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Abstract — In this paper, we consider the one-dimensional modified Burgers’ equation in the finite
domain. This type of problem arises in the field of sonic boom and explosions theory. At the high
Reynolds’ number there is a boundary layer in the right side of the domain. From the numerical
point of view, one of the difficulties in dealing with this problem is that even smooth initial data
can give rise to solution varying regions, i.e., boundary layer regions. To tackle this situation, we
propose a numerical method on non-uniform mesh of Shishkin type, which works well at high as well
as low Reynolds number. The proposed numerical method comprises of Euler implicit and upwind
finite difference scheme. First we discretize in the temporal direction by means of Euler implicit
method which yields the set of ordinary differential equations at each time level. The resulting set of
differential equations are approximated by upwind scheme on Shishkin mesh. The proposed method
has been shown to be parameter uniform and of almost first order accurate in the space and time. An
extensive amount of analysis has been carried out in order to prove parameter uniform convergence of
the method. some test examples have been solved to verify the theoretical results.

Keywords: Modified Burgers’ equation, Euler implicit method, Shishkin mesh, upwind scheme and
uniform convergence

1. Introduction

In this paper, we consider one-dimensional modified Burgers’ turbulence model,

%—Fkl‘_"/zu%:&‘g—z, (x,1) € Q% (0,T] (1.1a)

where n =1 or 2 and Q = [0, 1]
u(x,0) = f(x) (1.1b)
uw(0,1) = 0 = u(1,f) (1.1c)
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which has many applications, among others, in explosions and sonic boom the-
ory [2,7]. In (1.1), n =1 or 2 corresponds to cylindrical or spherical waves, respect-
ively, k is related to the speed of propagation and € is the reciprocal of an effective
Reynolds number of the problem.

In general, the solutions of this class of problems posses a boundary layer on the
right side of the rectangular domain, when the singular perturbation parameter € is
small, i.e., € < 1 (see [12]). Due to the presence of singular perturbation parameter
¢, wild oscillations occur in the computed solutions using classical finite difference
schemes, unless the mesh discretization used is very fine [6]. To tackle such situ-
ations we need to derive a method using a class of special piecewise uniform meshes
introduced in [11], which are constructed a priori as a function of parameter &, coef-
ficient of convection term and number of points N used in the spatial mesh.

In the case of plane waves, n = 0, equation (1.1) admits a transformation which
reduces it to the simple diffusion equation [3,8]. A particularly interesting analytical
solution is the so-called N-waves solution [10] where the effect of diffusion is con-
fined to two thin boundary layers, corresponding to head and tail shocks in explosion
or sonic boom theory. In cases where flows occur in a nonuniform atmosphere, the
problem becomes even more complicated because both k and € are now functions
of x and 7 [14]. Although an inviscid analysis of (1.1) can provide attention insight
into the qualitative description of the flow field, such as approximate shock speed
and decay rates, to asses the long term effect of diffusion on the whole flow field.

In [13], Sachdev and Seebass study the finite difference solution of (1.1) with
€ = 1072, By choosing the initial conditions which have max(|u|), |i.|) not much
greater than O(1), they show that a uniform mesh size (in both x and ¢) of O(1072) is
adequate for the predictor—corrector finite difference scheme of Douglas and Jones
[4]. However in application, much smaller values of € occur. Hence the use of a
uniform mesh would be impractical. In 1978, Chong [1] used the variable mesh
finite difference method for the this class of of parabolic differential equations. His
method gave more accurate result in comparison to [13] in the boundary layer region
specially when € is very small. But still, his method is not uniformly convergent with
respect to the singular perturbation parameter €.

The derivation of €-uniform convergence based on fitted mesh for ordinary dif-
ferential equations has been given in [5,11] which also contain numerical experi-
ments for such meshes. We construct a numerical method based on Euler implicit
and with upwind finite difference operator on piecewise uniform mesh of Shishkin
type, which is first order accurate in time and almost of first order accurate in space.
In particular we analyze the accuracy of proposed method on piecewise uniform
mesh by reducing it to a system of ordinary differential equations. We prove that the
numerical solution generated by the proposed method converges uniformly to the
solution of the continuous problem with respect to singular perturbation parameter.

A description of the contents of the paper is as follows. In Section 2, we describe
the discretization in temporal direction by means of Euler method and linearize the
resulting system of ordinary differential equations at each time level. The error in
temporal direction are shown to be of first order and free from parameter €. In
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Section 3, in order to prove the £-uniform convergence, the sharper bounds on the
derivatives are obtained by means of decomposition of the solution into smooth and
singular components. In Section 4, the formulation of numerical method compris-
ing a discrete operator on Shishkin mesh is given. In Section 5, it is shown that the
discrete operator satisfies the discrete maximum principle. The numerical solution
is decomposed in smooth and singular components and the error estimates for the
smooth and singular solutions have been obtained separately. The €-uniform conver-
gence of the numerical solution (generated by the proposed method) to the solution
of the continuous problem is shown. Section 6, contains the numerical experiments
to corroborate the results predicted by the theory.

Throughout this paper the constant C (sometimes subscripted) will be the pos-
itive generic constant, independent of mesh parameters, i.e., Ax and At the singular
perturbation parameter € and the norm || - || (sometimes subscripted) used is the
pointwise maximum norm.

2. Temporal semi-discretization

We discretized the given problem in the time direction by means of Euler Implicit
method with uniform step size At

up(x) = f(x) (2.1a)

Wjt] —Uj —n
% k(1) " Pug () 1 = €t 41 (2.1b)
Mj+1(0) :0, Mj+1(1) =0. (2.10)

Simplified form of the above equation is
up(x) = f(x) (2.2a)
e (ttee) 1+ k() P () o+ 2 = 2 (2.2b)
J J J J At At

uj41(0) =0, ujy1(1) =0. (2.2¢)

This is the system of nonlinear ordinary differential equations. To tackle the nonlin-
earity we use the following linearization.

2.1. Linearization

We linearize (2.1) by the following way

W () = f(x) (2.32)
Y (I+1)
I+1 —n I I+1 i+1 ;
—e (e k() 2] WD)+ JX; = (2.3b)



220 M. K. Kadalbajoo and A. Awasthi

o =0l =0 230)

where [ is the iteration index. Rewriting the above equation as

u(()l+1)(x) = f(x) (2.4a)
—e (! Yo Ark(ry) T Pull) D)l = Y (2.4b)
Vo) =0,  JH (1) =0, (2.4¢)

For simplicity we use the following notation

(1+1)

I+1
Uiy .

1
=Upr, k) =apn(@) =alxt), Y = gi(x) = glx)).

Subject to above notations, the equation (2.4) becomes,

Uo(x) = f(x) (2.52)
— €M (Ujs1)ae+ At(t71) a1 (x) (Ujs1 )x + Ujsr = g(x) (2.5b)
Ujt1=0, Ujr1=0. (2.5¢)

Writing in the operator form,
Uo(x) = f(x) (2.6a)
LeUjs1 = g;(x) (2.6b)
Ujr1 =0, Uit1=0 (2.6¢)

where
Le = —eAtd—2 F AL (t541) " a; 1(x)i +1
dx? T T dx

is a linear operator. Since t /2 > T~"/2 t < T and we assume that a1 (x) > BVx €
Q, now therefore (t;,1)™"/?a;1(x) = T~"/?B, put T~"/?B = o for fixed value of .

2.2. Error in temporal direction

The local truncation error in the time of the semidiscretization method (2.6) is given
by ej41 = U(tj+1) — Uj41, where Uj,; is the computed solution of the boundary
value problem

A

Up = f(x) (2.7a)
—SAZ‘(UJ'H)XX—I-Al‘(l‘j+1)7n/2aj+1(x)(UjH)x—|—UjH:gj(x), O<x<l1, t>0

(2.7b)

Ui1(0)=0, U;1(1)=0, t>0. (2.7¢)

Local error estimates of each time step contribute to the global error in the temporal
discretization which is defined, at t;, as E; = u(x,t;) — U;(x).
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Lemma 2.1 (local error estimates). Suppose that

1
‘ )| <C, (xt)eQx[0,T], 0<i<2.

Frd

The local error estimates in the temporal direction is given by

llejs1] < Ci(Ar)2. (2.8)

Proof. Linearize the original problem and after simplification, we have
Uy = eUp —t 20, (2.9)

where U = u/*!. Since the solution of (2.9) is smooth enough, it holds
lj
U(tj) = Ultj1) =AU (1)) + [ (6 =) (U (tj41))u ds

= U(tjs1) — At (U — 17" 2d U (tj11)
[ =) (Utje1))e ds (using (2.9))

tjt1
= LeU(tj41) + O(Ar)*. (2.10)
Subtracting (2.7) from (2.10), we get
Leej 1 < C(Ar).
Since L satisfies the maximum principle, therefore

H€j+1H<C(Al‘)2. I

Theorem 2.1 (global error estimates). With the help of Lemma 2.1, we have
|E;| <CAt Vj<T/Ar (2.11)

Proof. Using the local error estimates up to the nth time step, which is given by
Lemma 2.1, we get the following global error estimate at (j+ 1)th time step

J
IEjall = | Y eall, j<T/A (2.12)
=1

< lledll =+ lleall + -+ + [lejll

< Ci(jAr)Ar  (using the equation (2.8))
< CiTAr (since jAt < T)

— CAt (WithC =C\T)

where C is a positive constant independent of € and Ar. O
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3. Asymptotic behavior of semi-discretized problem

Lemma 3.1 (maximum principle). Let v, 1(x) € C2Q be the mesh function
such that Leyj 1 > 0 and yj1(0) >0, then w1 >0 Vx.

Proof. Proof is given by contradiction. Let there exist a point x* such that
Vi1 (x") <O. Clearly x* ¢ Q. (1) =0 and (Yj41)xx 20,

Le(Wj) (") = =AY )ae(x) 4+ A1) ™" a0 (0) (W1 e () + Wi ()
<0 (since (fj41) " a;41(x) = 0)

which is a contradiction. Therefor yj,1(x) >0 V. O

In order to define the local error bounds for the finite difference scheme in next
section, we need the error bounds to the exact solutions of the previous semidiscrete
problems.

Theorem 3.1. The exact solution Uj(x) of (2.6) satisfies

o <C(l+e'exp(—a(l—x)/e)), i=0,1,....4. (3.1

Proof. The maximum principle for L. together with the smoothness require-
ments imposed on g;(x) and on U gives |U;j1| < C. The proof for the bounds of
its derivatives can be derived similarly as in [11]. ]

3.1. Decomposition of solution

In order to get the sharper bound on the solution of the equation we decompose the
solution in the smooth and singular component.

Ujs1(x) = Vi1 (x) + Wi (x)
where V| is smooth component, can be written
Vipr =Vo+eVi+€V,
and Vy, Vi, and V,, are defined respectively to be the solutions of the problems
At(tjﬂ)*"ﬂajﬂ(x)VO(l) +Vy= gj(x), V()(O) = Uj+1(0) (32)

At(ti) " Paj Vv +vi ==vP w0)=0 (3.3)
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—SAIVZ(Z) +At(tj+1)_n/2aj+l(x)vz(l) +V,=— 1(2) (3.4)
1(0)=0,  Vh(1)=0.

thus the smooth component V. is the solution of
LeVipr =gj(x),  Viur(0) =Vo(0)+&Vi(0), Vi (1) =Uja (1) (3.5)

where superscripts denote the order of the derivatives, i.e., y () = diV/ dxi,i= 1,2,3,
and consequently the singular component W, is the solution of the homogeneous
problem

LeWiii =0, Wiai(0) =0, Wyi(1) =Upi(D)=Viui(1).  (3.6)
The bounds of V;, W, and their derivatives are given as follows.

Theorem 3.2. The smooth component V| and its derivatives satisfy the fol-
lowing estimate

vihiwli<c (1 e (emal=/e) | =0,1,2,3
where C is a positive constant.

Proof. Since Vj is the solution of the reduced problem which is the first order
linear differential equation (3.2), with bounded coefficients, i.e., (tj+1)*"/ 2a;11(x)
and g;(x), therefore Vj is the bounded and the bound is independent of the €.

Using the bounds of Vo, (#j+1)"/?a;11(x) and g;(x) in equation (3.2) we get

Vo(l) is bounded and independent of €.

Differentiating the equation (3.2) w.r.t. x we get the second order differential

equation, by using the bounds of Vj, Vo(l)

(2)

estimate for V;™.
Similarly twice differentiating of the equation (3.2) gives the third order differ-

, (tj41)™%aj 1 (x) and g;(x) we get the

ential equation, by using the bounds of Vj, Vo(l) and Vo(z) we get the estimate for
v
Thus we have .
v <c, i=0,1,2,3 (3.7)
where C is a positive constant independent of the €.

In the same fashion we get the bounds on V; and its derivatives Vl(i) fori=1,2,3.
Thus we have _
v <c, i=0,1,2,3 (3.8)

where C; is the positive constant independent of the €.
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Since V, is the solution of the equation (3.4), which is similar to the equa-
tion (2.6) therefore the estimates for the bounds on V, and its derivatives are given
by Theorem 3.1,

\sz@\ < Cele @0/ 1 =01,2,3 (3.9
where C3 is positive constant independent of €.
V=V + v+ v, i=0,1,2,3 (3.10)

with the help of the equations (3.7), (3.8) and (3.9) the above equation can be written
as
\vj(fll <C(1+e FHeme=0/ey - j—01,2,3. (3.11)

This completes the proof of the theorem. O

Theorem 3.3. The singular component W;1(x) and its derivatives satisfy the
following error estimate

eI/ (3.12)
e, i=1,2,3. (3.13)

Proof. We consider the barrier functions defined as

yE(x) = Ce /e LWy (x) (3.14)
now we have
yE(0) = Ce ¢+ W;,1(0) (3.15)
— Ce™%/¢  (since Wj,1(0) =0) (3.16)
>0 (3.17)
(1) = CEW;p (D). (3.18)

‘We can choose the value C such that

vE(1) =C+Wi(1) =0 (3.19)
and
Ley™* (x) = —eAy(x) + At(tj1) " Pag () Wit (x) + v (x) (3.20)
- _At_o‘z —a(l-x)/e Co\n/2, & _a(l-x)/e | —a(l-x)/e
= P +At(tj1) a]+1(x)€e +e
aAt

— T [_ o+ (tj+1)—n/2aj+1(x)] e—(x(l—x)/s +e—a(1—x)/£
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since « is the minimum of (¢;11)~"/2a; 1 (x). Therefore

—a+ (1) "?aj41(x) 2 0.

Thus we have
Lew™(x) > 0.

Since L satisfies the maximum principle and we have shown that Ley=(x) > 0,
therefore

yEx) =Ce I LW () 20 YxeQ

or
Wi (x)] <Ce =9/ vxe Q.

For i = 1,2,3 the detailed proof can be seen in [9]. O

4. Spatial discretization

Shishkin mesh. Shishkin meshes are piecewise-uniform meshes which condense
approximately in the boundary layer regions as € — 0. This is accomplished by the
use of transition parameter 7, which depends naturally on €&, and crucially on N.

Thus for a given N and &, the interval [0,1] is divided into parts, [0,1 — 7],
[1 — 7, 1] where the transition point 7 is given by

1
TEmin{E,melogN}

where m is a constant which we choose such that m > 1/o. It is clear that when
T = 1/2 the mesh is uniform otherwise the mesh condenses near the right boundary.
The value of the constant C depends on which scheme is used.

Define the fitted piecewise-uniform mesh (Shishkin mesh) that discretizes the
interval [0, 1] with N piecewise uniform subintervals as

. _ (H=2(1—17)/N, 0<i<N/2
PTHTNEIT = 21)N, N/2<i<N

and the piecewise-uniform mesh QV with the spatial nodal values x;, i =0, 1,...,N,
is given as

oV, . .- [20=-1)i/N, O<i<N/2
—{xi‘xi_{(]—T)—I—2T(i—N/2)/N7 N/2<i<N}.
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Difference scheme. The approximation of the semi-discrete equation (2.5) in the
spatial direction by upwind scheme on non-uniform mesh of Shishkin type, i.e., QV
is given as,

= f(x) (4.1a)

SAISZ(UJH)(X,) + At(t]+l) n/2 a}+l(xl) (Uj-l-l)( )
+ UM () =gj(x) VxeQV (4.1b)
U, (0)=0, UY(1)=0 (4.1c)

where U jl.\jrl (x;) is the the approximate solution of the U (x) at the point x; and at
the (j+ 1)th time level and

Uy UN | (xie UN | (xip1) —UN  (xi
Do ) = IO gy ) - D) 2O
! h; ! hivi
82 — M, R = M
h; 2
Writing (4.1) in the operator form,

Uy = f(x) (4.2a)
LYUY | = gj(xi) (4.2b)
UX,(0)=0, U, (1)=0 (4.20)

where LI{;Y = —eAt§? +A[([j+1)7n/2dj+1 (x,-)D_ +1.

4.1. Decomposition of numerical solution

In order to get the sharper bound on the numerical solution of the fully discrete
problem, we decompose the solution in the smooth and singular component.

U;+1( Xi) = Vj+l(xl) —I—WH(x,)

where V}YH is smooth component and W]?YH is the singular component of the solution

N
U}+l

Smooth component VY s satisfies the following non-homogeneous equation
LYV (xi) = gj(x)
VN1(0) = Vj31(0) (4.3)
V(1) = Vin(1)
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and singular component W;YH satisfies the following homogeneous problem
LQ,W;\-{,-I(XI') =0
W 1(0) = Wi1(0) (4.4)
W (1) = Wi (1)

The error can be written as

Ul = Ut = (Vi = Vi) + (Wi = W),
The error in the smooth and singular component is estimated separately.
5. Stability and convergence analysis

Lemma 5.1 (discrete maximum principle). Ler lllj’\frl (x;) is any discrete mesh
function on QN such that l//j.v+l (0) =0, l//j.v+l (N) = 0and ngvlllﬁl (x;) > 0Vx; € QN,
then l//j.v+l (x;) = 0Vx; € Q.

Proof. Let there exist a point x, such that yj(x,) < 0 and yj;i(x,) =
mingy Yj41(x;). It is clear that p ¢ {1,N}. Since yji(x,+1) — W(x,) > 0 and
Vir1(xp) — W(x,—1) <0, we have

B ‘I’jl\jrl(xp) - Wﬁl(xp—l)

D™y (xp) = - <0
p
‘I/N1(x +1)—‘l/1'v1(x )
Dy () = AT >0
p
Dty (x,)—D v  (x
Szwjl\jrl(xp) _ Wit ( p)]_l Vi1 (xp)
p
:_i V’ﬁl(xp-l-l)_lyﬁl(xp)_Wﬁl(xp)_l//j]\itl(xp—l) >0
hyp hp i hy ~
Now

Llevll’jl\jrl(xp) = —8A552‘//ﬁ1(xp)+At(tj+1)_n/2aj+1(xi)D7Wﬁ1(xp)+‘Vﬁl(xp)
< 0 (using above inequalities)

which is as contradiction. So l//jl\frl(xp)? 0, since p is an arbitrarily chosen point,
therefore we have l//jl\frl (x;) =0 Vx; € QV. O
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Lemma 5.2. Let Z(x;) is the mesh function such that Z(xy) = Z(xy) = 0. Then

|Z(x;)] < o) Or%;E(N]LgZ(xj)]. (5.1
Proof. Let |
< NZ(x))-
M S gy (02, ILe 2(x0)

Construct the barrier functions y/ﬁl (x;) as
l[/;:_l (x,-) = Mx; :I:Z(xi)
V’;’il(xo) =0, W;’il(xl\/) 20

LY () = (At(t;fl/z)ajﬂ(xi)—|—x,~>Mj:L2’Z(x,-)

> (Ata)M+LYZ(x;) > 0.

The Discrete maximum principle implies that l//ft+1 (x;) =0for0 <i<N. O

Theorem 5.1 (error in smooth component). The error in the smooth compon-
ent satisfies the following estimate

Vi () = Vi (u)] SCNT!, e QN (5.2)

where C is a constant independent of € and mesh parameters.

Proof. The truncation error in the smooth solution is given by
LY (VY = Vi) ()| = [gj(xi) — LYV
= |LeVir1(x) = LY V1 (%)

= |(Le = LY)Vj1 (x)]
2

d
= ‘—SAI <@ — 62> Vj+1(Xi)

1) agr ) (D7) V)| 6

Let x; € QV. Then for any v € C3(Q),

‘ (D_ - %) Vi1 (x)

Xit1 — X
< By
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and for any y;;(x) € Q,

' <52 - d(ic—22> Vi1 (x)

For the proof of these results one can seen the Lemma 4.1 (see [11]). Using these
results in (5.3) followed by a simplification yields

(Xi+1 — Xi—1

)
7

0=V < G 0 (V| + VS5 )
< MC(xip1 —xi1) (e + e~ ¥I0/8) 4 (] e @In)/eY)
(by using Theorem 3.1)
< ArC(xiy1 —xi—1)  (since e~ a(l-xm)/e < 1y

= ArCN~'  (since Xit] —Xi—1 < 2N
An application of Lemma 5.2 to the mesh function (V;YH —Viq1)(x;) yields the
estimate

‘(V;YH — Vj+1)(xi)| < CNﬁl, X € QN (54

This completes the proof of the theorem. O

Theorem 5.2 (error in singular component). The error in singular component
satisfies the following estimate

(WX (%) = W1 (xi)| <CN ' (InN)?, x; € QY (5.5)
where C is a constant independent of € and mesh parameters.

Proof. To estimate the singular component of the local truncation error LY
X (W}YH — Wj41), the argument depends on whether 7 =1/2 or 7= (¢InN)/a.
1. Consider the case when 7 =1/2, i.e., eInN > 1/2. The classical argument

is used above in the Theorem 5.1, leads to the estimate

L Wy = W) ()| < ArC (i1 —xi-1) (8“Wj(-i3->l [+ 11w H) :

Since xj41 —x;—1 = 2N ~1 and estimates for W.(3)1 and W(2> from the Theorem 3.3

Jjt Jj+1
lead to
LYW = W) < AtCe>N™!

but, in this case €' < 2InN /o and so

|LY (WY = W) ()| < ACN~'(InN)?
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an application of Lemma 5.2, leads to estimates

[(WNy = Wji1) ()| <CN~'(InN)2, (5.6)

2. In this case mesh is non-uniform or piecewise uniform with the mesh spacing
2(1—1)/N in the subinterval [0,1— 7] and T/N in the subinterval [1 — 7, 1].
Consider the interval [0, 1 — 7] with no boundary layer:

|(WN) = W) ()] < W ()] + [Wjr (x0)] -
From the Theorem 3.2, we have
|Wj+1(xi)‘ < Ce~all-x)/e

< Ce *I=-149/8 (gince e~ *(17)/€ i5 an increasing function)

To obtain the similar bound on W}YH we have to construct an auxiliary function

N
W]+1’
—n/2

t;+1 @j+1(x) is replaced by o. Then by the Lemma 7.5 of [11], we have

which is the solution of the difference equation (4.4) except the coefficient

Wi () WY (6), 0<i<N,

With the help of Lemma 7.3 in [11], we have

W, (x)| SCNT', 0<i<N/2.

The above estimates for WV

1(xi) and Wiy (x;) for 0 <i < N/2 show that in the
interval [0,1 — 7]

(Wh () = Wiga ()| <CN

Consider the interval [1 — 7, 1] and applylng the classical argument as before to the
following error estimate of the local truncation error for N/2+ 1 <i< N—1

L (WHy = W) ()] < ArCe™ gy —xi]
= 2AtCe 2tN!
< 2TCe 2tN~! (since At < T)
= Cie2tN~!  (withC; =TC)
and
W1 (o) = W1 () | = 0
and

(W (v j2) = Wi (ew o) | < W (ow ) | 4 [Wien (kv j0) | < CNT!
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from the results obtained in the subinterval [0, 1 — 7].
Introducing the barrier function

@ (x) = (i — (1—1))Cre 2tN 1+ N~
again construct the barrier functions
Wi () = @ () £ (W — Wi (x0)
satisfy the inequalities
Vi (wga) 20, Vi (av2) =0

and
LYy (x) >0, N/24+1<i<N-L

The discrete maximum principle on the interval [1 — 7, 1] then gives
Vi (k) =0, N/2<i<N
and it follows

|(Wﬁ_1 —Wj+1)(x,-)| < CI>j+1(x,-) < C18_272N_1 +C2N_1.

Since T = €InN/a., therefore
(W = W) ()| < ON~H(InN)* +CoN !
< CN7Y(InN)?  (with C = max{C;,C,}).  (5.7)

Combining the separate estimates in two subintervals, we have

(W = W) (x)| <CN 7' (InN)?,  x Q. O

Theorem 5.3 (error in semi-discrete solution). The error in the semi-discrete
solution U 1 (x) satisfies the following estimate

|(Uj]\<]H —Uj+1)(x,-)| <6‘1\771(1111\7)27 Xj E.QN (58)

where C is a positive constant independent of € and mesh parameters.

Proof. Since we have

(U1 = Uje) ()| < W = W) ()] + |V = Vi) ()], x e QY.
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Combining the inequalities (5.4) and (5.7) we have

|(U§Y|-1_Uj+1)(xi)| SCN—l(lnN)z, x e QV. m

Theorem 5.4 (error in fully-discrete solution). Let u(x;,tj11) be the solution
of the problem (1.1) at the point (x;,tj41), Ujt1(x;) be the solution of the differential
equation (2.6) and Uﬁl(x,-) be the solution of totally discrete problem (4.2). Then
error satisfies the following estimate

max [|UN | (x;) — u(xi,tjz1)]| < C(Ar+N~'(InN)?) (5.9)

0<e<1

where C is a positive constant independent of € and mesh parameters.

Proof. The proof is directly follows from Theorem 2.1 and Theorem 5.3,

UM () = uxis i) | < UM () = U () |4 101 () — i t0) |
< C1At+CoN ! (logN)?
(by using Theorem 5.3 and Theorem 2.1)
< C(At+N"'(logN)?)  (with C = max{C;,C>}). O

5.1. Numerical Results

In this section we present the numerical results which validate the theoretical result.
Nevertheless it is seen that the numerical behavior of the proposed method using
piecewise uniform of Shishkin type mesh is €-uniform. The problem is solved us-
ing proposed method comprising Euler implicit and upwind difference operator on
piecewise uniform mesh of Shishkin type with N points. The piecewise uniform
Shishkin mesh used in these computations are of the form described in Section 4
and so condensed on the right side boundary x = 1.

We will show computationally that the numerical solutions given by proposed
method converge uniformly with respect to €.

Modified Burgers’ equation. In the case of modified Burgers’ equation
w4+t un, = guy,.

With initial condition

X
0) —
ux0) = oot ae = 1)

and boundary conditions
u(0,7) =0=u(1,r)



Modified Burgers’ equations 233

Table 1.
Maximum pointwise errors EY for modified Burgers’ equation at n = 1 for different values
of € and N.

e\ N 16 32 64 128 256

28 4.003148E-2  2.550326E-2  1.662987E-2  1.027287E-2  1.009326E-2
2710 4626916E-2 2.968019E-2  1.919389E-2  1.179892E-2  6.967773E-3
2712 4764934E-2  3.059739E-2  1.969282E-2  1.207915E-2  7.130987E-3
2714 4799736E-2  3.081504E-2  1.981298E-2  1.214585E-2  7.168962E-3
2716 4807754E-2 3.086872E-2 1.984286E-2 1.216244E-2  7.178402E-3
2718 4.809760E-2  3.088209E-2  1.985031E-2 1.216659E-2  7.180761E-3
2720 4.810261E-2 3.089028E-2  1.985608E-2 1.217152E-2  7.185273E-3
2722 4810386E-2 3.089112E-2 1.985655E-2 1.217178E-2  7.185420E-3
2724 4810418E-2 3.080133E-2 1.985666E-2 1.217184E-2  7.185457E-3
2726 4810426E-2 3.089138E-2 1.985669E-2 1.217186E-2  7.185466E-3

EN 4.810426E-2  3.089138E-2 1.985669E-2 1.217186E-2  7.185466E-3

555274
A
A
22 5
%

solution

7
27 77,
A

solution

(a) (b)

Figure 1. Numerical solutions for modified Burgers’ equation n = 1, i.e., cylindrical wave at N = 128,
At =0.1 (a) for ¢ =27 and (b) for e =272

no exact solution is available for n = 1,2, therefore, we estimate the maximum
pointwise errors EY by

Eé.v = I’I;IZ%X‘UN(XL',IJ') — UZN(X,',IJ')‘

where U?N (x;,t ;) is the computed solution corresponding with 2N points, and
EN = maxEéV .
&

The maximum pointwise computed errors at 7 =2 and n = 1 for this example are
given in Table 1 by using proposed method on fitted piecewise uniform mesh for
different values of € and N.
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Table 2.
Maximum pointwise errors EY for modified Burgers’ equation at n = 2 for different values
of € and N.

e\ N 16 32 64 128 256

28 2.685989E-2  1.702507E-2  1.049890E-2  6.288740E-3  2.687786E-3
2710 3043733E-2  1.920504E-2  1.190741E-2  7.076528E-3  3.036208E-3
2712 3162580E-2 1.990117E-2  1.228574E-2  7.282884E-3  4.197863E-3
2714 3192748E-2  2.012732E-2  1.238445E-2  7.346255E-3  4.229487E-3
2716 3200277E-2 2.017911E-2  1.240944E-2  7.362305E-3  4.237483E-3
2718 3202158E-2 2.019209E-2 1.241572E-2 7.366331E-3  4.239489E-3
2720 3202645E-2 2.019534E-2  1.241729E-2 7.367338E-3  4.239990E-3
2722 3202762E-2 2.019615E-2 1.241768E-2  7.367590E-3  4.240116E-3
2724 3202791E-2 2.019636E-2 1.241778E-2  7.367653E-3  4.240147E-3
2726 3202798E-2 2.019641E-2 1.241780E-2 7.367669E-3  4.240155E-3

EN 3.202798E-2  2.019641E-2  1.241780E-2 7.367669E-3  4.240155E-3

solution

(b)

Figure 2. Numerical solutions for modified Burgers’ equation n = 2, i.e., spherical wave at N = 128,
At =0.1 (a) for ¢ =27 and (b) for e = 2720

Table 2 gives the maximum pointwise computed errors at 7 = 2 and n = 2 for
this example by using proposed method on Shishkin mesh for different values of €
and V.

Conclusions

In this paper we propose a numerical scheme for solving modified Burgers’ equa-
tions (cylindrical and spherical waves) at high Reynolds number. The solutions of
this equation changes rapidly at high Reynolds number due to the occurrence of the
boundary on the right side of the domain. To capture the boundary layer we used a
non-uniform mesh of Shishkin type. The proposed method comprises Euler discret-
ization in time and upwind discretization on Shishkin mesh in space. The method
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has been shown to be almost-first order accurate in the spatial direction and first
order in the temporal direction. An extensive amount of analysis has been carried
out to obtain the parameter uniform error estimates.

In support of the predicted theory some test examples are solved using the pro-
posed method. To illustrate the performance of the proposed method, the maximum
errors is given in Tables 1 and 2 for cylindrical and spherical waves, respectively.
Since the exact solution for modified Burgers’ equation is not known, therefore max-
imum pointwise errors are computed by half mesh principle. The errors specified in
Tables 1 and 2 show that the proposed method converges uniformly with respect
to perturbation parameter and convergence behavior matched with the theoretical
result. Figures 1 and 2 show the physical behavior of the computed solution.
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