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Abstract — In this paper, we consider the one-dimensional modified Burgers’ equation in the finite
domain. This type of problem arises in the field of sonic boom and explosions theory. At the high
Reynolds’ number there is a boundary layer in the right side of the domain. From the numerical
point of view, one of the difficulties in dealing with this problem is that even smooth initial data
can give rise to solution varying regions, i.e., boundary layer regions. To tackle this situation, we
propose a numerical method on non-uniform mesh of Shishkin type, which works well at high as well
as low Reynolds number. The proposed numerical method comprises of Euler implicit and upwind
finite difference scheme. First we discretize in the temporal direction by means of Euler implicit
method which yields the set of ordinary differential equations at each time level. The resulting set of
differential equations are approximated by upwind scheme on Shishkin mesh. The proposed method
has been shown to be parameter uniform and of almost first order accurate in the space and time. An
extensive amount of analysis has been carried out in order to prove parameter uniform convergence of
the method. some test examples have been solved to verify the theoretical results.

Keywords: Modified Burgers’ equation, Euler implicit method, Shishkin mesh, upwind scheme and
uniform convergence

1. Introduction

In this paper, we consider one-dimensional modified Burgers’ turbulence model,

∂u

∂ t
+ kt−n/2u

∂u

∂x
= ε

∂ 2u

∂x2
, (x, t) ∈ Ω× (0,T ] (1.1a)

where n = 1 or 2 and Ω = [0,1]

u(x,0) = f (x) (1.1b)

u(0, t) = 0 = u(1, t) (1.1c)
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218 M. K. Kadalbajoo and A. Awasthi

which has many applications, among others, in explosions and sonic boom the-
ory [2,7]. In (1.1), n = 1 or 2 corresponds to cylindrical or spherical waves, respect-
ively, k is related to the speed of propagation and ε is the reciprocal of an effective
Reynolds number of the problem.

In general, the solutions of this class of problems posses a boundary layer on the
right side of the rectangular domain, when the singular perturbation parameter ε is
small, i.e., ε ≪ 1 (see [12]). Due to the presence of singular perturbation parameter
ε , wild oscillations occur in the computed solutions using classical finite difference
schemes, unless the mesh discretization used is very fine [6]. To tackle such situ-
ations we need to derive a method using a class of special piecewise uniform meshes
introduced in [11], which are constructed a priori as a function of parameter ε , coef-
ficient of convection term and number of points N used in the spatial mesh.

In the case of plane waves, n = 0, equation (1.1) admits a transformation which
reduces it to the simple diffusion equation [3,8]. A particularly interesting analytical
solution is the so-called N-waves solution [10] where the effect of diffusion is con-
fined to two thin boundary layers, corresponding to head and tail shocks in explosion
or sonic boom theory. In cases where flows occur in a nonuniform atmosphere, the
problem becomes even more complicated because both k and ε are now functions
of x and t [14]. Although an inviscid analysis of (1.1) can provide attention insight
into the qualitative description of the flow field, such as approximate shock speed
and decay rates, to asses the long term effect of diffusion on the whole flow field.

In [13], Sachdev and Seebass study the finite difference solution of (1.1) with
ε = 10−2. By choosing the initial conditions which have max(|ux|), |uxx|) not much
greater than O(1), they show that a uniform mesh size (in both x and t) of O(10−2) is
adequate for the predictor–corrector finite difference scheme of Douglas and Jones
[4]. However in application, much smaller values of ε occur. Hence the use of a
uniform mesh would be impractical. In 1978, Chong [1] used the variable mesh
finite difference method for the this class of of parabolic differential equations. His
method gave more accurate result in comparison to [13] in the boundary layer region
specially when ε is very small. But still, his method is not uniformly convergent with
respect to the singular perturbation parameter ε .

The derivation of ε-uniform convergence based on fitted mesh for ordinary dif-
ferential equations has been given in [5,11] which also contain numerical experi-
ments for such meshes. We construct a numerical method based on Euler implicit
and with upwind finite difference operator on piecewise uniform mesh of Shishkin
type, which is first order accurate in time and almost of first order accurate in space.
In particular we analyze the accuracy of proposed method on piecewise uniform
mesh by reducing it to a system of ordinary differential equations. We prove that the
numerical solution generated by the proposed method converges uniformly to the
solution of the continuous problem with respect to singular perturbation parameter.

A description of the contents of the paper is as follows. In Section 2, we describe
the discretization in temporal direction by means of Euler method and linearize the
resulting system of ordinary differential equations at each time level. The error in
temporal direction are shown to be of first order and free from parameter ε . In
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Modified Burgers’ equations 219

Section 3, in order to prove the ε-uniform convergence, the sharper bounds on the
derivatives are obtained by means of decomposition of the solution into smooth and
singular components. In Section 4, the formulation of numerical method compris-
ing a discrete operator on Shishkin mesh is given. In Section 5, it is shown that the
discrete operator satisfies the discrete maximum principle. The numerical solution
is decomposed in smooth and singular components and the error estimates for the
smooth and singular solutions have been obtained separately. The ε-uniform conver-
gence of the numerical solution (generated by the proposed method) to the solution
of the continuous problem is shown. Section 6, contains the numerical experiments
to corroborate the results predicted by the theory.

Throughout this paper the constant C (sometimes subscripted) will be the pos-
itive generic constant, independent of mesh parameters, i.e., ∆x and ∆t the singular
perturbation parameter ε and the norm ‖ · ‖ (sometimes subscripted) used is the
pointwise maximum norm.

2. Temporal semi-discretization

We discretized the given problem in the time direction by means of Euler Implicit
method with uniform step size ∆t

u0(x) = f (x) (2.1a)

u j+1 −u j

∆t
+ k(t j+1)

−n/2
u j+1(ux) j+1 = ε(uxx) j+1 (2.1b)

u j+1(0) = 0, u j+1(1) = 0. (2.1c)

Simplified form of the above equation is

u0(x) = f (x) (2.2a)

−ε(uxx) j+1 + k(t j+1)
−n/2

u j+1(ux) j+1 +
u j+1

∆t
=

u j

∆t
(2.2b)

u j+1(0) = 0, u j+1(1) = 0. (2.2c)

This is the system of nonlinear ordinary differential equations. To tackle the nonlin-
earity we use the following linearization.

2.1. Linearization

We linearize (2.1) by the following way

u
(l+1)
0 (x) = f (x) (2.3a)

−ε(u
(l+1)
j+1 )xx + k(t j+1)

−n/2
u

(l)
j+1(u

(l+1)
j+1 )x +

u
(l+1)
j+1

∆t
=

u
(l+1)
j

∆t
(2.3b)
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u
(l+1)
j+1 (0) = 0, u

(l+1)
j+1 (1) = 0 (2.3c)

where l is the iteration index. Rewriting the above equation as

u
(l+1)
0 (x) = f (x) (2.4a)

−ε∆t(u
(l+1)
j+1 )xx + ∆tk(t j+1)

−n/2
u

(l)
j+1(u

(l+1)
j+1 )x + u

(l+1)
j+1 = u

(l+1)
j (2.4b)

u
(l+1)
j+1 (0) = 0, u

(l+1)
j+1 (1) = 0. (2.4c)

For simplicity we use the following notation

u
(l+1)
j+1 = U j+1, ku

(l)
j+1 = a j+1(x) = a(x, t j+1), u

(l+1)
j = g j(x) = g(x, t j).

Subject to above notations, the equation (2.4) becomes,

U0(x) = f (x) (2.5a)

−ε∆t(U j+1)xx + ∆t(t j+1)
−n/2

a j+1(x)(U j+1)x +U j+1 = g j(x) (2.5b)

U j+1 = 0, U j+1 = 0. (2.5c)

Writing in the operator form,
U0(x) = f (x) (2.6a)

LεU j+1 = g j(x) (2.6b)

U j+1 = 0, U j+1 = 0 (2.6c)

where

Lε ≡−ε∆t
d2

dx2
+ ∆t(t j+1)

−n/2
a j+1(x)

d

dx
+ I

is a linear operator. Since t−n/2 > T−n/2, t 6 T and we assume that a j+1(x) > β ∀x∈

Ω̄, now therefore (t j+1)
−n/2a j+1(x) > T−n/2β , put T−n/2β = α for fixed value of n.

2.2. Error in temporal direction

The local truncation error in the time of the semidiscretization method (2.6) is given
by e j+1 ≡ U(t j+1)− Û j+1, where Û j+1 is the computed solution of the boundary
value problem

Û0 = f (x) (2.7a)

−ε∆t(Û j+1)xx + ∆t(t j+1)
−n/2

a j+1(x)(Û j+1)x +Û j+1 = g j(x), 0 < x < 1, t > 0
(2.7b)

Û j+1(0) = 0, Û j+1(1) = 0, t > 0. (2.7c)

Local error estimates of each time step contribute to the global error in the temporal
discretization which is defined, at t j, as E j ≡ u(x, t j)−U j(x).
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Lemma 2.1 (local error estimates). Suppose that
∣

∣

∣

∣

∂ i

∂ t i
u(x, t)

∣

∣

∣

∣

6 C, (x, t) ∈ Ω̄× [0,T ], 0 6 i 6 2.

The local error estimates in the temporal direction is given by

‖e j+1‖ 6 C1(∆t)2. (2.8)

Proof. Linearize the original problem and after simplification, we have

Ut = εUxx − t−n/2u(l)Ux (2.9)

where U = ul+1. Since the solution of (2.9) is smooth enough, it holds

U(t j) = U(t j+1)−∆t(U(t j+1))t +

∫ t j

t j+1

(t − s)(U(t j+1))tt ds

= U(t j+1)−∆t(εUxx − t−n/2ulUx)(t j+1)

+

∫ t j

t j+1

(t − s)(U(t j+1))tt ds (using (2.9))

= LεU(t j+1)+ O(∆t)2. (2.10)

Subtracting (2.7) from (2.10), we get

Lεe j+1 6 C(∆t)2.

Since Lε satisfies the maximum principle, therefore
∥

∥e j+1

∥

∥6C(∆t)2. �

Theorem 2.1 (global error estimates). With the help of Lemma 2.1, we have

‖E j‖ 6 C∆t ∀ j 6 T/∆t. (2.11)

Proof. Using the local error estimates up to the nth time step, which is given by
Lemma 2.1, we get the following global error estimate at ( j + 1)th time step

‖E j+1‖ = ‖
j

∑
l=1

el‖, j 6 T/∆t (2.12)

6 ‖e1‖+‖e2‖+ · · ·+‖e j‖

6 C1( j ∆t)∆t (using the equation (2.8))

6 C1T ∆t (since j ∆t 6 T )

= C∆t (with C = C1T )

where C is a positive constant independent of ε and ∆t. �
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222 M. K. Kadalbajoo and A. Awasthi

3. Asymptotic behavior of semi-discretized problem

Lemma 3.1 (maximum principle). Let ψ j+1(x) ∈ C2Ω̄ be the mesh function
such that Lε ψ j+1 > 0 and ψ j+1(0) > 0, then ψ j+1 > 0 ∀x.

Proof. Proof is given by contradiction. Let there exist a point x∗ such that
ψ j+1(x

∗) 6 0. Clearly x∗ /∈ Ω. (ψ j+1)x = 0 and (ψ j+1)xx > 0,

Lε(ψ j+1)(x
∗) = −∆t(ψ j+1)xx(x

∗)+ ∆t(t j+1)
−n/2

a j+1(x)(ψ j+1)x(x
∗)+ ψ j+1(x

∗)

6 0 (since (t j+1)
−n/2a j+1(x) > 0)

which is a contradiction. Therefor ψ j+1(x) > 0 ∀x. �

In order to define the local error bounds for the finite difference scheme in next
section, we need the error bounds to the exact solutions of the previous semidiscrete
problems.

Theorem 3.1. The exact solution U j+1(x) of (2.6) satisfies

∣

∣

∣

∣

diU j+1(x)

dx i

∣

∣

∣

∣

6 C(1+ ε−i exp(−α(1− x)/ε)), i = 0,1, . . . ,4. (3.1)

Proof. The maximum principle for Lε together with the smoothness require-
ments imposed on g j(x) and on U j+1 gives |U j+1| 6 C. The proof for the bounds of
its derivatives can be derived similarly as in [11]. �

3.1. Decomposition of solution

In order to get the sharper bound on the solution of the equation we decompose the
solution in the smooth and singular component.

U j+1(x) = Vj+1(x)+Wj+1(x)

where Vj+1 is smooth component, can be written

Vj+1 = V0 + εV1 + ε2V2

and V0, V1, and V2, are defined respectively to be the solutions of the problems

∆t(t j+1)
−n/2a j+1(x)V

(1)
0 +V0 = g j(x), V0(0) = U j+1(0) (3.2)

∆t(t j+1)
−n/2a j+1(x)V

(1)
1 +V1 = −V

(2)
0 , V1(0) = 0 (3.3)
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−ε∆tV
(2)
2 + ∆t(t j+1)

−n/2a j+1(x)V
(1)

2 +V2 = −V
(2)
1 (3.4)

V2(0) = 0, V2(1) = 0.

thus the smooth component Vj+1 is the solution of

LεVj+1 = g j(x), Vj+1(0) = V0(0)+ εV1(0), Vj+1(1) = U j+1(1) (3.5)

where superscripts denote the order of the derivatives, i.e., V (i) = diV/dx i, i = 1,2,3,
and consequently the singular component Wj+1 is the solution of the homogeneous
problem

LεWj+1 = 0, Wj+1(0) = 0, Wj+1(1) = U j+1(1)−Vj+1(1). (3.6)

The bounds of Vj+1, Wj+1 and their derivatives are given as follows.

Theorem 3.2. The smooth component Vj+1 and its derivatives satisfy the fol-
lowing estimate

|V
(i)
j+1(x)| 6 C

(

1+ ε−(i−2)e−α(1−x)/ε
)

, i = 0,1,2,3

where C is a positive constant.

Proof. Since V0 is the solution of the reduced problem which is the first order

linear differential equation (3.2), with bounded coefficients, i.e., (t j+1)
−n/2a j+1(x)

and g j(x), therefore V0 is the bounded and the bound is independent of the ε .

Using the bounds of V0,(t j+1)
−n/2a j+1(x) and g j(x) in equation (3.2) we get

V
(1)

0 is bounded and independent of ε .

Differentiating the equation (3.2) w.r.t. x we get the second order differential

equation, by using the bounds of V0, V
(1)

0 , (t j+1)
−n/2a j+1(x) and g j(x) we get the

estimate for V
(2)

0 .

Similarly twice differentiating of the equation (3.2) gives the third order differ-

ential equation, by using the bounds of V0, V
(1)
0 and V

(2)
0 we get the estimate for

V
(3)

0 .

Thus we have

|V
(i)

0 | 6 C1, i = 0,1,2,3 (3.7)

where C1 is a positive constant independent of the ε .

In the same fashion we get the bounds on V1 and its derivatives V
(i)

1 for i = 1,2,3.
Thus we have

|V
(i)

1 | 6 C2, i = 0,1,2,3 (3.8)

where C2 is the positive constant independent of the ε .
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224 M. K. Kadalbajoo and A. Awasthi

Since V2 is the solution of the equation (3.4), which is similar to the equa-
tion (2.6) therefore the estimates for the bounds on V2 and its derivatives are given
by Theorem 3.1,

|V
(i)

2 | 6 C3ε−ie−α(1−x)/ε , i = 0,1,2,3 (3.9)

where C3 is positive constant independent of ε .

|V
(i)
j+1| = V

(i)
0 +V

(i)
1 +V

(i)
2 , i = 0,1,2,3 (3.10)

with the help of the equations (3.7), (3.8) and (3.9) the above equation can be written
as

|V
(i)
j+1| 6 C(1+ ε−(i−2)e−α(1−x)/ε), i = 0,1,2,3. (3.11)

This completes the proof of the theorem. �

Theorem 3.3. The singular component Wj+1(x) and its derivatives satisfy the
following error estimate

|Wj+1(x)| 6 Ce−α(1−x)/ε (3.12)

|W
(i)
j+1(x)| 6 Cε−(i), i = 1,2,3. (3.13)

Proof. We consider the barrier functions defined as

ψ±(x) = Ce−α(1−x)/ε ±Wj+1(x) (3.14)

now we have

ψ±(0) = Ce−α/ε ±Wj+1(0) (3.15)

= Ce−α/ε (since Wj+1(0) = 0) (3.16)

> 0 (3.17)

ψ±(1) = C±Wj+1(1). (3.18)

We can choose the value C such that

ψ±(1) = C±Wj+1(1) > 0 (3.19)

and

Lε ψ±(x) = −ε∆tψ±
xx(x)+ ∆t(t j+1)

−n/2a j+1(x)ψ
±
x (x)+ ψ±(x) (3.20)

= −
∆tα2

ε
e−α(1−x)/ε + ∆t(t j+1)

−n/2a j+1(x)
α

ε
e−α(1−x)/ε + e−α(1−x)/ε

=
α∆t

ε

[

−α +(t j+1)
−n/2a j+1(x)

]

e−α(1−x)/ε + e−α(1−x)/ε

Brought to you by | Universitaet Giessen
Authenticated

Download Date | 5/20/15 7:27 PM



Modified Burgers’ equations 225

since α is the minimum of (t j+1)
−n/2a j+1(x). Therefore

−α +(t j+1)
−n/2a j+1(x) > 0.

Thus we have

Lεψ±(x) > 0.

Since Lε satisfies the maximum principle and we have shown that Lε ψ±(x) > 0,
therefore

ψ±(x) = Ce−α(1−x)/ε ±Wj+1(x) > 0 ∀x ∈ Ω̄

or

|Wj+1(x)| 6 Ce−α(1−x)/ε ∀x ∈ Ω̄.

For i = 1,2,3 the detailed proof can be seen in [9]. �

4. Spatial discretization

Shishkin mesh. Shishkin meshes are piecewise-uniform meshes which condense
approximately in the boundary layer regions as ε → 0. This is accomplished by the
use of transition parameter τ , which depends naturally on ε , and crucially on N.

Thus for a given N and ε , the interval [0,1] is divided into parts, [0,1 − τ ],
[1− τ ,1] where the transition point τ is given by

τ ≡ min
{1

2
, mε logN

}

where m is a constant which we choose such that m > 1/α . It is clear that when
τ = 1/2 the mesh is uniform otherwise the mesh condenses near the right boundary.
The value of the constant C depends on which scheme is used.

Define the fitted piecewise-uniform mesh (Shishkin mesh) that discretizes the
interval [0,1] with N piecewise uniform subintervals as

hi = xi − xi−1 =

{

H = 2(1− τ)/N, 0 6 i 6 N/2

h = 2τ/N, N/2 < i 6 N

and the piecewise-uniform mesh Ω̄N with the spatial nodal values xi, i = 0,1, . . . ,N,
is given as

Ω̄N =

{

xi : xi =

{

2(1− τ) i/N, 0 6 i 6 N/2

(1− τ)+ 2τ(i−N/2)/N, N/2 < i 6 N

}

.
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226 M. K. Kadalbajoo and A. Awasthi

Difference scheme. The approximation of the semi-discrete equation (2.5) in the
spatial direction by upwind scheme on non-uniform mesh of Shishkin type, i.e., Ω̄N

is given as,

UN
0 = f (x) (4.1a)

−ε∆tδ 2(UN
j+1)(xi) + ∆t(t j+1)

−n/2
a j+1(xi)D

−(UN
j+1)(xi)

+ UN
j+1(xi) = g j(xi) ∀xi ∈ ΩN (4.1b)

UN
j+1(0) = 0, UN

j+1(1) = 0 (4.1c)

where UN
j+1(xi) is the the approximate solution of the U j+1(x) at the point xi and at

the ( j + 1)th time level and

D−UN
j+1(xi) =

UN
j+1(xi)−UN

j+1(xi−1)

hi

, D+UN
j+1(xi) =

UN
j+1(xi+1)−UN

j+1(xi)

hi+1

δ 2 =
D+−D−

h̄i

, h̄i =
hi+1 + hi

2
.

Writing (4.1) in the operator form,

UN
0 = f (x) (4.2a)

LN
ε UN

j+1 = g j(xi) (4.2b)

UN
j+1(0) = 0, UN

j+1(1) = 0 (4.2c)

where LN
ε = −ε∆tδ 2 + ∆t(t j+1)

−n/2
a j+1(xi)D

− + I.

4.1. Decomposition of numerical solution

In order to get the sharper bound on the numerical solution of the fully discrete
problem, we decompose the solution in the smooth and singular component.

UN
j+1(xi) = V N

j+1(xi)+W N
j+1(xi)

where V N
j+1 is smooth component and W N

j+1 is the singular component of the solution

UN
j+1.

Smooth component V N
j+1 satisfies the following non-homogeneous equation

LN
ε V N

j+1(xi) = g j(xi)

V N
j+1(0) = Vj+1(0) (4.3)

V N
j+1(1) = Vj+1(1)
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and singular component W N
j+1 satisfies the following homogeneous problem

LN
ε W N

j+1(xi) = 0

W N
j+1(0) = Wj+1(0) (4.4)

W N
j+1(1) = Wj+1(1).

The error can be written as

UN
j+1 −U j+1 = (V N

j+1 −Vj+1)+ (W N
j+1 −Wj+1).

The error in the smooth and singular component is estimated separately.

5. Stability and convergence analysis

Lemma 5.1 (discrete maximum principle). Let ψN
j+1(xi) is any discrete mesh

function on Ω̄N such that ψN
j+1(0) > 0, ψN

j+1(N) > 0 and LN
ε ψN

j+1(xi) > 0 ∀xi ∈ ΩN ,

then ψN
j+1(xi) > 0 ∀xi ∈ Ω̄N .

Proof. Let there exist a point xp such that ψ j+1(xp) 6 0 and ψ j+1(xp) =

minΩ̄N ψ j+1(xi). It is clear that p /∈ {1,N}. Since ψ j+1(xp+1) − ψ(xp) > 0 and

ψ j+1(xp)−ψ(xp−1) 6 0, we have

D−ψN
j+1(xp) =

ψN
j+1(xp)−ψN

j+1(xp−1)

hp

6 0

D+ψN
j+1(xp) =

ψN
j+1(xp+1)−ψN

j+1(xp)

hp

> 0

δ 2ψN
j+1(xp) =

D+ψN
j+1(xp)−D−ψN

j+1(xp)

h̄p

=
1

h̄p

(

ψN
j+1(xp+1)−ψN

j+1(xp)

hp+1

−
ψN

j+1(xp)−ψN
j+1(xp−1)

hp

)

> 0.

Now

LN
ε ψN

j+1(xp) = −ε∆tδ 2ψN
j+1(xp)+ ∆t(t j+1)

−n/2
a j+1(xi)D

−ψN
j+1(xp)+ ψN

j+1(xp)

6 0 (using above inequalities)

which is as contradiction. So ψN
j+1(xp) > 0, since p is an arbitrarily chosen point,

therefore we have ψN
j+1(xi) > 0 ∀xi ∈ Ω̄N . �
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Lemma 5.2. Let Z(xi) is the mesh function such that Z(x0) = Z(xN) = 0. Then

|Z(xi)| 6
1

(∆tα)
max

06 j6N
|LN

ε Z(x j)|. (5.1)

Proof. Let

M 6
1

(∆tα)
max

06i6N
|LN

ε Z(xi)|.

Construct the barrier functions ψ±
j+1(xi) as

ψ±
j+1(xi) = Mxi ±Z(xi)

ψ±
j+1(x0) = 0, ψ±

j+1(xN) > 0

LN
ε ψ±

j+1(xi) =
(

∆t(t
−n/2
j+1 )a j+1(xi)+ xi

)

M±LN
ε Z(xi)

> (∆tα)M ±LN
ε Z(xi) > 0.

The Discrete maximum principle implies that ψ±
j+1(xi) > 0 for 0 6 i 6 N. �

Theorem 5.1 (error in smooth component). The error in the smooth compon-

ent satisfies the following estimate

∣

∣V N
j+1(xi)−Vj+1(xi)

∣

∣6 CN−1, xi ∈ Ω̄N (5.2)

where C is a constant independent of ε and mesh parameters.

Proof. The truncation error in the smooth solution is given by

∣

∣LN
ε (V N

j+1 −Vj+1)(xi)
∣

∣ =
∣

∣g j(xi)−LN
ε Vj+1

∣

∣

=
∣

∣LεVj+1(xi)−LN
ε Vj+1(xi)

∣

∣

=
∣

∣(Lε −LN
ε )Vj+1(xi)

∣

∣

=

∣

∣

∣

∣

−ε∆t

(

d2

dx2
−δ 2

)

Vj+1(xi)

+(∆t)(t j+1)
−n/2a j+1(xi)

(

d

dx
−D−

)

Vj+1(xi)

∣

∣

∣

∣

. (5.3)

Let xi ∈ ΩN . Then for any ψ j+1 ∈C2(Ω̄),

∣

∣

∣

∣

(

D−−
d

dx

)

ψ j+1(xi)

∣

∣

∣

∣

6
(xi+1 − xi)

2

∥

∥ψ
(2)
j+1

∥

∥
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and for any ψ j+1(x) ∈ Ω̄,

∣

∣

∣

∣

(

δ 2 −
d2

dx2

)

ψ j+1(xi)

∣

∣

∣

∣

6
(xi+1 − xi−1)

3

∥

∥ψ
(3)
j+1

∥

∥.

For the proof of these results one can seen the Lemma 4.1 (see [11]). Using these
results in (5.3) followed by a simplification yields

∣

∣LN
ε (Vj+1 −Vj+1)(xi)

∣

∣ 6 ∆tC (xi+1 − xi−1)
(

ε
∥

∥V
(3)
j+1

∥

∥+
∥

∥V
(3)
j+1

∥

∥

)

6 ∆tC(xi+1 − xi−1)(ε + e−α(1−xi)/ε)+ (1+ e−α(1−xi)/ε))

(by using Theorem 3.1)

6 ∆tC(xi+1 − xi−1) (since e−α(1−xi)/ε 6 1)

= ∆tCN−1 (since xi+1 − xi−1 6 2N−1).

An application of Lemma 5.2 to the mesh function (V N
j+1 −Vj+1)(xi) yields the

estimate
∣

∣(V N
j+1 −Vj+1)(xi)

∣

∣6 CN−1, xi ∈ Ω̄N . (5.4)

This completes the proof of the theorem. �

Theorem 5.2 (error in singular component). The error in singular component
satisfies the following estimate

∣

∣W N
j+1(xi)−Wj+1(xi)

∣

∣6 CN−1(lnN)2, xi ∈ Ω̄N (5.5)

where C is a constant independent of ε and mesh parameters.

Proof. To estimate the singular component of the local truncation error LN
ε

×(W N
j+1 −Wj+1), the argument depends on whether τ = 1/2 or τ = (ε lnN)/α .

1. Consider the case when τ = 1/2, i.e., ε lnN > 1/2. The classical argument
is used above in the Theorem 5.1, leads to the estimate

∣

∣LN
ε (W N

j+1 −Wj+1)(xi)
∣

∣6 ∆tC(xi+1 − xi−1)
(

ε
∥

∥W
(3)
j+1

∥

∥+
∥

∥W
(2)
j+1

∥

∥

)

.

Since xi+1 − xi−1 = 2N−1 and estimates for W
(3)
j+1 and W

(2)
j+1 from the Theorem 3.3

lead to
∣

∣LN
ε (W N

j+1 −Wj+1)
∣

∣6 ∆tCε−2N−1

but, in this case ε−1 6 2lnN/α and so

∣

∣LN
ε (W N

j+1 −Wj+1)(xi)
∣

∣6 ∆tCN−1(ln N)2
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an application of Lemma 5.2, leads to estimates

∣

∣(W N
j+1 −Wj+1)(xi)

∣

∣6 CN−1(lnN)2. (5.6)

2. In this case mesh is non-uniform or piecewise uniform with the mesh spacing
2(1− τ)/N in the subinterval [0,1− τ ] and τ/N in the subinterval [1− τ ,1].

Consider the interval [0,1− τ ] with no boundary layer:

∣

∣(W N
j+1 −Wj+1)(xi)| 6 |W N

j+1(xi)
∣

∣+
∣

∣Wj+1(xi)
∣

∣ .

From the Theorem 3.2, we have
∣

∣Wj+1(xi)
∣

∣ 6 Ce−α(1−xi)/ε

6 Ce−α(1−1+τ)/ε (since e−α(1−x)/ε is an increasing function)

6 Ce−α(τ)/ε

= CN−1 (since τ = ε lnN/α).

To obtain the similar bound on W N
j+1 we have to construct an auxiliary function

W̃ N
j+1, which is the solution of the difference equation (4.4) except the coefficient

t
−n/2

j+1 a j+1(x) is replaced by α . Then by the Lemma 7.5 of [11], we have

W N
j+1(xi) 6 W̃ N

j+1(xi), 0 6 i 6 N.

With the help of Lemma 7.3 in [11], we have

|W N
j+1(xi)| 6 CN−1, 0 6 i 6 N/2.

The above estimates for W N
j+1(xi) and Wj+1(xi) for 0 6 i 6 N/2 show that in the

interval [0,1− τ ]
∣

∣W N
j+1(xi)−Wj+1(xi)

∣

∣6 CN−1.

Consider the interval [1− τ ,1] and applying the classical argument as before to the
following error estimate of the local truncation error for N/2+ 1 6 i 6 N −1

∣

∣LN
ε (W N

j+1 −Wj+1)(xi)
∣

∣ 6 ∆tCε−2 |xi+1 − xi−1|

= 2∆tCε−2τN−1

6 2TCε−2τN−1 (since ∆t 6 T )

= C1ε−2τN−1 (with C1 = TC)

and
∣

∣W N
j+1(xN)−Wj+1(xN)

∣

∣= 0

and
∣

∣W N
j+1(xN/2)−Wj+1(xN/2)

∣

∣6
∣

∣W N
j+1(xN/2)

∣

∣+
∣

∣Wj+1(xN/2)
∣

∣6 CN−1
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from the results obtained in the subinterval [0,1− τ ].
Introducing the barrier function

Φ j+1(xi) = (xi − (1− τ))C1ε−2τN−1 +C2N−1

again construct the barrier functions

ψ±
j+1(xi) = Φ j+1(xi)±

(

W N
j+1 −Wj+1

)

(xi)

satisfy the inequalities

ψ±
j+1(xN/2) > 0, ψ±

j+1(xN/2) = 0

and
LN

ε ψ±
j+1(xi) > 0, N/2+ 1 6 i 6 N −1.

The discrete maximum principle on the interval [1− τ ,1] then gives

ψ±
j+1(xi) > 0, N/2 6 i 6 N

and it follows

∣

∣(W N
j+1 −Wj+1)(xi)

∣

∣6 Φ j+1(xi) 6 C1ε−2τ2N−1 +C2N−1.

Since τ = ε lnN/α , therefore

∣

∣(W N
j+1 −Wj+1)(xi)

∣

∣ 6 C1N−1(lnN)2 +C2N−1

6 CN−1(lnN)2 (with C = max{C1,C2}). (5.7)

Combining the separate estimates in two subintervals, we have

∣

∣(W N
j+1 −Wj+1)(xi)

∣

∣6CN−1(lnN)2, xi ∈ Ω̄N . �

Theorem 5.3 (error in semi-discrete solution). The error in the semi-discrete

solution U j+1(x) satisfies the following estimate

∣

∣(UN
j+1 −U j+1)(xi)

∣

∣6 CN−1(ln N)2, xi ∈ Ω̄N (5.8)

where C is a positive constant independent of ε and mesh parameters.

Proof. Since we have

∣

∣(UN
j+1 −U j+1)(xi)

∣

∣6
∣

∣(W N
j+1 −Wj+1)(xi)

∣

∣+
∣

∣(V N
j+1 −Vj+1)(xi)

∣

∣ , xi ∈ Ω̄N .
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Combining the inequalities (5.4) and (5.7) we have

∣

∣(UN
j+1 −U j+1)(xi)

∣

∣6 CN−1(lnN)2, xi ∈ Ω̄N . �

Theorem 5.4 (error in fully-discrete solution). Let u(xi, t j+1) be the solution

of the problem (1.1) at the point (xi, t j+1), U j+1(xi) be the solution of the differential

equation (2.6) and UN
j+1(xi) be the solution of totally discrete problem (4.2). Then

error satisfies the following estimate

max
06ε61

∥

∥UN
j+1(xi)−u(xi, t j+1)

∥

∥6 C(∆t + N−1(lnN)2) (5.9)

where C is a positive constant independent of ε and mesh parameters.

Proof. The proof is directly follows from Theorem 2.1 and Theorem 5.3,

‖UN
j+1(xi)−u(xi, t j+1)‖ 6 ‖UN

j+1(xi)−U j+1(xi)‖+‖U j+1(xi)−u(xi, t j+1)‖

6 C1∆t +C2N−1(logN)2

(by using Theorem 5.3 and Theorem 2.1)

6 C(∆t + N−1(logN)2) (with C = max{C1,C2}). �

5.1. Numerical Results

In this section we present the numerical results which validate the theoretical result.
Nevertheless it is seen that the numerical behavior of the proposed method using
piecewise uniform of Shishkin type mesh is ε-uniform. The problem is solved us-
ing proposed method comprising Euler implicit and upwind difference operator on
piecewise uniform mesh of Shishkin type with N points. The piecewise uniform
Shishkin mesh used in these computations are of the form described in Section 4
and so condensed on the right side boundary x = 1.

We will show computationally that the numerical solutions given by proposed
method converge uniformly with respect to ε .

Modified Burgers’ equation. In the case of modified Burgers’ equation

ut + t−n/2uux = εuxx.

With initial condition

u(x,0) =
x

1+ exp(x2/4ε −1)

and boundary conditions
u(0, t) = 0 = u(1, t)
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Table 1.

Maximum pointwise errors EN
ε for modified Burgers’ equation at n = 1 for different values

of ε and N.

ε \ N 16 32 64 128 256

2−8 4.003148E-2 2.550326E-2 1.662987E-2 1.027287E-2 1.009326E-2

2−10 4.626916E-2 2.968019E-2 1.919389E-2 1.179892E-2 6.967773E-3

2−12 4.764934E-2 3.059739E-2 1.969282E-2 1.207915E-2 7.130987E-3

2−14 4.799736E-2 3.081504E-2 1.981298E-2 1.214585E-2 7.168962E-3

2−16 4.807754E-2 3.086872E-2 1.984286E-2 1.216244E-2 7.178402E-3

2−18 4.809760E-2 3.088209E-2 1.985031E-2 1.216659E-2 7.180761E-3

2−20 4.810261E-2 3.089028E-2 1.985608E-2 1.217152E-2 7.185273E-3

2−22 4.810386E-2 3.089112E-2 1.985655E-2 1.217178E-2 7.185420E-3

2−24 4.810418E-2 3.089133E-2 1.985666E-2 1.217184E-2 7.185457E-3

2−26 4.810426E-2 3.089138E-2 1.985669E-2 1.217186E-2 7.185466E-3

EN 4.810426E-2 3.089138E-2 1.985669E-2 1.217186E-2 7.185466E-3
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Figure 1. Numerical solutions for modified Burgers’ equation n = 1, i.e., cylindrical wave at N = 128,
∆t = 0.1 (a) for ε = 2−14 and (b) for ε = 2−20.

no exact solution is available for n = 1,2, therefore, we estimate the maximum
pointwise errors EN

ε by

EN
ε = max

ΩN
|UN(xi, t j)−U2N(xi, t j)|

where U2N(xi, t j) is the computed solution corresponding with 2N points, and

EN = max
ε

EN
ε .

The maximum pointwise computed errors at T = 2 and n = 1 for this example are
given in Table 1 by using proposed method on fitted piecewise uniform mesh for
different values of ε and N.
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Table 2.

Maximum pointwise errors EN
ε for modified Burgers’ equation at n = 2 for different values

of ε and N.

ε \ N 16 32 64 128 256

2−8 2.685989E-2 1.702507E-2 1.049890E-2 6.288740E-3 2.687786E-3

2−10 3.043733E-2 1.920504E-2 1.190741E-2 7.076528E-3 3.036208E-3

2−12 3.162580E-2 1.990117E-2 1.228574E-2 7.282884E-3 4.197863E-3

2−14 3.192748E-2 2.012732E-2 1.238445E-2 7.346255E-3 4.229487E-3

2−16 3.200277E-2 2.017911E-2 1.240944E-2 7.362305E-3 4.237483E-3

2−18 3.202158E-2 2.019209E-2 1.241572E-2 7.366331E-3 4.239489E-3

2−20 3.202645E-2 2.019534E-2 1.241729E-2 7.367338E-3 4.239990E-3

2−22 3.202762E-2 2.019615E-2 1.241768E-2 7.367590E-3 4.240116E-3

2−24 3.202791E-2 2.019636E-2 1.241778E-2 7.367653E-3 4.240147E-3

2−26 3.202798E-2 2.019641E-2 1.241780E-2 7.367669E-3 4.240155E-3

EN 3.202798E-2 2.019641E-2 1.241780E-2 7.367669E-3 4.240155E-3
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Figure 2. Numerical solutions for modified Burgers’ equation n = 2, i.e., spherical wave at N = 128,
∆t = 0.1 (a) for ε = 2−14 and (b) for ε = 2−20.

Table 2 gives the maximum pointwise computed errors at T = 2 and n = 2 for
this example by using proposed method on Shishkin mesh for different values of ε
and N.

Conclusions

In this paper we propose a numerical scheme for solving modified Burgers’ equa-
tions (cylindrical and spherical waves) at high Reynolds number. The solutions of
this equation changes rapidly at high Reynolds number due to the occurrence of the
boundary on the right side of the domain. To capture the boundary layer we used a
non-uniform mesh of Shishkin type. The proposed method comprises Euler discret-
ization in time and upwind discretization on Shishkin mesh in space. The method
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has been shown to be almost-first order accurate in the spatial direction and first
order in the temporal direction. An extensive amount of analysis has been carried
out to obtain the parameter uniform error estimates.

In support of the predicted theory some test examples are solved using the pro-
posed method. To illustrate the performance of the proposed method, the maximum
errors is given in Tables 1 and 2 for cylindrical and spherical waves, respectively.
Since the exact solution for modified Burgers’ equation is not known, therefore max-
imum pointwise errors are computed by half mesh principle. The errors specified in
Tables 1 and 2 show that the proposed method converges uniformly with respect
to perturbation parameter and convergence behavior matched with the theoretical
result. Figures 1 and 2 show the physical behavior of the computed solution.
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