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Abstract: In this paper, we consider single-vendor–multi-buyer Consignment 
Stock Policy (CSP) inventory model which is a distinctive flavour of Vendor 
Managed Inventory (VMI). Four different models have been formulated using 
Genetic Algorithm (GA) to minimise joint total expected cost of vendor and 
buyer and simultaneously optimise other decision variables such as quantity 
transported, number of transport operations, delay deliveries and buyer 
maximum and minimum stocks under stochastic environment. Numerical 
examples are presented to illustrate the proposed models, and the effects of 
changes on the cost and system parameters on the inventory are studied by 
using sensitivity analysis. To solve the iterative procedure involved, the GA is 
coded in VC++. 
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1 Introduction 

In today’s globalise economy, business is looking for ways to optimise the Supply Chain 
(SC) network by means of integration and cooperation of network echelons (Drucker, 
1998; Douglas and Cooper, 2000). Inventory is one of the most widely discussed areas 
for improving SC efficiency. Wal-Mart and Procter & Gamble popularised it in the late 
1980s. Since the holding of inventories in an SC can cost anywhere between 20% and 
40% of product value, the effective management of inventory is critical in SC operations 
(Ballou, 1992). In this environment, Supply Chain Management (SCM) has become an 
effective business tool to reduce SC network inventory cost. Houlihan (1985) is credited 
to be the first person for coining the term SC with insight concepts with a strong case for 
viewing the SC as a strategy for global business decisions. The SCM is generally viewed 
as a strategy for integrated network business that work together to source, produce and 
ultimately distribute products and services to the customer with right quantities, right 
place and right time. Each echelon of SC performs independent business with integrated 
information sharing among all the echelons and it holds some inventories which may be 
unavoidable due to existing uncertainty in the business. 

Organisations have followed different strategies and models for optimising inventory 
levels. Some significant strategies or practices for streamlining inventory along the SC 
include Consignment Stock models. This paper describes the benefits of Consignment 
Stock Policy (CSP) inventory models of a single-vendor–multi-buyer model which is 
viewed as a classification of divergent SC with end-to-multi-end case which is a 
distinctive flavour of Vendor Managed Inventory (VMI). In CSP vendor stocks his 
finished products at buyer warehouse, hence it leads to suppression of vendor inventory. 
The vendor will guarantee for the quantity stored in the buyer warehouse that will be kept 
between minimum(s) and maximum(s) stock levels with supporting normally distributed 
stochastic customer demand. In CSP vendor still owns the stock held at buyer warehouse; 
the change of ownership will occur only when the payment is made to vendor. 

With reference to Figure 1, we can predict VMI is transforming into CSP approach 
and then elimination of intermediary channels transforms this into Direct Selling. The 
basic fundamentals of CSP is explained in Braglia and Zavanella (2003), Valentini and 
Zavanella (2003) and Srinivas and Rao (2007). The CSP is conveniently adopted in small 
size and less cost items. Typically, it is best suitable for Fast Moving Consumer Goods 
(FMCG), retail items of super and hypermarkets. 

Figure 1 Conceptual evaluation of consignment stock policy 
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This paper is structured in six sections: Section 1 is introduction; Section 2 describes the 
literature review and the work done in the area of Joint Total Expected Cost (JTEC). 
Section 3 presents the single-vendor–multi-buyer CSP inventory models and in Section 4 
Genetic Algorithm (GA) technique used for solving all the four CSP models is described. 
Section 5 gives the illustrative examples and results and Section 6 conclusions and future 
studies. 

2 Literature review 

Croom et al. (2000) reviewed the SCM literature to identify the nature of research and 
provided taxonomy as an aid to classify the research in this field as a means of providing 
a framework for identification of the key contents. The general buying and payment 
mode includes various strategies (Frazella, 2001), among them Electronic Fund Transfer 
(EFT) and CSP inventory are important. It facilitates consignment inventory programmes 
with electronic payment on consumption initiated at the Point of Sale (POS). 

Corbett (2001) is credited to be the first person to give about the fundamentals  
of CSP, whereas Valentini and Zavanella (2003) presented an industrial case and 
performance analysis of CSP for a single-vendor–single-buyer. Braglia and Zavanella 
(2003) presented an analytical modelling approach which concerns the deterministic 
single-vendor–single-buyer, allowing the analyst to identify the optimal inventory level 
and shipment policy for minimising joint total costs. Piplani and Viswanathan (2003) 
discussed supplier-owned inventory which posses similar concepts of CSP. They 
concluded it is always beneficial for the SC as a whole. Zanoni and Grubbström (2004) 
extended Braglia and Zavanella (2003) with explicit analytical expression of ordering 
quantity, number of shipments and delay deliveries. Pan and Yang (2002) credited for 
minimising joint total economic cost of vendor–buyer inventory model with controllable 
lead-time (LT) which is a decision variables. Ryu and Lee (2003) analysed the effect of 
investment strategies to control lead-times. Liao and Shyu (1991) decomposed lead-time 
into ‘n’ components, each having a different crashing cost for reduced lead-time. Ben-
Daya and Raouf (1994) considered both lead-time and order quantity as decision 
variables. Their model uses different representatives of the relationship between lead-
time crashing cost and lead-time. Ouyang et al. (2004) discussed integrated vendor–buyer 
model with stochastic demand to integrate production inventory model. The shortages are 
permitted and it is assumed the lead-time is controllable with added cost so as to optimise 
ordering quantity. The lead-time crashing components can be more than three and depend 
on the interest of both vendor and buyer involved to reduce the lead-time and its crashing 
cost component as much as economically possible, by a technique such as work study 
(Goyal, 2003). Persona et al. (2005) proposed an analytical model able to take into 
account the effects of obsolescence in an SC-based consignment stock model. They used 
deterministic demand and showed the results with presence of obsolescence for short-life 
components. 

Recently, Srinivas and Rao (2007) extended and analysed the models of Braglia and 
Zavanella (2003). Their results reveal that the cost reduces with information sharing 
compare to with delay delivery model, and where as in lead-time crashing cost model,  
it all depends on the type of lead-time crashing values are chosen which involves 
complexity. The CSP of four models for solving single-vendor–multi-buyer is difficult  
to solve using enumeration technique and hence GA is used which gives results for  
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all models within 10 seconds. The running time of enumeration technique grows 
exponentially while increasing the number of variables (Goyal, 1974). The GA technique 
for more than three buyers with information sharing with five process variables results  
in less than 10 seconds, whereas enumeration technique could not give results even after 
24 hours. 

The literature review papers of Aytug et al. (2003) and Chaudhury and Luo (2005) 
reveal that no approach attempt has been made to develop a heuristic method such as GA 
to determine inventory levels in SC echelons. Daniel and Rajendran (2005) studied  
GA, enumeration and random search procedure methods to single product serial SC 
operating with a base stock periodic review system and to optimise the base stock 
inventory levels in SC so as to minimise total SC cost, comprising holding and shortage 
costs at all installations in SC. They found the solution generated by proposed GA is not 
significantly different from the optimal solution yielded by complete enumeration, but it 
is good for deterministic replenishments. They did not check for multi-buyer stochastic 
demand. Li et al. (2001) studied effect of information-sharing strategies on the 
performance of SC. Their results indicate that information sharing improved SC 
performance of overall inventory cost and fillrate. 

2.1 The necessary notations used in this paper are summarised as follows: 

s Batch set-up cost ($) (vendor) L Length of the lead-time for the buyer 
Ati Order emission cost ($) (buyer) CL Lead-time crashing cost ($) per cycle 
hv Vendor stock holding cost 

($)/unit/unit time 
k1 Delay deliveries (≤n) 

hb Buyer stock holding cost 
($)/unit/unit time 

φ Normal probability density function 

P Vendor production rate Φ(z) Cumulative distribution function 

di Demand/unit time seen by the buyer n Number of transport operations/production 
batch 

σ Standard deviation of demand mi Delayed deliveries shifted to another buyer 
(≤k) 

π Unit backorder cost ($) for the 
buyer 

jij Delivery shifted from ith buyer to jth buyer 

3 Vendor–buyer inventory models 

3.1 Consignment stock model 

In this model, vendor uses buyer warehouse for keeping the goods produced by the 
vendor without changing the ownership. This creates a condition of shared benefit; 
neither the vendor nor the buyer will benefit until the product is sold to an end-user. This 
shared risk–benefit condition will often be enough to convince the buyer to stock the 
products. The key benefit to the buyer should be obvious, so that he does not have to tie 
up his capital hb, finance. This does not mean that there is no inventory-carrying costs for the 
buyer; he does still incur costs hb, stock related to storing and managing the inventory, i.e. 
both parties incur holding cost, depending on different rates and the length of time for 
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which materials have been stocked in SC. Finally, the buyer sees a lower inventory cost 
per unit, i.e. only hb, stock instead of the entire hb, stock + hb, finance. The vendor will have  
set-up cost and holding cost, whereas the buyer will have order emission cost and holding 
cost. 

The average total cost for this model is calculated as follows: 
CSP

CT =  vendor set-up cost + average vendor holding cost + buyer ordering cost + 
average buyer holding cost + safety stock cost + shortage cost. (1) 
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Equation (2) is modified as 
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Equation (3) is further modified as 
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where ( ), ( )z zφ Φ  are normal probability and cumulative probability density functions. 
The minimum cost for optimum values of (c, n and z) will be 
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3.2 CSP-k1 model (number of delayed deliveries, k1< n) 

The CSP is not suitable for limited/small periods because maximum level of buyer’s 
inventory may reach even for limited periods. Hence the CSP model with delayed 
delivery period (CSP-k1) is preferred for limited periods. In CSP-k1 model, the last 
delivery is delayed until it reaches a state where there is no longer an increase in the 
maximum level already reached. That means, we have to delay the delivery always 
whenever maximum level inventory stock is reached. 

The average joint total cost in this model is as follows: 
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The minimum cost for optimum values of (c, n, k1 and z) will be 
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The maximum inventory level for buyer will be as follows: 
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Equation (9) ensures that not less than a single delay has been delayed. When k1=0, 
equation (8) becomes the maximum level of buyer’s stock in basic CS model equation 
(6), and when k1 = (n – 1), equation (9) matches with maximum level of buyer’s stock of 
Hill (1999) model in which maximum buyer inventory is equal to ‘nq’, where q is the 
quantity transported per delivery. The delay deliveries strategy is much explained in 
Zanoni and Grubbström (2004). They also provided a quick method for calculating the 
optimal total number of deliveries and the number of deliveries to be delayed.  

3.3 CSP with information sharing and with delay delivery 

Goyal (1976) is credited to be the first person to describe integrated models of single-
vendor–single-buyer. Goyal (1977) proposed a Joint Expected Lot Size (JELS) model to 
minimise total relevant costs and is compared with total costs incurred if vendor and 
buyer act independently. Banerjee (1986) generalised Goyal (1977) model by assuming 
vendor with finite rate produces for a buyer on a lot-for-lot basis under deterministic 
conditions. Goyal (1988) generalised the Banerjee (1986) model by relaxing the 
assumption of the lot-for-lot policy of the vendor. In an integrated inventory model, one 
partner’s gain exceeds the other partner’s loss. Therefore, the net benefit can be shared in 
some equitable fashion (Goyal and Gupta, 1989). They also summarised the literature on 
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integrated vendor–buyer models up to 1989. In consignment stock with partial 
information sharing, models include information of demand, shipments and inventory. It 
is known that information sharing benefits the vendor more compare with buyer due to 
reduction in vendor inventory and also due to adjusted shipments between buyers, 
otherwise the vendor may have to keep. In this view, SC is constructed in such a way that 
if buyer does not need a particular scheduled delivery lot, the vendor finds an alternate 
buyer in the SC network. To fulfil this, the vendor adjusts exact delivery quantity 
required to the alternate buyer, i.e. the shifted quantity should be equal to scheduled 
quantity of alternate buyer. 

The average total cost in this model is calculated as follows: 
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From equation (10) the minimum total cost for optimum values (c, n, k1, m) is calculated 
as follows: 
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3.4 CSP-LT model 

In this model, the vendor negotiates with a buyer closely to reduce lead-time as much as 
possible down to a point where it is acceptable to the buyer with his stable production and 
delivery schedule. The inventory is reviewed continuously and shortages are allowed 
with fully backordered. It should be noted that the delivery lead-time is null; however, the 
batch is to be produced, so that there exists a system lead-time other than zero. Adding an 
additional cost, the system lead-time can be controlled. Thus the system lead-time is 
crashed one at a time starting from first independent component because it has minimum 
unit crashing cost per unit time and then the second independent component, and so on. It 
is clear that when lead-time is reduced, its corresponding handling cost for that time is 
reduced. The length of lead-time ensures the order transit arrival even though lead-time is 
crashed and shortages if any are permitted and backordered. Since lead-time is a decision 
variable in this model, the extra costs incurred by the vendor will be fully transferred to 
the buyer if shortened lead-time that is requested can be viewed as an investment. The 
total lead-time crashing cost per cycle is calculated as follows: 
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Li is the length of the lead-time with components 1,2…, i which are to be crashed to 
minimum duration and L ∈ [Li, Li–1] for ith component has a normal duration ‘bi’, 
minimum duration ‘ai’ and crashing cost per unit time ‘ci’, such that 1 2 .nc c c≤ ≤ ≤  
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The minimum cost for optimum values of (c,n,L,z) 
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⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑  (17) 

3.5 Algorithm to CSP-IS-k1 model 

In this section, an iterative algorithm (single vendor–two buyers) including the crashing 
expenses is presented to find minimum JTEC with optimal decision variables. 

jij = delivery shifted from ith buyer to jth buyer 

j12 = delayed deliveries shifted from buyer 1 to buyer 2 

J21 = delayed deliveries shifted from buyer 2 to buyer 1 
1
1 12k j−  = deliveries retained by vendor 

1
2 21k j−  = deliveries retained by vendor 

mi = delayed deliveries shifted to another buyer 

m1 = transferred deliveries to buyer 2 from buyer 1 

m2 = transferred deliveries to buyer 1 from buyer 2. 

Iterative procedure used in this model: 

Step 1: set 1 1n =  

Step 2: set 2 1n =  
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Step 3: set 1
1 1k =  

Step 4: set 1
2 1k =  

Step 5: set 12 1j =  

Step 6: for each j21 perform (i) to (v) 
(i) start with 1 0 ( ) 0.39894iz z= ⇒ Ψ =  

(ii) substitute ( )zΨ  to evaluate ‘c’ 

(iii) utilise ‘c’ to determine ( )zΦ  and then find z for next iteration by checking the 
standard normal table, and hence ( )zΨ  for next iteration 

(iv) repeat (ii)–(iii) until no change occurs in the values of ‘c’ and ‘z’ 

(v) compute the corresponding ( )1 1
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  

Step 7: find ( )1 1
2 1 1 2 12 21min , , , , , , , ;JTEC c n n k k j j z  if ( )* 1 1 * *

2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  is 

minimum ( )1 1
2 1 1 2 12 21, , , , , , , ,JTEC c n n k k j j z  then ( )* 1 1 * *

2 1 1 2 12 21, , , , , , ,c n n k k j j z  are the 

optimal solution for fixed 1 1
2 1 1 2 12, , , ,n n k k j  

Step 8: set 12 12 1j j= + ; repeat Steps 6 and 7 to get ( )* 1 1 * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  

Step 9: if ( )* 1 1 * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  ≤  

( )12 12 12 12 12 12 12 12

* 1 1 * *
1 2( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1), , , , , , , ,j j j j j j j jJTEC c n n k k j j z− − − − − − − −  then go to Step 8, 

otherwise go to Step 10 

Step 10: set ( )* 1 1 * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  = 

( )12 12 12 12 12 12 12 12

* 1 1 * *
1 2( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1), , , , , , ,j j j j j j j jJTEC c n n k k j j z− − − − − − − −  

Step 11: set 1 1
2 2 1;k k= +  repeat Steps 6–10 to get ( )* 1 1 * * *

2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  

Step 12: if ( )* 1 1 * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  ≤ 

( )1 1 1 1 1 1 122 2 2 2 2 2 2

* 1 1 * * *
2( 1)1 2( 1) 1( 1) 1( 1) 12( 1) 12( 1) ( 1)

, , , , , , ,kk k k k k k k
JTEC c n n k k j j z−− − − − − − −

 then go to Step 11, 

otherwise go to Step 13 

Step 13: set ( )* 1 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  = 

( )1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

* 1 1 * * *
1 2( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1)
, , , , , , ,

k k k k k k k k
JTEC c n n k k j j z

− − − − − − − −
 

Step 14: set 1 1
1 1 1k k= + ; repeat Steps 6–13 to get ( )* 1 1* * * *

2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  

Step 15: if ( )* 1 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  ≤ 

( )1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

* 1 1 * * *
1 2( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1)
, , , , , , ,

k k k k k k k k
JTEC c n n k k j j z

− − − − − − − −
 then go to Step 14, 

otherwise go to Step 16. 
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Step 16: set ( )* 1 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  = 

( )1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

* 1 1* * * *
1 2( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1)
, , , , , , ,

k k k k k k k k
JTEC c n n k k j j z

− − − − − − − −
 

Step 17: set 2 2 1;n n= +  repeat Steps 6–10 to get ( )* 1 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  

Step 18: if ( )* 1* 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  ≤ 

( )2 2 2 2 2 2 2 2

* 1* 1* * * *
1 2( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1), , , , , , ,n n n n n n n nJTEC c n n k k j j z− − − − − − − − then go to Step 17, 

otherwise go to Step 19 

Step 19: set ( )* * 1* 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  = 

( )2 2 2 2 2 2 2 2

* 1* 1* * * *
1 2( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1), , , , , , ,n n n n n n n nJTEC c n n k k j j z− − − − − − − −  

Step 20: set 1 1 1n n= + ; repeat Steps 4 and 19 to get ( )* 1* 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  

Step 21: if ( )* * 1* 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  ≤ 

( )1 1 1 1 1 1 1 1

* 1* 1* * * *
1 1( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1), , , , , , ,n n n n n n n nJTEC c n n k k j j z− − − − − − − −  then, go to Step 20, 

otherwise go to Step 22 

Step 22: set ( )1 1 1 1 1 1 1 1

* 1* 1* * * *
1 2( 1) 1( 1) 1( 1) 2( 1) 12( 1) 21( 1) ( 1), , , , , , ,n n n n n n n nJTEC c n n k k j j z− − − − − − − −  = 

( )* * * 1* 1* * * *
2 1 1 2 12 21, , , , , , ,JTEC c n n k k j j z  

Step 23: ( )* * * 1* 1* * * *
2 1 1 2 12 21, , , , , , ,c n n k k j j z  are the optimal variables and the minimum joint 

total expected cost is ( )* * * 1* 1* * * *
1 2 1 2 12 21, , , , , , ,JTEC c n n k k j j z  

4 Genetic algorithm 

We propose a Genetic Algorithm (GA) approach to optimise the CSP-based inventory 
models’ joint total expected cost in SC. This study attempts to perform both performance 
analysis and optimisation of various inventory policy settings. GA is a class of 
evolutionary algorithms that utilise the theories of evolution and natural selection. GA 
begins with a population of randomly generated strings that represent the problems’ 
possible solutions. Thereafter, each of these strings is evaluated to find its fitness. The 
initial population is subjected to genetic evolution to procreate the next generation of 
candidate solutions (Goldberg, 1989). The members of the population are processed by 
GA operators such as reproduction, crossover and mutation to create the progenies for the 
next generation of candidate solutions. The progenies are then evaluated and tested for 
termination; until a satisfactory solution (based on the acceptability or search stoppage 
criterion) already at hand is found, the search is stopped. 

4.1 Working mechanism of GA 

i. encode the initial chromosome using binary and integer 
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ii. initialise a set of feasible solutions randomly (i.e. initialise a population of 
chromosomes) 

iii. compute fitness value 
1( , , , , , , ( ))

1 chromosome,
1t

n k m j c L z

f
JTEC

Φ

= ∈
+  in the entire population 

iv. if termination is satisfied, it gives best solution, otherwise go to step ‘v’ 

v. select chromosomes for reproduction by making use of the roulette wheel selection 
procedure and fitness function value 

vi. apply crossover and mutation on the selected chromosomes to produce new 
chromosomes 

vii. if the stopping condition is reached, return the best solution; if not, go to step (ii) 

GA works on a population or collection of solutions to the given problem. Each 
individual in the population is called chromosome. Designing chromosome is a very 
important step in GA, which contains decision variables that are to be optimised. 

The chromosome structures for various models are summarised below: 

Basic CSP model (c, ni, ( )zΦ ) 

CSP with delay delivery model (c, ni, 
1
ik , ( )zΦ ) 

CSP with information sharing and delay delivery (c, ni, 
1
ik , mi, jij, ( )zΦ ) 

CSP-LT model (c, ni, ( )zΦ ) 

Integer encoding is used for (ni, 1
ik , mi, jij), whereas for ‘c’ and ‘Φ(z)’ binary coding is 

used because decimal range is large. For converting into binary coding, this is first 
multiplied with 1000 to remove decimal point and then converted to binary. Population 
Size (ps), number of generations, Probability of Crossover (pc) and Probability of 
Mutation (pm) are the GA parameters. A large population size means a better exploration 
of the search space, while a large number of generations allow for better exploitation of 
the promising solutions found. Generally, the larger these parameters are, the better the 
algorithm will perform, but at the expenses of longer run-times because more fitness 
evaluations will be involved. Population size is fixed as 170 and the number of 
generations is fixed as 500 after experimentation. Probability of crossover varied from 
0.5 to 1 with step of 0.1 and optimum value found at 0.7. Probability of mutation is 
varied from 0.05 to 0.15 in steps of 0.05 and finally fixed at 0.05 as it is giving minimum 
total cost. In crossover, two strings are picked from the mating pool and some portions of 
these strings are exchanged between them, attempting to produce new strings of superior 
fitness by effecting large changes in a string to jump in search of the optimum in the 
solution space. 

An example of chromosome for one-vendor–three-buyers consignment stock with 
information sharing and with delay delivery model is given below. 
Chromosome encoding: 

 c n1 n2 n3 1
1k  1

2k 1
3k  m1 m2 m3 j12 j21 J31 ( )zΦ  

1st parent chromosome 0.205 3 7 4 2 5 3 1 2 1 1 1 1 0.915 
2nd parent chromosome 0.163 7 4 5 5 2 3 3 2 1 2 1 1 0.834 
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Crossover: 

Parent strings after encoding and before crossover: 

 
 

Offspring after two point crossover: 

After crossover, the variables in the Offsprings 1 and 2 are crossed the permissible 
independent boundary range (see the rounded value), i.e. in Offspring 1, 1

1 5,k =  and in 
Offspring 2, 1

2 5,k =  but the constraint is 1 .i ik n<  And in Offspring 2, m1 = 3 which violates 
the constraint, 1.i im k≤  As the constraints are violated in both the offsprings, the repair 
function is used to correct these defective chromosomes. 

Repair function: From Offspring 1, 1
1k  value is replaced by the corresponding 1

1k  
value of Offspring 2. If 1

1k  value in Offspring 2 is also greater than ‘n1’, then randomly 
substitute 1

1k  with a value less than ‘n1’. Similarly, in Offspring 2, 1
2k  value is replaced by 

the corresponding 1
2k  value of Offspring 1; if not suitable then substitute 1

2k  value with a 
value less than ‘n2’. The ‘m1’ in Offspring 2 is also replaced by corresponding ‘m1’ value 
of Offspring 1. 

Offspring after repair: 

Mutation operator: 

The need for local search around a current solution also exists and is accomplished by 
mutation. Mutation is additionally aimed to maintain diversity in the population. 
Mutation creates a new solution in the neighbourhood of a current solution by 
introducing a small change in some aspects of the current solution and helps to ensure 
that no point in the search space has a zero probability of being examined. For binary 
coding normal swap mutation operator is used. All bits in binary number is mutated with 
pm = 0.05; for this purpose a uniform random number is generated between 0 to 1; if 
number is less than probability of mutation, then that bit is changed from 0 to 1 or vice 
versa. For integer, coding genes in parent population are mutated with pm = 0.05, with 
sampling a uniform random number, u. If u ≤ pm, then the value of the corresponding 
gene is altered as given below: 

Binary coding Integer coding Binary coding 

c n1 n2 n3 1
1k  1

2k 1
3k m1 m2 m3 j12 j21 j31 ( )zΦ  

1 1 0 0 1 1 0 1 3 7 4 2 5 3 1 2 1 1 1 1 1 1 1 0 0 1 0 0 1 1 

1 0 1 0 0 0 1 1 7 4 5 5 2 3 3 2 1 2 1 1 1 1 0 1 0 0 0 0 1 0 

c n1 n2 n3 1
1k 1

2k  1
3k m1 m2 m3 j12 j21 j31 ( )zΦ  

1 1 1 0 0 0 0 1 3 7 4 5 2 3 1 2 1 1 1 1 1 1 1 0 0 0 0 0 1 1 
1 0 0 0 1 1 1 1 7 4 5 2 5 3 3 2 1 2 1 1 1 1 0 1 0 1 0 0 1 1 

c n1 n2 n3
1
1k 1

2k 1
3k m1 m2 m3 j12 j21 j31 ( )zΦ  

1 1 1 0 0 0 0 1 3 7 4 2 2 3 1 2 1 1 1 1 1 1 1 0 0 0 0 0 1 1 
1 0 0 0 1 1 1 1 7 4 5 2 2 3 1 2 1 2 1 1 1 1 0 1 0 1 0 0 1 1 

Binary coding Integer coding Binary coding 
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new old old(1 ) 2 .S S x xuS= − +  (18) 

Here Snew is new gene after mutation, Sold is gene before mutation, u is a uniform random 
number between 0 and 1 and ‘x’ denotes the fraction of Sold. It is to be noted that if the 
computed Snew takes a non-integer value, then it is rounded off to the nearest integer. In 
this study ‘x’ is set to 0.2. 

Offspring before mutation: 

Offspring after mutation: 

After mutation if any damaged genes exist, same repair function as discussed in crossover 
is used to repair the damaged genes. After crossover and mutation, the new population is 
called as child population. We have now N chromosomes in the initial population and N 
chromosomes in parent population. The best N chromosomes, among 2N chromosomes in 
the initial and parent population put together, with respect to JTEC are chosen for entry 
into parent population as the surviving chromosomes for the next generation. 

Major savings in CPU time for CSP-k1 and CSP-IS-k1 is almost 99% compare to 
single-vendor–four-buyers and single-vendor–five-buyers analytical model. The CSP-IS-
k1 for single-vendor–four-buyers could give results even after running the model for 24 
hours using enumeration technique, whereas GA model yields results in less than 20 
seconds for all models up to ten buyers with single vendor. 

5 Illustrative examples and results 

The closer the total demand rate to the production rate, the greater saving can be 
obtained. In other words, by gradually declining the ratio of production rate to demand 
rate, percentage of JTEC saving is increased (Figure 2). In contrast, by increasing p/D 
ratio, the JTEC saving decreases. However, it does not mean that the saving diminishes to 
zero, but it is nearer to zero as (p/D) becomes significantly high as indicated in Figure 2. 
Our analysis considers the tradeoff of percentage of savings in JTEC versus (p/D) ratio 
from 1 to 5. It is concluded that the production to demand ratio (p/D) of 3.2 is suitable for 
the set of given data after considering fine iterative tuning analysis between 3 and 3.5. 
The curved line called efficient frontier shown in Figure 2 is generated iteratively that 
minimises the SC cost subject to constraints on the maximal p/D ratio. The point ‘A’ 
corresponds to a least cost-savings strategy with a maximal p/D ratio of 3.2 at which 
steady-state vendor and buyer cost yields for all models with stabilisation (Figure 3). Any 
SC strategy on the efficient frontier is undominated in the sense that no achievable 
strategy exists that is at least as good as with respect to JTEC. Moreover, it is found from 
the research articles of Goyal (1995, 2000), Ben-Daya and Hariga (2004), Braglia and 

c n1 n2 n3 1
1k 1

2k 1
3k m1 m2 m3 j12 j21 j31 ( )zΦ  

1 1 1 0 0 0 0 1 3 7 4 2 2 3 1 2 1 1 1 1 1 1 1 0 0 0 0 0 1 1 
1 0 0 0 1 1 1 1 7 4 5 2 2 3 1 2 1 2 1 1 1 1 0 1 0 1 0 0 1 1 

c n1 n2 n3 1
1k 1

2k 1
3k m1 m2 m3 j12 j21 j31 ( )zΦ  

1 1 1 0 0 1 0 1 4 7 4 2 2 3 1 2 1 1 1 1 1 1 1 1 0 0 0 0 1 1 
1 0 0 0 1 0 1 1 7 4 5 2 2 3 1 2 1 2 1 1 1 1 0 1 0 1 0 1 1 1 
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Zavanella (2003) and Valentini and Zavanella (2003) that they considered production to 
demand ratio as 3.2. At (p/D) ratio 3.2, the JTEC is getting steady state. 

Figure 2 Efficient frontier effect of (p/D) ratio on the % of savings in JTEC 

 

Figure 3 Variation of JTEC of two buyers with (p/D) ratio for different strategies 

 

The results refer to input values of Ben-Daya and Raouf (1994), Braglia and Zavanella 
(2003), Ouyang et al. (2004) and Srinivas and Rao (2007) where hv = $4 per unit/year, hbi 
= $5 per unit/year, (p/∑Di) ratio = 3.2, s = $400/set-up, Ati = $25/order, π = $50/unit. This 
data is taken up to ten buyers with demand D1,2 = 1000, 1300, 800, 1000, 1500, 600, 
1200, 1500, 1000, 800 units/year and the corresponding standard deviation are 44.72, 50, 
35.7, 30, 30, 20, 30, 30, 30, 20. It is found that the number of shipments in CSP-IS-k1  
for single-vendor–two-buyer model is 10 whereas in CSP and CSP-k1 it is 5 and 6, 
respectively – the increase in shipment size is due to information sharing. The buyer 
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maximum stock level and minimum stock level difference in the case of CSP-k1 and 
CSP-IS-k1 is less due to delay delivery and information sharing (Figure 4). 

Figure 4 Maximum and minimum stock of two buyers with varying shipments 

 

The JTEC for CSP-k1 model with k1 = 0–7, as shown in Figure 5. In CSP-k1 model, at  
k1 = 2 and n = 6 it gives the lowest JTEC $3294 and its corresponding buyers average 
maximum stock is 500 units for two buyers (Figure 6), whereas CSP-k1 model at k1 = 0 
produces always maximum cost because it adopts basic CSP strategy (Figure 5). In 
single-vendor–two-buyers model, it is assumed that each buyer should receive one 
shipment and in the sequence order of buyers. The second shipment to any buyer is made 
only after shipping at least one shipment to each buyer in the SC network. 

Figure 5 CSP-k1 model JTEC variation for two buyers with delay deliveries 
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Figure 6 Variation of buyer delay deliveries in CSP-k1 for two buyers 

 

Figure 7 Delayed deliveries and shifted deliveries due to information 
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Figure 8 JTEC of single vendor–two buyer for different strategies 

 

Figure 7 reveals for CSP-IS-k1 model that the shifted deliveries range from one buyer to 
another buyer is 1–5 shipments and its corresponding delayed deliveries varies between 1 
and 6. Whereas for CSP-k1, the delay delivery varies between 1 and 6; it decreases when 
buyer size increases. The lead-time components taken for CSP-LT model in dataset 1 are 
14, 10.5, 7 and 5.25 days with unit crashing cost $/day of 0, 0.4, 1.2 and 5.0, and in 
dataset 2 with unit crashing cost $/day of 0, 0.1, 0.4 and 1.2. As given by Goyal (2003) in 
his paper that the crashing lead-time components have its impact on the holding cost is 
misleading and may result in haphazard lead-time. It is to be noted that we do not have to 
compute the total cost for obtaining the optimal policy like in other models because the 
lead-time reduction is a joint compromise component of vendor and buyer interest. 
Perhaps a better approach may be to attribute a benefit of $x per day reduction in the 
lead-time either per cycle or per year. It is to be noted that for single vendor–single buyer, 
the optimal JTEC will occur for second lead-time component, but in the case of single 
vendor–multi buyer the lead-time may reduce up to minimum component. 
Table 1 Comparison of different strategies 

Braglia and Zavanella 
(2003) single vendor–

single buyer Proposed models (single vendor–two buyers) 
Variable 

 
Hill 

(1999) 
CSP-

k1 
CSP-

k1 CSP 
CSP-

k1 
CSP-

k1 CSP CSP 
CSP-
IS-k1 

CSP-
LT 

Max. buyer 
stock 

110 164 267 376 500 363 651 642 527 610 

No. of 
shipments 

5 3 3 4 6 4 5 4 10 4 

Delay 
deliveries 

– 2 1 – 2 2 – – 3  

Total cost ($) 1903 1929 2003 2035 3294 3426 3438 3441 3181 3280 
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The JTEC is decreasing from CSP to CSP-k1 and further to CSP-IS-k1. For the dataset 1, 
the JTEC of CSP-LT is more comparing to dataset 2. In brief, the CSP-IS-k1 gives lowest 
JTEC cost compare to CSP and CSP-k1. Whereas for CSP-LT it depends on the number 
and type of lead-time crashing cost reduction components to which the JTEC is sensitive 
in CSP-LT model (Figure 8). As described earlier, it is in the interest of vendor–buyer for 
choosing the structure of lead-time reduction and its crashing cost components. Hence it 
is very difficult to choose the crashing cost components as well as its lead-time 
components. 

A detailed comparison of the proposed single-vendor–two-buyers models with Hill 
(1999) and Braglia and Zavanella’s (2003) single-vendor–single-buyer model has been 
given in Table 1. The proposed models basic CSP if projected its JTEC to single vendor–
single buyer gives $111.5 less compare to Braglia and Zavanella (2003) CSP model, 
without considering transportation cost in both the models. It is found that the overall 
cost in proposed models reduces when chosen to multi-buyers which is an industrial 
interest. It is to be noted that both Hill (1999) and Braglia and Zavanella (2003) models 
are based on deterministic demand, whereas the proposed models are based on stochastic 
demand. In CSP-LT the JTEC cost increases compare to CSP-IS-k1 due to increase in the 
buyer stock, and in CSP the buyer stock is always more and hence the JTEC is more. 

6 Conclusions 

This paper provides concepts of CSP of four different strategies. The models are 
developed and illustrated with numerical examples of stochastic customer demand for 
single vendor–multi-buyer. It is found the JTEC of CSP-IS-k1is less due to information 
sharing compare to CSP, CSP-k1 and CSP-LT. But for controllable lead-time model, 
JTEC depends on the lead-time components and its crashing cost components. Future 
studies have to be made in the area of CSP for single vendor–multi-buyer with multi-
products. 
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