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Abstract- In this paper, we propose a new method of route 
planning for multiple robots in an unknown space with 
randomly placed obstacles. First, we use the basic principles of 
Multi Agent Systems and Particle Swarm Optimization 
algorithm. At the core, we implement our proposed method of 
circularly drifting the robot around the corners of the obstacle 
at a desired angle which gives us the freedom in designing the 
robot’s angular mobility. Also, communication between robots 
about the obstacles and the traversed space helps in obtaining 
their next positions. Then the optimal route planned is shown 
till the robots safely reach the target without any collisions. 
Simulations are performed by avoiding obstacles using circular 
drift method. 

I. INTRODUCTION  
Current trend in the fully autonomous world is the use of 

communicating robots with incorporated intelligence. They 
are being used in controlling nanobots within the body for 
the purpose of killing cancer tumors, self assembly, 
interferometry, and mine detection in military warfare [1], 
planetary mapping and other various applications in day to 
day life. The robot manufacture is also an expensive task. 
Hence, for a sensitive and precise control of these robots, 
there is a need of more sophisticated methods of control.  

Intelligent route planning deals with generating an 
optimized route in an unknown environment by drifting 
away from the obstacles in the search space. Many 
algorithms in Multi Agent Systems like artificial potential 
field [2], particle swarm optimization [3], genetic algorithm 
[4], and flocking algorithm [5] have been proposed for 
solving this problem. But most of these algorithms work well 
for the robots traversing a known environment. The actual 
implementation of an efficient algorithm like Particle Swarm 
Optimization is required when robots need to avoid the 
randomly placed obstacles in space and reach the target point 
[6]. Here we only have basic information about the 
environment like the entire area size and the final target. 
Hence real time planning using coordination among the 
robots about their surrounding environment information is 
necessary. However, ordinary methods of obstacle avoidance  
have not proven good results on route planning. 

. The problem deals with a number of robots deployed in 
an unknown environment reaching their target by avoiding 
obstacles encountered on their way. Here, we deploy a set of 
robots at a corner of the space from where they start moving 
towards the target. In this process, they broadcast the 
information about their surroundings continuously to other 

robots. A circular drift function is used here to effectively 
avoid collisions of robots with the obstacles. The overview 
of implementation shown in Fig.1 contains robots 
deployment, obstacle detection, obstacle avoidance and route 
planning. 

 
Fig. 1 Implementation Overview 

 
      The remaining paper is organized in the following 

manner: Section II gives an overview of Particle Swarm 
Optimization algorithm. Section III describes the proposed 
circular drift method for avoiding obstacles. In Sections IV 
and V, we compare the simulations with and without using 
circular drift technique. Lastly, Section VI consists of 
conclusions and future work. 

II. AN OVERVIEW OF PARTICLE SWARM OPTIMIZATION 
Particle swarm algorithm imitates human or insects’ 

social behavior. The approach is derived in part from the 
interesting way flocks of birds and swarms in nature search 
for food [7]. It uses a number of particles that constitute a 
swarm traversing in space searching for their target. The 
particles continuously interact with one another while 
learning from their own experience. Gradually, all the 
particles, using a good technique move into better regions of 
the problem space. The basic concept of PSO lies in guiding 
each particle towards the resultant of its best position and 
global best position [6]. Global best position is the position 
of the particle having the best fitness value among all the 
particles.  

Here fitness is calculated using the Euclidian distance 
function [8]-[9]. As the particle gets closer to the target, the 
distance to the target location decreases, thereby decreasing 
the value of fitness. Among the swarm, the particle with the 
least fitness is considered as the global best particle as it is 
closest to the target. The swarm is said to have accomplished 
the task if all the particles in it have acquired fitness less than 
or equal to half the range of sensors incorporated in the 
robot. 
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In the particle swarm optimization algorithm, we perform 
the following actions: 

 
(i) Particles are initialized with random position and 

velocity vectors. 
(ii)   Fitness is evaluated for every particle at its current 

position using Euclidian distance as the fitness function [6]. 
 

fitness(p)= 2 2( ) ( )x x y yLoc P Loc P− + −               (1) 
 

Where (Locx, Locy) is the target location and (Px, Py) is the 
robot’s current position.  

(iii) If the fitness of the particle is greater than that of the 
best particle, then the particle would be the best particle for 
the next move, and the fitness of this particle is taken as best 
fitness. 

(iv) Each particle is made to modify its current position, 
current velocity, the distance between current position and 
pbest, the distance between current position and gbest [6]. 

 
v(k+1)=  inertia x v(k) + cf x rand ( ) x (Plb(k)-P(k))  
                              + cf x  rand ( ) x (Pgb(k)-P(k))          (2) 
 
P(k+1) =P(k) + v(k+1)                                                  (3) 

 
Where v(k+1) is next velocity, v(k) is current velocity, cf is 
the correction factor, Plb(k) is the particle’s best position, 
Pgb(k) is the global best position, P(k) is particle’s current 
position, P(k+1) the particle’s next position. 

(v) If the next position of the particle is inside the 
obstacle, then the particle chooses a new position, otherwise, 
the same algorithm is continued. 

(vi) This process is repeated in iterations, until all the 
particles communicate with each other and generate a route 
to the target location. 

III. CIRCULAR DRIFT METHOD 

A. Advantage 
First, at every position, the robot checks whether its next 

position falls within the boundary area of any random 
obstacle. If this happens, the next position of the robot is 
calculated using a circular drift function to drift the robot 
around a corner of the obstacle at a specified angular value. 
This gives a clear picture on the route that is planned near the 
obstacles.  

B. Algorithm 
The input arguments of the circular drift function are the 

coordinates of the corners of the obstacle that fall in the 
sensor range of the robot, current position of the robot and 
the angle of drift. The maximum velocity of robot is selected 
in such a way that it is less than or equal to half of the sensor 
range as in Equation 4.  

                     
                     V(k) = 0.5 * sensor range                         (4) 
 
Now, the corner of the obstacle, which is nearer to the 

robot, is taken as the centre. The distance between the robot 

and the nearest corner is taken as the radius. Using these 
parameters a virtual circle is drawn. 

Two points are possible on the circle, each on either side 
of the robot such that the arc between one of these points and 
the robot subtends an angle θ  at the centre of the circle. One 
of these points becomes the next position of the robot 
depending on its relative distances to the other corners of the 
obstacle. Very acute values of θ  may result in a situation 
where all the robots get accumulated on one side of the 
obstacle. In contrast, very obtuse values may lead the next 
position of the robot to again fall inside the boundaries of the 
obstacle. In this paper, we implemented this function using 
60 o and 90o forθ . 60 o and 90o   are the angles at which the 
drift is noticeable.                   

As shown in Fig. 2, if P1 is the robot’s current position, 
circular drift function with angular drifts of 60o and 90o 
decides the robot’s next position at P2 and P3 respectively.    
 
 

 
 

Fig. 2. Obstacle Avoidance using Circular Drift 
 
 
The next position of a robot is calculated by using 

circular drift function as follows: 
 

( , ) _ (( , ), _ , )nextx y circular drift x y obstacle corners θ=     (5) 
 
In equation (5), (x, y) is the current position of the robot, 

(x, y)next is the next position of the robot, obstacle_corners 
represents the four corners of the obstacle.  

    

IV. SIMULATIONS  
The search space in each simulation is set to 20 by 20 

units and the maximum velocity is limited to 1 unit. The 
number of robots used for planning the route is 9. The initial 
positions of the robots are randomly generated at a corner of 
the search space. The inertial weight is chosen as 1.0 and the 
correction factor is taken as 2.0.  Four obstacles of sizes 2 by 
2 units are randomly placed over the search space. The PSO 
algorithm specified in section 2 is simulated by setting the 
parameters.  
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A. Route Planning without using Circular Drift Function 
Here, we apply Particle Swarm Optimization without 

using any special function for avoiding the obstacles. This 
results in some robots passing through the obstacles, which is 
not practically possible. The simulation is shown in Fig. 3 

 
Fig. 3. Route Planning without using Circular Drift Function 
 

As observed in Fig. 3, some robots have their path 
through the obstacles encountered on their way to the target 
location. To avoid this problem, we use circular drift 
function. 

 

B. Route Planning  using Circular Drift Function 
As a modification to the above algorithm, we 

implement Circular Drift Function. Here, we check in every 
iteration if the robot’s next position lies inside the obstacle 
area. If this happens, circular drift function is initiated. Fig. 
4 shows effective routes planned between the target and the 
initial positions of the robots avoiding the obstacles by 
drifting away from them. In this simulation, we have used 
an angular drift of 60o.  

 
 

Fig. 4. Route Planning using Circular Drift Function 
 

In Fig. 5, we can observe the angular drift of 90o at a 
closer view. Here the robot uses the obstacle corner as its 
virtual circle’s centre and drifts to a position on the circle 
which makes an arc with the current position that subtends 
90o at the centre.  

 
Fig. 5. Simulation showing 90o Circular Drift 
 

A similar implementation is shown in Fig. 6. Here we 
used an angular drift of 60o. The robot uses the obstacle 
corner as its virtual circle’s centre and drifts to a position on 
the circle which makes an arc with the current position that 
subtends 60o at the centre.  

 
Fig. 6. Simulation showing 60o Circular Drift 
 

V. RESULTS 
We performed the experiment using different number 

of robots to compute the number of iterations and time taken 
for route planning with circular drift function. We have 
computed results for angular drifts of 60o and 90o. The 
number of iterations is computed by taking the best of 20 
simulations for the same number of robots. We have used 
AMD Athlon 3200+ 64-bit Processor. The time taken may 
vary with the use of a different processor.  
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Table I shows the number of robots against the 
iterations the time taken to complete the task. Here the 
angular drift used is 90o.   
 

 
 

TABLE I 
ITERATIONS AND TIME TAKEN BY THE ROBOTS WITH 

90o ANGULAR DRIFT 
 

No. of 
Robots Iterations 

Time 
Taken(sec) 

6 44 0.610527 
8 38 0.647956 
9 37 0.551106 
10 33 0.453307 
12 31 0.436187 

 
Table II also shows the number of robots, the iterations 

taken to complete and the time taken by the robots to reach 
the target. Here the angular drift used is 60o. 
 

TABLE II 
ITERATIONS AND TIME TAKEN BY THE ROBOTS WITH 

60o ANGULAR DRIFT 
 

 
 

 
 
 
 
 
 
 
 

 
The results in Table I and Table II show that the 

iterations taken by the algorithm decrease with the increase 
in the robot number no matter what the angular drift value is. 

 

VI. CONCLUSIONS 
The paper has presented a novel circular drifting 

function for the robots to efficiently avoid the obstacles and 
plan an optimal route to the target. Circular drift function is 
a successful solution for the problem of the obstacle 
avoidance in the route planning. The simulations and results 
also prove that this function can be applied to real time 
robotics. Future work includes programming multiple robots 
and testing them in different environments with dynamic 
obstacles. 
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