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Abstract: Compact heat exchangers have been widely used in various
applications in thermal fluid systems including automotive thermal fluid
systems. Radiators for engine cooling systems, evaporators and condensers for
HVAC systems, oil coolers and inter coolers are typical examples that can be
found in ground vehicles. Recent development of nanotechnology brings out a
new heat transfer coolant called ‘nanofluids’. These fluids exhibit larger
thermal properties than conventional coolants (water, ethylene glycol, engine
oil etc.) due to the presence of suspended nanosized particles in them such as
AlL)O3, Cu, CuO, TiO; etc. In this paper, a theoretical analysis was carried with
the € — NTU rating method by using Al,O; + H,O nanofluid as coolant on flat
tube plain fin compact heat exchanger and different characteristics are
graphically presented.
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1 Introduction

The automobile industry continuously faces challenges to obtain best automobile design
in aspects of performance, fuel consumption, safety etc. The thermal performance of an
automobile radiator plays an important role in the performance of automobiles cooling
system and all other associated systems. The air cooled heat exchanger found in a
radiators, AC condenser, and evaporator etc. has an important role in its weight and also
in the design of its front end module, which also has a strong impact on the car
aerodynamic behaviour. To improve the heat transfer from a surface, it is common to
apply turbulence promoters, roughness elements to the surface. In recent years, a growing
and intense attention has been turned to the study of new concept compact heat
exchangers, as they represent a good solution in terms of dimensions and efficiency for
industrial applications compared to traditional ones. Compact heat exchangers usually
setup in a cross flow arrangement are characterised by extended surfaces with large
surface area/volume ratios (> 700 m*/m’) that can often arrangements (Rohsenhow et al.,
1998). A variety of increased heat transfer surfaces are used: plain, wavy, offset strip,
perforated and louvered fins (Kays and London, 1984).

Charyulu et al. (1999) presented a numerical model based on the ¢ — NTU method of
a radiator in diesel engine type TBD 232 V-12 and gave radiator characteristics for
different fin and tube materials. Carluccio et al. (2005) presented a numerical analysis of
an air-oil radiator made of aluminum alloy using CFD and compared the results with
experimental data. Witry et al. (2005) presented the thermal performance of automotive
aluminum plate radiators using CFD and found to have higher heat transfer levels; lesser
pressure drop, smaller size and coolant flows velocities decrease because of impingement
and erosion/corrosion of the plate. Mahmoudi (2007) conducted experimental and
theoretical analysis on copper-based automobile radiators. He has developed a 2D CFD
model and found that the inlet and outlet parameter are important for design of the
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radiator. Oliet et al. (2007) proposed a numerical model wusing the
€ — NTU method and CFD. They presented a detailed knowledge base of parametric
study on design of automotive radiations.

In radiators, which are vital component in the control of the engine temperature in
automobiles, a liquid (commonly water — glycol mixture) is to be cooled by air. The
liquid flows in flat tubes while the air flows in channels setup by fin surfaces. With recent
developments, nanotechnology has been widely used in traditional industries because
materials with grain size of nanometers posses unique optical, electrical and thermal
properties etc. Recently, nanoparticles can be dispersed in conventional heat transfer
fluids such as water, ethylene glycol and engine oil to produce a new class of high
efficient heat exchange fluids called nanofluids (Choi, 1995). Many experimental
(Eastman et al., 2001; Das et al., 2003; Xuan et al., 2003; Ding and Wen, 2004) and
theoretical (Ravi et al., 2005; Maiga et al., 2006) analyses were carried out and found that
these new heat exchanger coolants are excellent. Vasu et al. (2007a, 2007b, 2008) has
developed thermophysical correlations to calculate thermal conductivity, viscosity,
Nusselt number in turbulent and laminar flows of different nanofluids (ALL,O; + H,O, Cu
+ H,O0 etc) and found that these fluids posses very high thermal properties compared to
conventional coolants. In this paper, numerical analysis was carried out with the ¢ — NTU
method by using Al,O; + H,O nanofluid as coolant to compact heat exchanger and
different characteristics are graphically presented.

2 Compact heat exchanger geometry

As illustrated in Figure 1, the compact heat exchanger major sub components of the core
are coolant tubes and fins. Flat tubes are more popular for automotive applications due to
their lower profile drag compared with round tubes. The directions of the coolant and air
flows cross each other as shown in Figure 1. Therefore, ultimate design object of the heat
exchanger is to maximise the heat rejection rate while minimising the flow resistance.
Due to many parameters, the numerical ¢ — NTU method can be very useful for this
analysis.

Figure 1 Structure of a typical compact heat exchanger core
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3 Problem formulation

The considered radiator (Charyulu et al., 1999) mounted on the present turbo-charged
diesel engine of type TBD 232V-12 cross flow compact exchanger with unmixed fluids
in Figurel consists of 644 tubes made of brass and 346 continuous fins made of copper.
The following geometrical factors operating conditions are described in the following
Tables 1-2.

Table 1 Fluid parameters and normal operating conditions
S. no. Description Air Coolant
1 Fluid mass rate 820 kg/s 6000—10000
kg/hr
2 Fluid inlet temperature 20-55°C 70-95°C
3 Fluid temperature rise / drop 28°C 6°C
4 Core width 0.6 m
5 Core height 0.5m
6 Core depth 0.4 m
7 Tube size 1.872 cm*.245¢cm
Table 2 Surface core geometry of flat tubes, continuous fins
S. no. Description Air side Coolant side
1 Fin pitch 4.46 fin/cm
2 Fin metal thickness 0.01 cm
3 Hydraulic diameter, Dy, 0.351cm 0.373cm
4 Min free flow area / Frontal area, o 0.780 0.129
5 Total heat transfer area / Total volume, o 886 m*/m’ 138 m*m’
6 Fin area / Total area, 3 0.845

Source: Surface 11.32-0.737-SR, Kays and London (1984)

4 Equations used for calculations

Air side

1  Heat transfer coefficient (Charyulu et al., 1999), h,

1.G.Cp,
where
0.174

a— )0.383

Re,
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G,= 2
: Afro-a ( )
R _ GaDh,a
ea - (3)
Ha

Fin efficiency of plate fin can be calculated as

tanh mL 2h,
n=——"— where M= 4)
mL kt
The area-weighted fin efficiency is determined by
n'=An+1—A4 where ZZTf ®)

Pressure drop for fin side

AP = G, (1+0'§ Pia _ +fipi’a (6)
2pi,a pi,a A‘nin pm

where

1 [ 1 1
- e —
pm 2 pi,a po,a

Friction factor fis given by

f 0.3778
= Ro03565 ™
Air heat capacity rate, C,
C,=m,Cp, ®

Nanofluid as coolant side

1

Heat transfer coefficient of the Al,O; + H,O nanofluid in turbulent flow has been
developed in previous studies (Vasu et al. 2007b; 2008). The comparison is shown in
Figure 2, which is found to be in good agreement with the experimental data with
standard deviation of 6.4% and average deviation of 5%.

_ Nunf an

hnf D
h,nf

(€)

where
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Nu, =0.023(Re, )** (Pr, J** for ALO; +H,0

Figure 2 Comparison of Nu correlation with experimental data
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Equation (12) is used to calculate the thermal conductivity for nanofluids (Vasu et
al., 2007b) which is found to be in good agreement with the experimental data as
shown in Figure 3 with a standard deviation of 5% and average deviation of 4%.

Figure 3 Comparison of present thermal conductivity correlation with experimental data
(see online version for colours)
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Source: Das et al. (2003), Xuan and Li (2003) and Kim et al. (2007).

4.1 Validation with other theoretical models

Figures 4 (a) and (b) show the prediction based on the present model (solid line) in
comparison with the published models for the case of 38.4 nm Al,O; at 1 vol% in water.
The symbols show the corresponding experimental data (Das et al., 2003). Xuan et al.
(2003) and Koo and Kleinstreuer (2005) excessively overestimate and their model shows
the limitation of the simple modification of Maxwell’s model to apply for nanofluids.
Jang and Choi (2004) model shows underestimated values with experimental data. This is
believed attributing to their incorrect postulation in determining the Nusselt number as
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previously pointed out. The model by Kumar et al. (2004) wrongly postulates the mean
free path of the base fluid and completely fails to predict the nanofluid thermal
conductivity. The model by Ravi et al. (2005) shows good agreement with the
experimental data as shown in Figure 4(b). However, with temperature variation, their
model breaks down showing excessive underestimation with experimental data as shown

in Figure 4(a).

Figure 4
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These models inherently lack the dependency of the material properties of nanoparticle
other than incorporating their sizes and concentrations. Jang and Choi (2004) also show
large discrepancies, possibly because of the same reason of incomprehensive parametric
dependency. Xuan et al. (2003) does not show agreeable temperature dependency, and
Kumar et al. (2004) model does not show any physically meaningful representation.
However, the present model of equation (12) shows fairly good agreement
comprehensively for both nanofluids and for all the tested conditions of temperatures and
volume concentrations.

The viscosity, density and specific heat of nanofluids are calculated by using the
following equations (13—-15).

se = g, (1+39.11¢ +533.9¢4%) (13)
Por = (1=9P)p; +dp, (14)
1- Cp; +¢p.C
Cp., = (1-9)p; Zf ¢p,Cp, s
nf
2 Pressure drop is given as
AP = 2an fnf H (]6)
’ Pni Dh,nf
where
f, =0.079(Re, )" (17)

3 Coolant heat capacity rate, Cy¢
Cnf = mnfcpnf (18)

The heat exchanger effectiveness for cross flow unmixed fluids, ¢ is given as (Kays
and London, 1984)

e=1- exp{ Cl* NTU ** exp(— C'NTU "™ — 1)} (19)
where
c =l Ny oY (20)
nf Ca

Overall heat transfer coefficient, based on air side is given as

1 1 1

- = + 21
Ua n’ha (anf ] ( )
hnf
(94

a
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Total heat transfer rate

Q=¢C

min

(Tc,in _Ta,in )

(22)

For implementing the analysis, a computer program in MATLAB is developed for
the compact heat exchanger. This program is useful in estimating the fluid properties
at operating temperatures, surface core geometry of cross flow heat exchanger, heat
transfer coefficients, pressure drops, overall heat transfer coefficients and heat
transfer rate. The flowchart of the numerical analysis is shown in Figure 5.

Figure 5 Schematic scheme of the numerical method
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5 Results and discussions

Figure 6 indicates that nanofluids possess higher heat transfer characteristics than
conventional coolants such as water and 50% ethylene glycol. The overall heat transfer
coefficient is very high for nanofluids compared to water and increases with increase of
the volume fraction of nanoparticles.

Figure 6 Comparison of nanofluid as coolant with conventional coolant (water)
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5.1 Effect of air inlet temperature

As one of the most important factor in an automotive radiator system, the air inlet
temperature is analysed and shown in Figure 7 for the two limiting air flows (12 kg/sec
and 6 kg/sec) for a range of temperature from 0°C to 50°C. As expected, the heat transfer
rate clearly decreases with air inlet temperature rise, as the cooling temperature
difference is being reduced. It is interesting to point out the Al,O3; + H,O nanofluids have
higher cooling capacity compared to water as coolant. There is a small influence of air
inlet temperature on the overall heat transfer coefficient whereas the air pressure drop
reveals moderate.

Figure 7 Air inlet temperature influence on the thermal and fluid dynamic performance of
compact heat exchanger
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5.2 Effect of air and coolant mass flow rate

The cooling capacity of the radiator is strongly dependent on both fluids mass flow rate.
Figure 8 shows the behaviour of the selected radiator over a wide range, while
maintaining the geometry and temperature levels at the normal situation. It is observed
that the cooling capacity is increasing with both air and coolant flow rates. The cooling
capacity is more with air flow rate due to higher thermal resistance. The pressure drop
also increases quadratically with both air and coolant mass flow rates and is almost the
same for all flow rates of air (6—12 kg/sec) and coolant (6000-10000 kg/hr). It is
interesting to point out that the cooling capacity and overall heat transfer coefficient of
the radiator is very high with mass flow rates of the air and coolant when Al,O; + H,O
nanofluids is used as coolant as shown in Figure 6, but the pressure drop are higher when
compared with conventional coolants.

Figure 8 Air and coolant flow influence on the thermal and fluid dynamic performance of
compact heat exchanger
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5.3 Effect of coolant inlet temperature

Another characteristic of radiator is the coolant inlet temperature. It is observed from
Figure 9 that with increase of the coolant inlet temperature, the cooling capacity is
increased. It is also observed that the cooling capacity Al,O; + H,O nanofluid is very
high compared to water as coolant. However, the pressure drop is nearly double that of

water.

Figure 9 Coolant inlet temperature influence on the thermal and fluid dynamic performance of
compact heat exchanger
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5.4 Effect of nanoparticle volume fraction

Figure 10 indicates that with increase of the volume fraction of the nanoparticle
concentration, the cooling capacity increases in moderate manner and the pressure drop
decreases with coolant inlet temperature, but cooling capacity is very high when

compared with 0% volume fraction (pure water).
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Figure 10 Coolant inlet temperature and volume fraction of nanoparticle influence on the thermal
and fluid dynamic performance of compact heat exchanger
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6 Conclusions

e A detailed study of the parametric studies on compact heat exchanger is done by
using the € — NTU numerical method and Al,O; + H,O nanofluid as coolant.

e A detailed flow chart of the numerical method and correlations used for A1,O; + H,O
nanofluid are presented.

e  Comparing the study of Al,O; + H,O nanofluid as coolant with conventional
coolants, it is observed that the cooling capacity of the Al,O; + H,O nanofluid is
very high.

o Different factors for compact heat exchanger are graphically presented.
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Nomenclature

frontal area of the exchanger, m2

surface area of fin exposed to heat transfer, m2
total heat transfer surface area, m2

specific heat, kJ/kg K

diameter, nm

thermal conductivity, W/m K

thickness, nm

temperature, K

velocity, m/s

heat transfer coefficient, W/m? °C

Colburn factor

Q“'U‘<A”W‘Q()>??

mass velocity, kg/m* s

Pr Prandlt number

Re Reynolds number

W fluid mass flow rate, kg/s
f friction factor

Nu Nuselt number

H total water flow length, m

U overall heat transfer coefficient, W/m? °C
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Nomenclature (continued)

P pressure, Pa

NTU number of heat transfer Units

ky Boltzman constant (1.3807*107%), J/K

Rem 1 [18Kk,T
Reynolds number — |———

vi \Tlp,d,

Greek

p density, kg/m3

¢ volume fraction

Y sphericity

n viscosity, m%/s

o conductivity ratio

€ thermal effectiveness

Subscripts

nf nanofluids

P nanoparticle

f basefluid

fin fin

i inlet condition

0 outlet condition

a air




