 ∂

2ψ0

∂y2
= 0 , (25)

where

α2 + β2 = (Ha2(1 −N) −m2) and α2β2 =
2Ha2m2(1 −N)

(2 −N)
.

The general solution of Eq. (25) is

ψ0(x, y) = C1(x) + C2(x)y + C3(x)e−αy + C4(x)eαy + C5(x)e−βy + C6(x)eβy , (26)

where C1(x), C2(x), C3(x), C4(x), C5(x), and C6(x) are arbitrary functions of x. Substituting (26) into (24), we get the
micro rotation component as

υ0 = Aα(C3(x)e−αy + C4(x)eαy) +Aβ(C5(x)e−βy + C6(x)eβy) , (27)

where

Aα =
(2 −N)α4 +

[
Ha2(2 −N)(1 −N) −Nm2

]
α2

2m2N
,

Aβ =
(2 −N)β4 +

[
Ha2(2 −N)(1 −N) −Nm2

]
β2

2m2N
.

Using the boundary conditions (23), we get the expressions for C1(x), C2(x), C3(x), C4(x), C5(x), and C6(x).
The zeroth order pressure gradient is given by

∂p0

∂x
=

N

1 −N

∂2υ0

∂y2
+

1
1 −N

∂3ψ0

∂y3
− Ha2 ∂ψ0

∂y
. (28)

Substituting the expressions for ψ0 and υ0, we can get the expression for pressure gradient ∂p0
∂x .

First order in Re:

∂(ψ0,−∇2ψ0)
∂(y, x)

= − N

1 −N

∂2υ1

∂y2
− 1

1 −N

∂4ψ1

∂y4
+ Ha2 ∂

2ψ1

∂y2
, (29)

aj
∂(ψ0, υ0)
∂(y, x)

= − 2N
1 −N

υ1 − N

1 −N

∂2ψ1

∂y2
+

(2 −N)N
m2(1 −N)

∂2υ1

∂y2
. (30)

From (29) and (30), we get

υ1 =
(2 −N)(1 −N)

2m2N

∂(ψ0,−∇2ψ0)
∂(y, x)

− aj (1 −N)
2N

∂(ψ0, υ0)
∂(y, x)

− (2 −N)
2m2N

∂4ψ1

∂y4
+

(
2Ha2(2 −N)(1 −N)

2m2N
− 1

2

)
∂2ψ1

∂y2
. (31)

Substituting (31) in (29), we get

∂6ψ1

∂y6
− (α2 + β2)

∂4ψ1

∂y4
+ α2β2 ∂

2ψ1

∂y2

=
2m2(1 −N)

(2 −N)

{
∂(ψ0,−∇2ψ0)

∂(y, x)
− 2 −N

2m2

∂2

∂y2

(
∂(ψ0,−∇2ψ0)

∂(y, x)

)
− a j

2
∂2

∂y2

(
∂(ψ0, υ0)
∂(y, x)

) }
. (32)
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The corresponding boundary conditions are given by

∂2ψ1

∂y2
= 0, ψ1 = 0, υ1 = 0 on y = 0 ,

∂ψ1

∂y
= 0, ψ1 = 0, υ1 = 0 on y = S(x) . (33)

The first order pressure gradient is given by

∂p1

∂x
=
∂ψ0

∂y

∂2ψ0

∂x∂y
− ∂ψ0

∂x

∂2ψ0

∂y2
+

N

1 −N

∂υ1

∂y
+

1
1 −N

∂3ψ1

∂y3
− Ha2 ∂ψ1

∂y
. (34)

Since it is cumbersome to solve Eq. (32), we have used MATHEMATICA to obtain the solution of (32) subject to the
boundary conditions (33). As the expressions for the stream function ψ1 and microrotation component υ1 are lengthy we
have not presented them explicitly.

4 Results and discussion

The numerical values of the arbitrary functions C1(x), C2(x), C3(x), C4(x), C5(x), and C6(x) are obtained by solving
the system of equations using the boundary conditions (23) using MATHEMATICA and hence the expressions for stream
function and microrotation components of zeroth order i.e. ψ0 and υ0. Similarly, the solution of (32) subject to the boundary
conditions (33) i.e. the stream function of first order (ψ1) is evaluated numerically by MATHEMATICA for various values
of geometric and fluid parameters. Numerical calculation of the stream function ψ and microrotation component υ (up to
first order in Re) is performed and representative set of results are presented graphically in Figs. 2–4 for exponentially
diverging geometry S(x) = ex and linearly diverging geometry S(x) = 1+x. The effect of micropolar parameter (m) and
micro-inertia parameter (aj) on the velocity and microrotation is not significant, hence we set m = 10 and aj = 0.001.

Fig. 2 The profile of (a) velocity and (b) microrotation for N = 0.5, Ha = 5, Re = 0.1.

Fig. 2a shows the profile of velocity for the diverging channel geometry S(x) = ex. As it is expected velocity is
maximum at the center of the channel for x = 0 and as the channel diverges i.e. the value of x increases, the velocity
becomes flattened. Fig. 2b shows the variation of microrotation component with x for the same flow geometry. As x
increases, the microrotation component is also decreasing.

The effect of Hartmann number on the velocity is presented in Fig. 3a for fixed value of x. It can be seen from this figure
that as Hartmann number increases, the velocity at the centre of the channel decreases and the velocity gradient near the
channel wall becomes steeper. This indicates that the fluid velocity can be reduced by an increase in the magnetic fields.
Imposing a magnetic field gives rise to a resistive force and slows down the movement of the fluid. The effect of Hartmann
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Fig. 3 The effect of Ha on (a) velocity and (b) microrotation for N = 0.5, Re = 0.1, x = 0.

number Ha, on microrotation is shown in Fig. 3b. Increasing the magnetic field leads to decrease in the microrotation in the
domain except near the boundary in which a reverse phenomenon is seen. The intensity of the magnetic field thus can be
used for decreasing the angular rotation.

Fig. 4 The effect of N on (a) velocity and (b) microrotation for Ha = 10, Re = 0.1, x = 0.

Fig. 4a depicts the effect of the coupling numberN on the velocity. It can be seen that the velocity increases at the center
with increase of the coupling number. Also, the velocity in case of micropolar fluids is greater than that of viscous fluids
(since the limit N → 0 corresponds to viscous fluid). However, the reverse trend is observed near the boundary. Fig. 4b
illustrates that the microrotation increases with N .

Fig. 5a shows the variation of axial pressure gradient with the Hartmann number for the channel geometry S(x) = ex

at the center of the channel (y = 0). As the Hartmann number increases, the pressure gradient decreases. The effect of the
Hartmann number on the pressure gradient for the diverging geometry S(x) = 1+x is shown in Fig. 5b. For this geometry
also, the pressure gradient decreases as Hartmann number increases.
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Fig. 5 The effect of Ha on axial pressure a) S = ex b) S = 1 + x for N = 0.5, Re = 0.1, y = 0.

5 Conclusion

The steady conducting micro polar fluid through a diverging channel under the influence of an applied uniform magnetic
field has been studied. Perturbation solutions have been obtained for the stream function and microrotation components
in terms of effective Reynolds number. The profiles of velocity and microrotation components are presented for different
micropolar fluid parameters and magnetic parameter. As the micropolar nature of the fluid increases, the velocity also
increases. Intensity of the magnetic field reduces the velocity at the center of the channel and the microrotation. It is also
shown that increasing the magnetic field decreases the pressure gradient.
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