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Abstract: In this article, we develop a controllable-lead-time inventory model 
where the lead time is assumed to be dependent because at the time of contract 
with a manufacturer, the retailer may intend to reduce the lead time, for which 
he will pay an additional cost to accomplish an increased production rate. The 
lead time of Consignment Stock (CS) strategy has been controlled to minimise 
Joint Total Expected Cost (JTEC), and other decision variables such as quantity 
transported, lead time, number of transport operations and delay deliveries 
under stochastic environment have been simultaneously optimised so as to gain 
competitive advantage in the business strategy. Numerical examples and 
sensitivity analysis are presented to illustrate the solution procedure. 
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1 Introduction 

In today’s globalised economy, businesses are looking for ways to optimise the Supply 
Chain (SC) network by means of the integration and cooperation of network echelons 
(Drucker, 1998; Douglas and Cooper, 2000). Inventory is one of the most widely 
discussed issues for improving SC efficiency. Wal-Mart and Procter and Gamble 
popularised it in the late 1980s. Since the holding of inventories in a SC can cost 
anywhere between 20% to 40% of product value, the effective management of inventory 
is critical in SC operations (Ballou, 1992). In this environment, Supply Chain 
Management (SCM) has become an effective business tool to reduce SC network 
inventory cost. Houlihan (1985) is credited with coining the term SC and having 
insightful concepts with a strong case for viewing the SC as a strategy for global business 
decisions. The SCM is generally viewed as a strategy for integrating network businesses 
that work together to source products and ultimately distribute products and services to 
the customer at the right quantities, right place and right time (Simchi-Levi et al., 2000). 
Each echelon of the SC performs an independent business with integrated information 
sharing among all the echelons and holds some inventories, which may be unavoidable 
owing to existing uncertainty in the business. 

In the area of inventory, an effective industrial approach that is quickly gaining 
ground is the Consignment Stock (CS), in which the vendor stocks his finished products 
in buyer’s warehouse. The vendor will guarantee the quantity stored in the buyer 
warehouse, which will be kept between a minimum (s) and maximum (S) level with 
supporting shortages in stochastic demand and lead time. For single vendor–single  
buyer cases, the demand rate can be assumed to be consistent but this may be reversed  
in the case of multiple buyers, wherein variation in scope of demand and lead time is 
quite evident. 

The most radical application of the CS approach leads to the minimisation of vendor 
inventory, as this party will use the buyer’s warehouse to stock his finished products.  
The CS with single vendor–multibuyer model is viewed as a classification of divergent 
SC with end2multi-end case. CS is a combination of push and pull systems. The vendor 
adopts the push system whereas the buyer adopts the pull system. The change of 
ownership commences during the pull system. It is found in the literature that little 
research has been done on CS. The fundamentals of CS are explained in detail in Braglia 
and Zavanella (2003), Valentini and Zavanella (2003), Simone and Grubbstrom (2004), 
and Srinivas and Rao (2004). The CS policy is conveniently adopted for small-sized  
and less-cost items. Generally, it is best suited for automobile components (Braglia  
and Zavanella, 2003), fashion products, pharmaceuticals, electronics, Fast Moving 
Consumer Goods (FMCG), and retail items of super- and hypermarkets (Srinivas and 
Rao, 2004). 
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2 Literature review 

Fisher (1997) and Chopra and Meindl (2001) argue that for ‘functional’ make-to-stock 
products, management should focus on reducing operating costs.  

Corbett (2001) is credited with being the first person to give the fundamentals of  
CS policy, whereas Valentini and Zavanella (2003) presented an industrial case and 
performance analysis of CS policy for a single vendor–single buyer case. Braglia and 
Zavanella (2003) presented an analytical modelling approach which concerns the 
deterministic single vendor–single buyer case, allowing the analyst to identify the optimal 
inventory level and shipment policy for minimising total costs.  

Piplani and Viswanathan (2003) discussed Supplier Owned Inventory (SOI), which 
possess the concepts of CS. They evaluated the performance of the policy and concluded 
that SOI arrangement is always beneficial for the SC as a whole. They showed that SOI 
would be beneficial to the buyer assuming that they continue to pay the same price to 
suppliers, but did not discuss its impact on suppliers and the Joint Total Economic Cost 
(JTEC) as a whole. Simone and Grubbstrom (2004) extended the work of Braglia and 
Zavanella (2003) by giving the explicit analytical expression of ordering quantity, 
number of shipments and delay deliveries in two cases: hv > hb and hv < hb, which mean 
no delay and maximum delay respectively. In fact, in the practical application of the CS 
model, there will always be hv < hb, because of downstream movement of the product. 

It is found from the literature that there will be considerable savings in JTEC  
when vendor and buyer cooperate with each other. In order to encourage the buyer to 
cooperate with the vendor, Goyal (1976) pointed out that a judicious method is essential 
for allocating costs. 

Pan and Yang (2002) are credited with minimising the JTEC of a vendor’s and 
buyer’s inventory model with controllable lead time, which is a decision variable; 
however, shortages are not allowed in their paper. Venkateswaran and Son (2004) 
proposed strategies to verify the effectiveness of reduced lead time between vendor and 
buyer. Pan and Yang (2002) and Ryu and Lee (2003) analysed the effect of investment 
strategies to control lead times. Liao and Shyu (1991) decomposed lead time into  
‘n’ components each having a different crashing cost for reduced lead time. The lead time 
is the only decision variable in their model. They assumed that the order quantity is 
predetermined. Ben-Daya and Raouf (1994) considered both lead time and order quantity 
as decision variables. Their model uses different representations of the relationship 
between lead time crashing cost and lead time. Ben-Daya and Raouf (1994) considered 
both lead time and order quantity as decision variables. 

Ouyang et al. (2004) discussed an integrated vendor-buyer model with stochastic 
demand to integrate a production inventory model. Shortages are permitted and it is 
assumed that the lead time is controllable with added cost so as to optimise ordering 
quantity. Pan and Yang (2002), Ben-Daya and Raouf (1994) and Ouyang et al. (2004) 
considered only three lead-time components. In practical problems there may be many 
lead-time components within the control of the parties involved. It is in the interests of 
both parties involved to reduce the lead time as much as economically possible, by 
techniques such as work study (Goyal, 2003). Most of the published papers have assumed 
a deterministic environment. When demand during the cycle time is not deterministic but 
stochastic, the system lead times become important issues and their control leads to some 
quantitative benefits. The system lead time (Tersine, 1994) consists of order presentation, 
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order transit, supplier lead time, delivery lead time and set-up time. Lead-time crashing 
facilitates lower lead time, and enables quick response and production line structuring. It 
also reduces inventories in the SC and improves the coordination between different stages 
of the network. For general problems, whenever the lead time reduces for either larger or 
smaller demands for immediate delivery, companies may face stock-out problems, but in 
the method proposed the stock-out is eliminated or minimised.  

Persona et al. (2005) proposed an analytical model able to take into account the 
effects of obsolescence in a SC-based CS model. They used a deterministic single 
vendor–single buyer CS model as a basis to develop the model. The results showed  
that the presence of obsolescence reduces the optimal inventory level, specifically for 
short-life components.  

Recently, Srinivas and Rao (2004) extended and analysed the models proposed by 
Braglia and Zavanella (2003) and Ouyang et al. (2004) for single vendor–single buyer 
inventory models, with emphasis on crashing lead time. Their model suggests that CS 
with stochastic lead-time reduction yields less JTEC. The literature review papers of 
Aytug et al. (2003) and Chaudhury and Luo (2005) reveal that no attempt has been made 
to develop a heuristic method such as Genetic Algorithm (GA) to determine inventory 
levels in SC echelons. The recent paper of Daniel and Rajendran (2005) studied GA, 
enumeration and Random Search Procedure (RSP) methods for single-product serial SC 
operating with a base-stock periodic review system to optimise the base-stock inventory 
levels in the SC so as to minimise the total SC cost, comprising holding and shortage 
costs at all the installations in the SC. They found that the solution generated by the 
proposed GA was not significantly different from the optimal solution yielded by 
complete enumeration, but it is significantly good for deterministic replenishment lead 
times and the other solution for random replenishment lead times. They did not check for 
multibuyer stochastic demand and lead-time models.  

This paper addresses the problem of CS in SCs to minimise JTEC for a single 
product, single vendor–multibuyer model. It is an extension of Srinivas and Rao (2004). 
To simplify the analysis, we have assumed that there is only one entity per tier. In 
Srinivas and Rao (2004), the authors used both enumeration techniques as well as GA. 
The former takes up more CPU time (more than a couple of hours) for more than three 
buyers with five process variables and the latter method takes less than 20 sec. for all 
models. Hence we have restricted ourselves to the GA method and applied this mode  
up to ten buyers. Goyal (1974) proposed an enumerative procedure, which requires 
substantial computational effort to produce an optimal solution. The running time of this 
procedure grows exponentially with the number of items. However, a heuristic procedure 
that requires less computation can be adopted successfully. The enumeration technique 
generally will have to search for the optimal solution in open space.  

The most attractive feature of GA (Gen and Cheng, 2000) is its flexibility in handling 
objective functions with minimal requirements for fine mathematical properties and its 
ability to deal with real-life problems. 

2.1 Notations and assumptions 

The necessary notations used in this paper are summarised as follows: 

Av  batch set-up cost ($) (vendor) 

Ab  order emission cost ($) (buyer) 
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hv  vendor stock holding cost ($) per unit per unit time 

hb  buyer stock holding cost ($) per unit per unit time 

p  vendor production rate (continuous) 

di  demand rate in units per unit time seen by the buyer (continuous) 

σ  standard deviation of demand/unit time 

π  unit back-order cost ($) for the buyer 

L  length of the lead time for the buyer 

CL  lead-time crashing cost ($) per cycle 

k1  delay deliveries (≤ n) 

φ  normal probability density function  

Φ  cumulative distribution function 

n  number of transport operations/production batch 

mi  delayed deliveries shifted to another buyer (≤ k) 

jij  delivery shifted from i-th buyer to j-th buyer, ΣJij = mi. 

To develop the proposed models the following assumptions are used: 

• single-product flow (one set-up for each vendor) with continuous review of 
inventory replenishment system over an infinite horizon for single  
vendor–multiple buyers 

• buyer and vendor carrying cost is independent of quantity transported but 
proportional to the holding time 

• the demand rate and the delivery lead time for each buyer are continuous variables 
with known, stationary probability distributions 

• shortages during the lead time are permitted on the basis of fixed cost 

• demand is normally distributed and there is no order splitting 

• 
1

  
y

i
i

d production rate production capacity
=

< >/∑  (i.e., infinite capacity) 

• if demand exceeds on-hand inventory, the situation is considered as shortage 

• bi v i ih h ,   and  n 1  bi

i i

dp

n n
> ≥ ≥ ∀∑  

• Production is organised in such a way that the first shipment for each buyer is done 
in sequence. Following this sequence, the first delivery starts with the first buyer 
followed by the second, the third and so on. The duration from one delivery to the 
next is fixed for each buyer. 
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3 Genetic algorithm: an introduction 

We propose a Genetic Algorithm (GA) approach to optimise the CS-based inventory 
models’ JTEC in an SC. This study attempts to perform both performance analysis and 
optimisation, i.e., various inventory policy settings yielded by the GA are evaluated. GA 
is a class of evolutionary algorithms that utilise the theories of evolution and natural 
selection. GA begins with a population of randomly generated strings that represent the 
problems’ possible solutions. Thereafter, each of these strings is evaluated to find its 
fitness. The initial population is subjected to genetic evolution to procreate the next 
generation of candidate solutions (Goldberg, 1989). The members of the population are 
processed by the four main GA operators – reproduction, crossover, mutation and 
inversion – to create the progenies for the next generation of candidate solutions. The 
progenies are then evaluated and tested for termination until a satisfactory solution (based 
on the acceptability or search stoppage criterion) is found; then the search is stopped. 

3.1 Working mechanism of GA 

Schematic working principle of GA is shown in Figure 1 and the GA consists of six 
steps, those are: 

1 Initialise a set of feasible solutions (i.e., initialise a population of  
chromosomes) randomly. 

2 Compute the fitness value 
1( , , , )

1

1t

n k c L

f
JTEC

=
+

 for every chromosome in  

the population. 

3 Select chromosomes for reproduction by making use of the roulette wheel selection 
procedure and fitness function value. 

4 Apply crossover and mutation on the selected chromosomes to produce  
new chromosomes. 

5 Form next-generation population. 

6 If the stopping condition is reached, return to the best solution; if not, go to 2. 

GA works on a population or collection of solutions to the given problem. Each 
individual in the population is called a chromosome. Designing chromosomes is a very 
important step in GA, which contains decision variables that are to be optimised. The 
chromosome structures for various models are summarised below: 

• Basic CS model     (c, ni, Φ(z)) 

• CS with delay model     (c, ni, ki, Φ(z)) 

• CS with information sharing and delay model  (c, ni, ki, mi, jij, Φ(z))  

• CS-LT model     (c, ni, Li, Φ(z)). 

Integer coding is used for n, k, m and j, whereas for c and Φ(z) the range is large; therefore 
binary coding has been considered for these two variables. For converting into binary 
coding, first multiply with 1000 to remove the decimal point and then convert to binary 
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coding. The population size is fixed at 150–190; crossover rate and mutation rate for  
the proposed GA are fixed by conducting a pilot study with different combinations of 
probability of crossover (pc) from 0.7 to 0.8 and probability mutation (pm) 0.05 with 
respect to four different CS policies. The number of generations is fixed at 500. 
Crossover is known as ‘recombination’; it exchanges information among the strings 
present in the mating pool and creates new strings. In crossover, two strings are picked 
from the mating pool and some portions of these strings are exchanged between them. 

Figure 1 GA principle schematic flowchart 

best solution

Gen = Gen + 1

 chromosome encoding

initialise population

termination
satisfied?

crossover

mutation

new population

no

yes

selection
chromosome for reproduction

fitness function evaluation

Gen = 0

 

A crossover operator attempts to produce new strings of superior fitness by effecting 
large changes in a string in search of the optimum in the solution space. The need for a 
local search around a current solution also exists and is accomplished by mutation. 
Mutation is additionally aimed at maintaining diversity in the population. Mutation 
creates a new solution in the neighbourhood of a current solution by introducing a small 
change in some aspect of the current solution and helps to ensure that no point in the 
search space has a zero probability of being examined. The commonly used mutation 
operator is swap mutation. For binary coding, a normal swap mutation operator is used. 
All bits in binary number are mutated with pm = 0.05 and a uniform random number 
between 0 and 1 is generated. If the number is less than the probability of mutation,  
then that bit is changed from 0 to 1 or vice versa. For integers, all genes in the parent 
population are mutated with pm = 0.05, by sampling a uniform random number, u. If  
u ≤ mutation rate, then the value of the gene is altered as given below: 

  (1 ) 2new old oldS S x x uS= − +  

where: 

Snew = is the new gene after mutation 
Sold = is the gene before mutation 

u = is a uniform random number between 0 and 1 
x = denotes the fraction of Sold. 
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It is to be noted that if the computed Snew takes a noninteger value, then it is rounded off 
to the nearest integer. In this study ‘x’ is set to 0.2. The same repair function as discussed 
in crossover is used for damaged genes after mutation. After crossover and mutation, the 
new population is called child population. We now have N chromosomes in the initial 
population and N chromosomes in the parent population. The best N chromosomes, 
among the 2N chromosomes in the initial and parent population put together, with respect 
to JTEC are chosen for entry into the parent population as the surviving chromosomes for 
the next generation. 

An example of a chromosome for the one vendor–four buyers case for the CS with 
delay model is: 

 

  c  n1 n2 n3 n4 k1 k2 k3 k4 Φ(z) 
1st parent chromosome:  0.112  5 6 4 2 3 5 1 1 0.980 
2nd parent chromosome:  0.122  8 4 5 6 7 2 2 2 0.862 

 
parent strings before crossover: 
 binary coding  integer coding  binary coding 
      
 1 1 1 0 0 0 0  5 6 4 2 3 5 1 1  1 1 1 1 0 1 0 1 1 0 0 
 1 1 1 1 0 1 0  8 4 5 6 7 2 2 2  0 1 1 0 1 0 1 0 0 1 0 
 
offsprings after two point crossover operator: 
 1 1 1 1 0 0 0  5 6 4 6 7 2 2 1  0 1 1 0 1 0 1 0 1 0 0 
 1 1 1 0 0 1 0  8 4 5 2 3 5 1 2  0 1 1 1 0 1 0 1 0 1 0 
 
after decoding: 
 c  n1 n2 n3 n4 k1 k2 k3 k4 Φ(z)  
 0.120  5 6 4 6 7 2 2 1 0.852  
 0.114  8 4 5 2 3 5 1 2 0.938  

 

 

Variables in the offspring after crossover may cross the permissible independent 
boundary ranges. They are found in the above chromosome ni < ki, but it  
should be ni ≥ ki. Therefore a repair function is to be devised to correct these  
defective chromosomes. 

offsprings after repair:              

1st child chromosome:  0.120  5 6 4 6 3 2 2 1  0.852 

2nd child chromosome:  0.114  8 4 5 2 3 2 1 2  0.938  

3.2 Optimum GA parameters 

Population size, number of generations, probability of crossover and probability of 
mutation are the GA parameters. A large population size means a better exploration of 
the search space, while a large number of generations allows for better exploitation of the 
promising solutions found. Generally, the larger these parameters are, the better the 
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algorithm will perform, but at the expense of longer run-times, since more fitness 
evaluations will be involved. Population size is fixed at 150 after experimentation. The 
termination criterion used is the number of generations that are fixed at 500. The 
probability of crossover is varied from 0.5 to 1 with a step of 0.1; the optimum value 
found of 0.7 pm is varied from 0.05 to 0.15 in steps of 0.05; and finally 0.05 is fixed, as it 
gives optimum cost. 

4 Vendor-buyer inventory models 

4.1 Consignment stock model 

In this model, the vendor uses the buyer’s warehouse for keeping the goods produced by 
the vendor without changing the ownership. To fulfil this concept, the vendor should be 
close to the buyer production line. This creates a condition of shared benefit; neither the 
vendor nor the buyer will benefit until the product is sold to an end user. This shared  
risk-benefit condition will often be enough to convince the buyer to stock the products. 
The key benefit to the buyer should be obvious – that he/she does not have to tie up 
his/her capital hb, finance. This does not mean that there are no inventory carrying costs for 
the buyer, as he still incurs costs hb, stock related to storing and managing the inventory, 
i.e., both parties incur holding costs, depending on different rates and the length of time 
for which materials are stocked in SC. Finally, the buyer sees a lower inventory cost per 
unit, i.e., only hb, stock instead of the entire hb, stock + hb, finance. Further, there is no longer 
any administrative cost per placement of an order. The vendor will have set-up costs and 
holding costs, whereas the buyer will have order emission costs and holding costs.  

The average total cost for this model is: 

vendor set-up cost  average vendor holding cost  buyer ordering cost 

  average buyer holding cost safety stock cost  shortage cost

CS
CT = + +

+ + +
 

2

1 1 1

1

1

2

 ( 1)
2

1
 ( )

i

i

y y y
CS i

C v i i ti
i i ii

b j ji
i i i

i ji j i

y

b i i i i i
i

Ds c
T h A n A

c p n c

h D c nD c
D c n D

n p n p n

h z L L z
c

σ π σ

= = =

≠

=

⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪+ − − +⎢ ⎥⎨ ⎬⎜ ⎟

⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
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∑

∑

 (1) 

Equation (1) is modified as: 

( ) ( )
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1
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1
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c
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Equation (2) is written as: 

( ) ( )
1 1

1 1
( ) ( ) ( )

i

y y
CS

C b i i i i i
i i

T G n H n c h z L L z
c c

σ π σ
= =

= + + + Ψ∑ ∑  (3) 

where: 

1

( ) ( )
y

i i ti
i

G n s A n A
=

= + +∑  

2

1 1

1
( ) ( 1)

2 2
i

y y
b j ji i

v i i i
i i i ji i j i

h D nD D
H n h D n D

p n n p n p n= = ≠

⎛ ⎞⎧ ⎫⎡ ⎤⎡ ⎤ ⎛ ⎞⎪ ⎪⎜ ⎟= + − − +⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎪ ⎪⎣ ⎦⎩ ⎭⎝ ⎠
∑ ∑ ∑  

The minimum cost for optimum values of (c, n and z) will be: 

( ) ( )
1

2

1 1

( ) ( ) ( )
i

y y
CS

C i i i b i i
i i

T G n L z H n h z Lπ σ σ
= =

⎧ ⎫⎛ ⎞⎪ ⎪= + Ψ +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑  (4) 

The maximum level of inventory for buyer i is: 

max ( 1) .j ji
i i i i i i

j ii j i

D c nD c
b D c n D z L

n p n p n
σ

≠

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − − + +⎢ ⎥⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑  (5) 

4.2 CS-k1 model (number of delayed deliveries, k1< n) 

The CS model is not suitable for limited/small periods because the maximum level of the 
buyer’s inventory may be reached even within limited periods. Hence the CS model with 
delayed delivery period (CS-k1) is preferred for limited periods. In the CS-k1 model, the 
last delivery is delayed until it happens that there is no longer an increase in the level 
reached. That means we always have to delay the stock whenever the maximum level of 
inventory stock is reached. The average joint total cost in this model is: 

( ) ( )1

1 1

1 1
( ) ( ) ( )

i

y y
CS k

C i i i b i i
i i

T G n H n c L z h z L
c c

π σ σ−

= =

= + + Ψ +∑ ∑  (6) 

where: 
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The minimum cost for optimum values of (c, n, k1 and z) will be: 
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The maximum inventory level for buyer i is: 

1 1
max ( ) ( 1) .j ji i

i i i i i i i i
j ii i j i

D c nD c D c
b n k n k D z L

n n p n p n
σ
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⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎪ ⎪= − − − − + +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∑  (8) 

Equation (8) ensures that not less than a single delay has been delayed. When k1 = 0, 
Equation (8) becomes the maximum level of the buyer’s stock in the basic CS model 
(Equation (7)), and when k1 = (n – 1), Equation (8) matches with the maximum level of 
the buyer’s stock of Hill (1999) model, in which max .hillb nq=  The delay-deliveries strategy 

is much explained in Simone and Grubbstrom (2004). They also provided a quick method 
for calculating the optimal total number of deliveries and number of deliveries to be 
delayed and gave more emphasis on inventory holding costs of the vendor and buyer. 

4.3 CS with information sharing and delay 

Goyal (1976) is credited as the first person to describe integrated models of single 
vendor–single buyer. Goyal (1977) proposed a Joint Economic Lot Size (JELS) model to 
minimise total relevant costs, which is compared with total costs incurred if vendor and 
buyer act independently. Banerjee (1986) generalised Goyal’s (1977) model by assuming 
the vendor with finite rate produces for a buyer on a lot-for-lot basis under deterministic 
conditions. Goyal (1988) generalised the Banerjee (1986) model by relaxing the 
assumption of the lot-for-lot policy of the vendor. In an integrated inventory model, one 
partner’s gain exceeds the other partner’s loss. Therefore, the net benefit can be shared in 
some equitable fashion (Goyal and Gupta, 1989). They also summarised the literature on 
integrated vendor-buyer models. 

The model of consignment stock with partial information sharing includes 
information on demand, shipments and inventory. In SCM one of the most well-known 
problems is the Bullwhip effect. It can be controlled with partial information sharing. It is 
known that partial information sharing benefits the vendor more than the buyer owing to 
a reduction in vendor inventory and also to adjusted shipments between buyers; otherwise 
the vendor may have to keep the inventory (see Section 5, Table 2). In this view the SC is 
constructed in such a way that if the buyer does not need a particular scheduled delivery 
lot, the vendor finds an alternative buyer in the SC network. To fulfil this, the vendor 
adjusts the exact delivery quantity required by the alternative buyer, i.e., the shifted 
quantity should be equal to the scheduled quantity of the alternative buyer. 

The average total cost in this model is: 
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The optimum value of c and Φ(z) is: 
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From Equation (9) the minimum cost for optimum values (n, k1, m) is calculated after 
differentiating as follows: 
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∑ ∑  (12) 

The maximum level of inventory for buyer i is: 

1 1
max 1

 .
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+

∑ ∑ ∑
 (13) 

4.4 CS-LT model 

In this model, the vendor will closely negotiate with a buyer to reduce lead time as much 
as possible, down to a point where it is acceptable to the buyer with his stable production 
and delivery schedule. The inventory is reviewed continuously and shortages are allowed 
with fully backordered. It should be noted that the delivery lead time is null, however the 
batch is to be produced, so that there exists a ‘system lead time’ other than zero. By 
adding an additional cost, the lead time can be controlled. Thus the system lead time is 
drastically reduced one at a time starting from the first independent component because it 
has minimum unit crashing cost per unit time, and then the second independent 
component, and so on. It is clear that when lead time is reduced, its corresponding 
handling cost for that time is reduced. The length of lead time which ensures the order 
transit arrival even though lead time is crashed and shortages if any are permitted. Since 
lead time is a decision variable in this model, the extra costs incurred by the vendor will 
be fully transferred to the buyer if the shortened lead time requested can be viewed as  
an investment. 
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The lead time crashing cost per cycle CL is: 
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1
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where: 

0 1

n

ji
L b

=
= ∑  

and Li is the length of the lead time with components 1,2..i which is to be crashed to 
minimum duration, and L∈[Li, Li–1] for the i-th component has a normal duration ‘bi’ and 
minimum duration ‘ai’ and crashing cost per unit time ‘ci’, such that c1≤ c2≤ … ≤ cn 
(Table 1). 

( ) ( )
1 1 1

1 1 1
( ) ( ) ( )

i

y y y
CS LT

C b i i i i i Li
i i i

T G n H n c h z L L z C
c c c

σ π σ−

= = =

= + + + Ψ +∑ ∑ ∑  (16) 

where: 

1 1

( )
y y

i i ti
i i

G n s A n A
= =

= + +∑ ∑  

2

1 1

1
( ) ( 1) .

2 2
i

y y
b j ji i

v i i i
i i i ji i j i

h D nD D
H n h D n D

p n n p n p n= = ≠

⎛ ⎞⎧ ⎫⎡ ⎤⎡ ⎤ ⎛ ⎞⎪ ⎪⎜ ⎟= + − − +⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎪ ⎪⎣ ⎦⎩ ⎭⎝ ⎠
∑ ∑ ∑  

( )
1 1

( ) ( )

( )

y y

i i i Li
i i

G n L z C
c

H n

π σ
= =

+ Ψ +
=

∑ ∑
 (17) 

( )

( )
1

1

( ) 1 .
i

y

b i i
i

y

i i i
i

c h L

z

L

σ

π σ

=

=

⎡ ⎤
⎢ ⎥
⎣ ⎦Φ = −
∑

∑
 (18) 

The minimum cost for optimum values of (c, n, L, z) is: 
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The maximum level of inventory for buyer i is: 
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Table 1 Lead-time crashing cost 

Lead-time 
component, i 

Leading time 
(days) (bi – ai) days 

Unit crashing cost  
Ci ($/day) 

Total crashing cost 
($) 

1 14 0 0 0 

2 10.5 3.5 0.4 1.4 

3 7 3.5 1.2 5.6 

4 5.25 1.75 5.0 14.35 

4.5 Algorithm for lead-time control CS model 

In this section, an iterative algorithm (single vendor–two buyers) that includes  
the crashing expenses is presented to find the minimum JTEC with optimal  
decision variables: 

Step 1 Set n1, 2 = 1. 

Step 2 For each L1, 2 perform Steps (a) to (e): 

a Start with z = 0 (implies Ψ(z) = 0:39894; which can be obtained by 
checking the standard normal table φ(z) = 0.39894 and Φ(z) = 0.5). 

b Substitute Ψ(z) into Equation (17) to evaluate c. 

c Using c, determine Φ(z) from Equation (18), then find z for the next 
iteration by checking the standard normal table, and hence Ψ(z) for  
the next iteration. 

d Repeat (b) to (c) until no change occurs in the values of c and z. 

e Find corresponding min. JTEC(c, n2, n1, L1, L2, z) = JTEC (c*, n2, n1, L1,  
L*

2, z
*). 

Step 3 For each L1, L2, repeat Step (a) to (e) to get JTEC (c*, n2, n1, L1
*, L*

2, z
*). 

Step 4 If JTEC (c*, n2, n1, L1, L
*

2, z
*) ≤ JTEC (cL1–1

*, n2(L1–1), n1(L1–1), L1–1, L*
2(L1–1), 

z(L1–1)
*), then go to Step 3, otherwise go to Step 5. 

Step 5 Set JTEC (c*, n2, n1, L
*

1, L
*
2, z

*) = JTEC (cL1–1
*, n2(L1–1), n1(L1–1), L1–1, L*

2(L1–1), 
z(L1–1)

*). 

Step 6 Set n2 = n2 + 1; repeat Steps 2 to 5 to get JTEC (c*, n2, n1, L
*
1, L

*
2, z

*). 

Step 7 If JTEC (c*, n2, n1, L
*

1, L
*

2, z
*) ≤ JTEC (cn2–1

*, n2(n2–1), n1(n2–1), L
*
1(n2–1), L

*
2(n2–1), 

z(n2–1)
*), then go to Step 6, otherwise go to Step 8. 

Step 8 Set JTEC (c*, n*
2, n1, L

*
1, L

*
2, z

*) = JTEC (cn2–1
*, n2(n2–1), n1(n2–1), L

*
1(n2–1),  

L*
2(n2–1), z(n2–1)

*). 

Step 9 Set n1 = n1 + 1; repeat Steps 2 to 7 to get JTEC (c*, n*
2, n1, L

*
1, L

*
2, z

*). 

Step 10 If JTEC (c*, n*
2, n1, L

*
1, L

*
2, z

*) ≤ JTEC (cn1–1
*, n2(n1–1), n1(n1–1), L

*
1(n1–1),  

L*
2(n1–1), z(n1–1)

*), then go to Step 9, otherwise go to Step 11. 

Step 11 Set JTEC (cn1–1
*, n*

2(n1–1), n1(n1–1), L
*
1(n1–1), L

*
2(n1–1), z(n1–1)

*) = JTEC (c*, n*
2, n

*
1, 

L*
1, L

*
2, z

*); then (c*, n*
2, n

*
1, L

*
1, L

*
2, z

*) is the optimal solution. 
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5 Numerical results 

The input values to all the models discussed refer to Ben-Daya and Raouf (1994),  
Braglia and Zavanella, (2003), Ouyang et al. (2004) and Srinivas and Rao (2004):  
hv = $4per unit/year, 

ibh = $5per unit/year, di(units/year) = 1000, 1300, p/∑di ratio = 3.2, 

σi = 44.72, 50, Av = $400/set up, Ab = $25/order, π = $50/unit. The input data is  
extended to ten buyers with di = 3,4,10 = 800, 1000, 1500, 600, 1200, 1500, 1000, 800 and 
σi = 3,4,10 = 35.7, 30, 30, 20, 30, 30, 30, 20. A brief summary of results is given in Table 2. 

Table 2 Summary of results of up to ten buyers with a single vendor 

Buyer’s size 

Variable Model 2 3 4 5 6 7 8 9  10 

CS 7106 9683 11 476 13 900 15 274 17 326 19 760 21 780 23 704 

CS-k1 6855 8908 11 279 13 743 15 150 17 355 19 707 21 767 23 231 

CS-IS-k1 6545 8544 10 841 13 366 13 651 16 864 19 200 21 325 22 497 

JTEC ($) for 
(Σbi) 

CS-LT 5703 7392   9049 10 995 12 077 13 779 15 616 17 173 18 331 

CS  690  603    564    548    503    489    489    480    459 

CS-k1  569  485    491    490    456    447    457    459    462 

CS-IS-k1  593  510    473    511    442    462    455    456    433 

S max. 
(buyer max. 
stock) 

CS-LT  551  480    443    433    389    382    385    372    363 

CS  351  327    316    314    291    289    291    292    283 

CS-k1  334  309    304    304    282    281    285    285    283 

CS-IS-k1  317  305    292    295    256    270    277    277    262 

S min. 
(buyer min. 
stock) 

CS-LT  207  194    187    182    172    170    171    170    165 

CS    6    7      8     10     11     13     14     13     13 

CS-k1   10   12     12     14     17     18     19     19     16 

CS-IS-k1   12   13     14     17     23     20     22     22     28 

No. of 
shipments 

CS-LT    6    7      8     10     10     12     12     12     12 

CS-k1    4    6      5      4      4      5      4      3      1 Delay 
deliveries CS-IS-k1    6    7      6      7      9      7      8      7     10 

Jik CS-IS-k1    3    4      3      4      5      4      4      4      5 

It is found that the number of shipment deliveries in CS-IS-k1 is mainly due to partial 
information sharing, whereas it is almost equal in the cases of CS and CS-LT. Even 
though the number of shipments is almost equal in the cases of CS and CS-LT, the JTEC 
cost in CS-LT is much less compared to all other models due to considerable reduction in 
buyer total cost (Table 2). Savings in cost with CS-k1 and CS-IS-k1 policies decrease as 
uncertainty in demand and lead time increases, whereas for the CS-LT model they 
increase as uncertainty in demand and lead time increases. Therefore, when uncertainty in 
demand and lead time is higher, one should prefer the CS-LT policy, as it lowers the lead 
time (Table 2). Buyers’ maximum stock level and safety stock level (minimum stock) in 
the case of CS-LT are always low. The greatest difference is for CS, then CS-IS-k1 and 
CS-k1. The difference in the case of CS-k1 and CS-IS-k1 is controlled owing to delay and 
information sharing. 



   

 

   

   
 

   

   

 

   

   258 C. Srinivas and C.S.P. Rao    
 

    
 
 

   

   
 

   

   

 

   

       
 

The CS-LT policy for single vendor–single buyer terminates the iterative algorithm 
analysis for a minimum JTEC of $6,335, with two components’ lead-time reduction with 
an aggregate lead time of (6 + 6 + 16) 28 days for a set of given inputs (Srinivas and Rao, 
2004). For the same single vendor–single buyer input and the same given input, Ouyang 
et al. (2004) got aggregate lead time as 28 days and JTEC as $6,660.4. For both these 
models, total lead time is 28 days. In the case of CS-LT single vendor–multibuyer, the 
lead time is reduced down to minimum, because in the multibuyer case the buyer who 
takes the lowest lead-time component reduction (10.5 + 7 + 5.25), 22.75 days, is 
considered in the final output (Tables 2 and 3).  

The results show that by having more buyers in the SC, the projected total cost 

savings pCS LT

CT −  (where p

CS LT
CS LT C

C
i

T
T

b

−
− = ) of one buyer increases by a considerable 

amount (Table 3) for bi = 1 to 5, and then steadily from bi = 6 to 10. It gives the lowest 
projected cost ($1,833) when ten buyers exist in the SC network. For the basic CS model 
in the case of Braglia and Zavanella (2003) it is $2,035; the proposed CS-LT model has 
11% cost savings. The savings are due to reduction in shipments and reduction  
in the buyers’ carrying cost. The sensitivity analyses given through Figures 2 to 6 refer to 
the single vendor–two buyers model. The closer the total demand rate to the production 
rate, the greater the savings that can be obtained. In other words, by gradually decreasing  
the ratio of the production rate to demand rate, the percentage of JTEC savings is 
increased. In contrast, by increasing the value of (p/d), the savings are decreased. 
However, it does not mean that the savings diminish to zero as (p/d) becomes 
significantly high, as shown in Figure 2. 

Table 3 Comparison of different strategies of Braglia and Zavanella (2003) 

 
Braglia and Zavanella (2003) 
(single vendor–single buyer) 

This model pCS LT

C(T ),−  with buyer size varying 

from 6 to 10 

Variable CS-k1 = 2 CS-k1 = 1 CS bi = 6 bi = 7 bi = 8 bi = 9 bi = 10 

Total cost ($) 1929 2003 2035 2013 1969 1952 1908 1833* 

Max. level of 
buyer stock 

 164  267  376  389  382  385  372 363 

Number of 
shipments 

   3    3    4    2    2    2    2  2 

The buyer’s maximum stock level with minimum JTEC ranges from 1100 to 1400. The 
minimum total cost in the case of CS-LT is 5703 (two buyers) with buyers’ maximum 
level of 1102 (two buyers). There is a close range for CS-k1 and CS-IS-k1 but for  
basic CS, the minimum total cost occurs at buyers’ maximum level, 1430 (two buyers) 
(Figure 3). From the fundamentals of CS policy the vendor always prefers to have  
the maximum stock level at the buyer’s. Figure 3 gives total system cost in the case of 
two buyers while increasing the shipment size. The minimum JTEC is for n = 5 in  
the case of the CS-LT model, whereas for CS, CS-k1 and CS-IS-k1 it is 6, 10 and  
12 respectively (Figure 4). 
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Figure 2 Effect of (p/d) ratio on the percentage of savings in JTEC 
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Figure 3 JTEC ($) for different CS policies with buyer’s maximum stock 
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Figure 4 Total system cost for different CS models and number of shipments 
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Figure 5 JTEC for CS-k1 model with different shipments 

 

Figure 6 JTEC and maximum level of buyer’s stock for a different k1 

 

CS-k1 = 4 gives the lowest JTEC at n = 10. CS-k1 ∈ CS ∀ k1 = 0 always produces a 
maximum cost, if it adopts the basic CS model (Figure 5). The minimum JTEC for CS-k1 
model decreases from k1 = 8 to 4 and then increases from k1 = 4 to 1. For k1 = 4 there is a 
low buyer and vendor inventory cost for all the ranges of maximum buyer inventory 
levels (Figure 6). 

6 Conclusions and future scope 

The CS inventory management policy with controllable lead time has proved to  
be suitable for facing new SCM challenges with stochastic demand for single  
vendor–multiple buyers. Four types of models have been developed, basic CS, CS with 
delay, CS with information sharing and delay, and CS-LT. It is found that for multibuyer 
models with five or more buyers, the total cost savings increases. 



   

 

   

   
 

   

   

 

   

    Optimisation of supply chains 261    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Future studies have to be made in the areas of CS with controllable lead times and 
other policies for single vendor–multiple buyers with multiple products that can be 
extended to multiple echelons. Radio Frequency Identification (RFID) can also be used 
as a tool, and is gaining prominence as a pervasive technology with significant potential 
to deliver business benefits. These include stock availability improvements of >50% and 
a reduction of ≈ 20% labour cost. The CS policy with RFID in the SC could give 
extremely good results. 
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