Unsteady Natural Convection Micropolar Flow over Vertical Cylinder
H. P. Rani

Citation: AIP Conference Proceedings 1048, 827 (2008); doi: 10.1063/1.2991059

View online: http://dx.doi.org/10.1063/1.2991059

View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1048?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
MHD mixed convection flow of a power law nanofluid over a vertical stretching sheet with radiation effect
AIP Conf. Proc. 1557, 604 (2013); 10.1063/1.4824173

Global Instability of an Inviscid Compressible Flow over a Cavity
AIP Conf. Proc. 1048, 810 (2008); 10.1063/1.2991055

Numerical Simulation of Flow around Rotating Disk with Mixing of Injected Component
AIP Conf. Proc. 1048, 775 (2008); 10.1063/1.2991045

RKN Methods Based on Exact Flows of Both Internal Stages and Update for Solving Perturbed Oscillators
AIP Conf. Proc. 1048, 605 (2008); 10.1063/1.2990998

Numerical Simulation of Flow and Pollution Dispersion in the Area of Opencast Coal Mine
AIP Conf. Proc. 1048, 100 (2008); 10.1063/1.2990862



http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=H.+P.+Rani&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.2991059
http://scitation.aip.org/content/aip/proceeding/aipcp/1048?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4824173?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2991055?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2991045?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2990998?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2990862?ver=pdfcov

Unsteady Natural Convection Micropolar Flow over Vertical
Cylinder

H.P. Rami

Department of Mathematics and Humanities, National Institute of Technology, Warangal, India

Abstract. Transient free convective boundary layer flow of micropolar fluids past a semi-infinite cylinder is analysed in
the present study. The transformed dimensionless governing equations for the flow, microrotation and heat transfer
characteristics are solved by using the implicit scheme. The obtained results concerning velocity, microrotation and
temperature across the boundary layer are illustrated graphically for different values of the parameters and the
dependence of the flow and temperature fields from these parameters is discussed.
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INTRODUCTION

The transient natural convection flows over vertical bodies have a wide range of applications in engineering and
technology. In manufacturing processes such as hot extrusion, metal forming and crystal growing, heat transfer
effects plays an important role. Free convection flow of air bathing a vertical cylinder with a prescribed surface
temperature was first presented by Sparrow and Gregg [1] by applying the similarity method and power series
expansion. Velusamy and Garg [2] presented the numerical solution for transient natural convection over heat
generating vertical cylinders of various thermal capacities and radii. Ganesan and Rani [3] has investigated the
unsteady natural convection flow over a vertical cylinder with variable heat and mass transfer using the finite
difference method. All the above mentioned investigations deal with the flows Newtonian fluid model. With the
above discussion in mind, the purpose of the present paper is to examine analytically the natural convection flow of
a non-Newtonian fluid over a semi-infinite vertical cylinder.

A micropolar fluid obeys the constitutive equations of the considered non-Newtonian fluid model. In the
micropolar fluid model, apart from the classical velocity field, a microrotation vector and a gyration parameter are
introduced in order to investigate the kinematics of microrotation. Such fluid model may be applied to explain the
flow of colloidal solutions, liquid crystals, fluids with additives, suspension solutions, animal blood, etc. Unlike the
other fluids, micropolar fluids are fluids with microstructure belonging to a class of fluids with non-symmetrical
stress tensor. Physically, they represent fluids consisting of randomly oriented particles suspended in a porous
medium. The governing equations here are highly non-linear and coupled. They are solved by the Crank-Nicolson
implicit method. Expressions for velocity components and temperature are developed. The effects of various sundry
parameters are systematically examined through graphs.

MATHEMATICAL FORMULATION

An unsteady two-dimensional laminar natural convection boundary layer flow of a viscous incompressible
micropolar fluid past an isothermal semi-infinite vertical cylinder of radius r, is considered. The x and r-axis are
measured vertically upward along the axis of the cylinder and perpendicular to the axis of the cylinder, respectively.
The origin of x is taken to be at the leading edge of the cylinder, where the boundary layer thickness is zero. The

surrounding stationary fluid temperature is assumed to be of the ambient temperature (7', ). Initially, i.c., at time #’=
0 it is assumed that the cylinder and the fluid are of the same temperature 7| . When /> 0, the temperature of the

cylinder is maintained to be 7, (> 1. "'y which gives rise to a buoyancy force. It is assumed that the effect of viscous
dissipation is negligible in the energy equation.
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With the above assumptions and under the usual boundary layer approximation together with the Boussinesq
approximation, the governing equations for the steady, laminar, incompressible, micropolar fluid flow along the
vertical cylinder are
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where # and v are the velocity components parallel to x and » coordinates, respectively, N’ is the microrotation /
angular velocity, whose direction of rotation is in the xy-plane, g is the acceleration due to the gravity, S is the
volumetric coefficient of thermal expansion, p is the density, o is the thermal diffusivity, x4 is the dynamic viscosity
and j, y and k; the respective microinertial per unit mass, spin gradient viscosity and vortex viscosity. The above

partial differential equations subject to the following conditions:
t'<0:u=0, v=0, N'=0,T'=T, forallxandr
t'>0:u=0, v=0, N'= la—u LI'=T,, atr=r, ®)
20r’
u=0, v=0, N'=0,T'= T,, at x=0
u—0, v>0,N'=0,T" >0 asr—> o

The non-dimensional quantities are defined as
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where K = k/u(> 0) the vortex viscosity or the material parameter, v is the kinematic viscosity, Gr and Pr denote the
Grashof number and the Prandtl number, respectively.

In non-dimensional form, the above equations (1)—(5) reduce to
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with the initial and boundary conditions
t<0:U=0,V=0,N=0,T=0 forall Xand R

t>0:U=0,V= ON——la—U T=latR=1 an
28R’
U=0,V=0,N=0,T=0atX=0
U—>0, V>0, N>0,T—>0asR—>w

NUMERICAL SOLUTION OF THE PROBLEM

In order to solve the unsteady coupled non-linear governing equations (7)-(10) an implicit finite difference scheme
of Crank-Nicolson type has been employed. The finite difference equations corresponding to equations (7)-(10) are
as follows:
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The region of integration is considered as a rectangle composed of the lines indicating X, = 0, Xpox = 1, Rpin =1
and Ry.x = 5 where R, practically corresponds to R = oo which lies very far from the momentum and energy
boundary layers. In the above Eqs. (12)-(15) the subscripts i and j designate the grid points along the X and R
coordinates, respectively, where X =i AX and R =1 + (j -1) AR and the superscript k& designates a value of the time ¢
(= k Ar), with AX, AR and At the mesh size in the X, R and ¢ axes, respectively. In order to obtain an economical and
reliable grid system for the computations, a grid independence test has been performed. The steady-state velocity
and temperature values obtained with the grid system of 50 x 300 differ in the second decimal place from those with
the grid system of 25 x 150, and differ in the fifth decimal place from those with the grid system of 100 x 600.
Hence the grid system of 40 x 300 has been selected for all subsequent analyses, with AX =0.02, AR = 0.02. Also
the time step size dependency has been carried out, which yields Ar = 0.001 for reliable result. The method of
solving the above finite difference equations using the Crank—Nicolson method has been discussed by Ganesan and

Rani [3].

RESULTS AND DISCUSSION

To validate the current numerical procedure, the heat transfer results are compared with the results of Heckel ef al.
[4] for the steady-state, isothermal and Newtonian fluid. The comparison results are shown in Tablel and the results

are found to be in good agreement.

TABLE 1. Comparison of local heat transfer

Pr 0.1 0.7 7.0 100
Heckel et al.[4] | 0.5448 0.7820 1.1609 | 1.8736
Present 0.5446 0.7858 1.1608 | 1.8731

Figures 1, 2 and 3 show the variation of velocity, temperature and angular velocity profiles with respect to time ¢,
Gr and K. From these figures it is observed that flow characteristics of micropolar fluids (K > 0) differs significantly
from the Newtonian fluids (K = 0). From Fig. 1, it can observed that velocity and temperature increase with the
distance but N decreases with the position. It is observed from Figs. 2(a) and 2(b) that the velocity and temperature
decrease as Gr increases. It can also be inferred from Fig. 2(c) that for small values of Gr, N reaches the positive
value from the negative value with respect to R. From Fig. 3 it can be observed that NV increases with increasing

values of XK.
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FIGURE 1. (a) Velocity, (b) temperature and (¢) angular velocity profiles with respect to time
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FIGURE 2. Steady state (a) Velocity, (b) temperature and (c) angular velocity profiles with respect to R for different Gr
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FIGURE 3. Steady state (a) Velocity, (b) temperature and (¢) angular velocity profiles with respect to R for different K.

CONCLUSIONS

Unsteady natural convection micropolar flow over a semi-infinite vertical cylinder has been analysed numerically
in the present study. The corresponding non-dimensional governing equations are derived. The grid generation and
numerical methods for solving the non-dimensional governing equations are detailed. It is observed that the flow
characteristics of micropolar fluids differ considerably from that of the Newtonian fluids.
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