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Unsteady Natural Convection Micropolar Flow over Vertical 
Cylinder 

H.P. Rani 

Department of Mathematics and Humanities, National Institute of Technology, Warangal, India 

Abstract. Transient free convective boundary layer flow of micropolar fluids past a semi-infinite cylinder is analysed in 
the present study. The transformed dimensionless governing equations for the flow, microrotation and heat transfer 
characteristics are solved by using the implicit scheme. The obtained results concerning velocity, microrotation and 
temperature across the boundary layer are illustrated graphically for different values of the parameters and the 
dependence of the flow and temperature fields from these parameters is discussed. 
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INTRODUCTION 

The transient natural convection flows over vertical bodies have a wide range of applications in engineering and 
technology. In manufacturing processes such as hot extrusion, metal forming and crystal growing, heat transfer 
effects plays an important role. Free convection flow of air bathing a vertical cyhnder with a prescribed surface 
temperature was first presented by Sparrow and Gregg [1] by applying the similarity method and power series 
expansion. Velusamy and Garg [2] presented the numerical solution for transient natural convection over heat 
generating vertical cylinders of various thermal capacities and radii. Ganesan and Rani [3] has investigated the 
unsteady natural convection flow over a vertical cylinder with variable heat and mass transfer using the finite 
difference method. All the above mentioned investigations deal with the flows Newtonian fluid model. With the 
above discussion in mind, the purpose of the present paper is to examine analytically the natural convection flow of 
a non-Newtonian fluid over a semi-infinite vertical cylinder. 

A micropolar fluid obeys the constitutive equations of the considered non-Newtonian fluid model. In the 
micropolar fluid model, apart from the classical velocity field, a microrotation vector and a gyration parameter are 
introduced in order to investigate the kinematics of microrotation. Such fluid model may be apphed to explain the 
flow of colloidal solutions, liquid crystals, fluids with additives, suspension solutions, animal blood, etc. Unlike the 
other fluids, micropolar fluids are fluids with microstructure belonging to a class of fluids with non-symmetrical 
stress tensor. Physically, they represent fluids consisting of randomly oriented particles suspended in a porous 
medium. The governing equations here are highly non-hnear and coupled. They are solved by the Crank-Nicolson 
imphcit method. Expressions for velocity components and temperature are developed. The effects of various sundry 
parameters are systematically examined through graphs. 

MATHEMATICAL FORMULATION 

An unsteady two-dimensional laminar natural convection boundary layer flow of a viscous incompressible 
micropolar fluid past an isothermal semi-infinite vertical cylinder of radius rg is considered. The x and r-axis are 
measured vertically upward along the axis of the cylinder and perpendicular to the axis of the cylinder, respectively. 
The origin of x is taken to be at the leading edge of the cyhnder, where the boundary layer thickness is zero. The 

surrounding stationary fluid temperature is assumed to be of the ambient temperature {T^). Initially, i.e., at time t'= 

0 it is assumed that the cyhnder and the fluid are of the same temperature T^ . When t'> Q, the temperature of the 

cylinder is maintained to be T^, (> T^ ) which gives rise to a buoyancy force. It is assumed that the effect of viscous 
dissipation is negligible in the energy equation. 
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With the above assumptions and under the usual boundary layer approximation together with the Boussinesq 
approximation, the governing equations for the steady, laminar, incompressible, micropolar fluid flow along the 
vertical cylinder are 

dim) ^ ̂ (rv)^Q (1) 
dx dr 

du du du 1 , , 1 d du d N' (j\ 

dt ox or ) r or or or 

t?N' t?N' t?N' 1 \ d ^ t?N', , ( , _ , du d\ \ (3) 
p j + u + v \ = Y (r ) - k i 2N' 

1̂  di' dx dr j r ^r ^r 1̂  dr dx 
d>T' d>T' d>T' a d dT' ..x 
—;— + u——+v——= ——(r——) \^) 
dt' dx dr r dr dr 

where u and v are the velocity components parallel to x and r coordinates, respectively, N' is the microrotation / 
angular velocity, whose direction of rotation is in the xy-plane, g is the acceleration due to the gravity, p is the 
volumetric coefficient of thermal expansion, p is the density, a is the thermal diffusivity, // is the dynamic viscosity 
and j , y and kj the respective microinertial per unit mass, spin gradient viscosity and vortex viscosity. The above 
partial differential equations subject to the following conditions: 

t'<0:u=0, v = 0, N ' = 0 , T ' = T ; forallxandr 

t '>0:u=0, v = 0, N' = - - — , T ' = T ; at r = r„ *• -* 
2 9r 

u = 0, v = 0, N ' = 0 , T ' = T ; atx=0 

u^O, v^O, N ' ^ 0 , T ' ^ 0 asr^co 

The non-dimensional quantities are defined as 

X = i L , R = iL, U = ^ i ^ , V = ^ ^ , t = " ^ ' ^ ; ' " , K =^: N = ^ ; 
r„ r„ vGr'^"- vGr"' r^ pv DGT'^ 

r={,U + k,/2)j = pi{l + KI2)j;j = r^,T^rzIL,Gr = ^M(EfI^,Pr = }^, (6) 
K-TL " "• 

where K = k//u(> 0) the vortex viscosity or the material parameter, u is the kinematic viscosity, Gr and Pr denote the 
Grashof number and the Prandtl number, respectively. 

In non-dimensional form, the above equations (1)—(5) reduce to 

i ^ + i ^ + K = 0 (7) 
dX dR R 

dU , , t?U , , t?U ^ (l + K)fd^U 1 du'] K 5N («\ 
+ U + V = T + ^——^ - + +—— y°> 

dt dX dR Gr'" [dR^ R dRj Gr'" dR 
^ N ^ N ^ ^ N _ ( l + K / 2 ) p ' N 1 ^N^ K f 5 U _ 5 V ^ (9) 
dt'^ dx'^ dR~ Gr'" [ ^ R ' " ^ R ^ R J Gr'" [ "^5R dxj 

dt dX dR PrGr'" [dR^ R dR) 

with the initial and boundary conditions 
t < 0: U = 0, V = 0,N = 0,T = 0 forallXandR 

t > 0:U = 0, V = 0,N = - i — , T = lat R = l *• -* 
2 a R 

U=0, V = 0,N = 0,T=0 atX = 0 
U ^ O , V ^ O , N ^ O , T ^ O asR^oo 

NUMERICAL SOLUTION OF THE PROBLEM 

In order to solve the unsteady coupled non-hnear governing equations (7)-(10) an implicit finite difference scheme 
of Crank-Nicolson type has been employed. The finite difference equations corresponding to equations (7)-(10) are 
as follows: 
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i,J 1-1,J i,J 1-1,J _̂  i,J i , J - l i,J i , J - l ^ 

2AX 2 A R 

V.k+1 
i,J 

1 + G-1)AR 
(12) 

v^ U^+l-U^. u^. 
^ y +^i(uk+l_uk+l .+uk._uk . )+^ i (uk+l u^+l +uk. .-U^. ,) 

At 2 AX i,J 1-1,J i,J 1-1,J 4 A R i,J+l i,J-l i,J+l i,J-l 
'-p Jv"ri i^'x' K. 

i,J i,J + l + K " i j - l 
U^ + l , - 2 u k + l + u k + l + u k 

i,J i,J + l i , j - l i,J i,J + l 

Gr ,1/2 2(AR)^ 

xk + l 
1 + K i,j + l 

. i k + l 
i j - l i j + l i j - l 

-NI^^I +N!^ N!^. 

Gr 1/2 4[1 + G-1)AR]AR Gr 1/2 

i j + l i j - l i j + l i j - l 

4AR 

(13) 

N k+1 -Af.* 
i,J i,j ,Mk+l 

At 2 AX ̂ i,J i - i , j i,j 1-1, J 4 A R i,J+l 1,J-1 1,J+1 y-i-^ 
N ^ + l . 

_(l + K / 2 ) " i , j - l ' ' i,j + i i , j - i i,j i , j + i i , j 

Nk + l . 
(l + K / 2 ) i j + l 

Gr"-

Gr"^ i,J 

K 
jk + l 
i , j + l 

2(AR)^ 

-u!^+\+u!^. ,-
i , J - l i,J + l 

4AR 

i , j - l 

Gr"-

i + l,J 

i , j - i i , j + i 
4[l + (j-l)AR]AR 

- N ' 
i , j - l 

yk + l_ 
i,J i + l j 

-V.'^ 
i,J (14) 

Gr"- 2AX 

•pk+1 _-pk 
i,J i,J 

U^ 
i,J , T k + l 

At 2AX ^ i,J 
-T.ktl.+T.k 

1-1,J i,J 1-1 ,J^ 4AR 
nk+l -rk+1 

( ^ , J + 1 - ^ , J - 1 + ^ , J + 1 
-TX ,) 

i ,J-l^ 

4PrG/"[l + (j-l)AR]AR 
(15) 

2 P r G r ' " ( A R ) ^ 

The region of integration is considered as a rectangle composed of the lines indicating Xmm = 0, X^^ = 1, R^^ = 1 
and i?niax = 5 where î max practically corresponds to R = x) which lies very far from the momentum and energy 
boundary layers. In the above Eqs. (12)-(15) the subscripts / andj designate the grid points along the X and R 
coordinates, respectively, where X = i AX and R= I + (j' -I) AR and the superscript k designates a value of the time t 
(= k At), with AX, AR and At the mesh size in the X, R and t axes, respectively. In order to obtain an economical and 
rehable grid system for the computations, a grid independence test has been performed. The steady-state velocity 
and temperature values obtained with the grid system of 50 x 300 differ in the second decimal place from those with 
the grid system of 25 x 150, and differ in the fifth decimal place from those with the grid system of 100 x 600. 
Hence the grid system of 40 x 300 has been selected for all subsequent analyses, with AX = 0.02, AR = 0.02. Also 
the time step size dependency has been carried out, which yields At = 0.001 for reliable result. The method of 
solving the above finite difference equations using the Crank-Nicolson method has been discussed by Ganesan and 
Rani [3]. 

RESULTS AND DISCUSSION 
To validate the current numerical procedure, the heat transfer results are compared with the results of Meckel et al. 

[4] for the steady-state, isothermal and Newtonian fluid. The comparison results are shown in Tablet and the results 
are found to be in good agreement. 

TABLE 1. Comparison of local heat transfer 
Pr 
Meckel e/a/. [4] 
Present 

0.1 
0.5448 
0.5446 

0.7 
0.7820 
0.7858 

7.0 
1.1609 
1.1608 

100 
1.8736 
1.8731 

Figures 1, 2 and 3 show the variation of velocity, temperature and angular velocity profiles with respect to time t, 
Gr and K. From these figures it is observed that flow characteristics of micropolar fluids (K > 0) differs significantly 
from the Newtonian fluids {K = 0). From Fig. 1, it can observed that velocity and temperature increase with the 
distance but N decreases with the position. It is observed from Figs. 2(a) and 2(b) that the velocity and temperature 
decrease as Gr increases. It can also be inferred from Fig. 2(c) that for small values of Gr, N reaches the positive 
value from the negative value with respect to R. From Fig. 3 it can be observed that TV increases with increasing 
values ofK. 
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FIGURE 1. (a) Velocity, (b) temperature and (c) angular velocity profiles with respect to time 

(a). 

0 3 

3 

02 

01 

1 1 °'' 
\ 10^ 

__L_io' 
1 _ _\_ _ _io« 

Pr = 0 .7;K = 0.5 

FIGURE 2. Steady state (a) Velocity, (b) temperature and (c) angular velocity profiles with respect to R for different Gr 
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FIGURE 3. Steady state (a) Velocity, (b) temperature and (c) angular velocity profiles with respect to R for different,^. 

CONCLUSIONS 

Unsteady natural convection micropolar flow over a semi-infinite vertical cylinder has been analysed numerically 
in the present study. The corresponding non-dimensional governing equations are derived. The grid generation and 
numerical methods for solving the non-dimensional governing equations are detailed. It is observed that the flow 
characteristics of micropolar fluids differ considerably from that of the Newtonian fluids. 
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