2009 International Conference on Computer Technology and Development

Intelligent Route Planning for Multiple Robots using Particle Swarm Optimization

Sai Krishna Mulpuru

Dept. of Electronics and Communication Engg.
National Institute of Technology
Warangal, India
saimulpuru@ieee.org

Abstract- In this paper, we propose a new method of route
planning for multiple robots in an unknown space with
randomly placed obstacles. First, we use the basic principles of
Multi Agent Systems and Particle Swarm Optimization
algorithm. At the core, we implement our proposed method of
circularly drifting the robot around the corners of the obstacle
at a desired angle which gives us the freedom in designing the
robot’s angular mobility. Also, communication between robots
about the obstacles and the traversed space helps in obtaining
their next positions. Then the optimal route planned is shown
till the robots safely reach the target without any collisions.
Simulations are performed by avoiding obstacles using circular
drift method.

I. INTRODUCTION

Current trend in the fully autonomous world is the use of
communicating robots with incorporated intelligence. They
are being used in controlling nanobots within the body for
the purpose of Kkilling cancer tumors, self assembly,
interferometry, and mine detection in military warfare [1],
planetary mapping and other various applications in day to
day life. The robot manufacture is also an expensive task.
Hence, for a sensitive and precise control of these robots,
there is a need of more sophisticated methods of control.

Intelligent route planning deals with generating an
optimized route in an unknown environment by drifting
away from the obstacles in the search space. Many
algorithms in Multi Agent Systems like artificial potential
field [2], particle swarm optimization [3], genetic algorithm
[4], and flocking algorithm [5] have been proposed for
solving this problem. But most of these algorithms work well
for the robots traversing a known environment. The actual
implementation of an efficient algorithm like Particle Swarm
Optimization is required when robots need to avoid the
randomly placed obstacles in space and reach the target point
[6]. Here we only have basic information about the
environment like the entire area size and the final target.
Hence real time planning using coordination among the
robots about their surrounding environment information is
necessary. However, ordinary methods of obstacle avoidance
have not proven good results on route planning.

. The problem deals with a number of robots deployed in
an unknown environment reaching their target by avoiding
obstacles encountered on their way. Here, we deploy a set of
robots at a corner of the space from where they start moving
towards the target. In this process, they broadcast the
information about their surroundings continuously to other

978-0-7695-3892-1/09 $26.00 © 2009 IEEE
DOI 10.1109/ICCTD.2009.32

Krishna Chaitanya Kollu

Dept. of Electronics and Communication Engg.
National Institute of Technology
Warangal, India
krishna.kollu@gmail.com

robots. A circular drift function is used here to effectively
avoid collisions of robots with the obstacles. The overview
of implementation shown in Fig.l contains robots
deployment, obstacle detection, obstacle avoidance and route
planning.

(robots Deployment J

[ohstacle Detection]

(obstacle Avoidance j

(Route Planning j

Fig. 1 Implementation Overview

The remaining paper is organized in the following
manner: Section II gives an overview of Particle Swarm
Optimization algorithm. Section III describes the proposed
circular drift method for avoiding obstacles. In Sections IV
and V, we compare the simulations with and without using
circular drift technique. Lastly, Section VI consists of
conclusions and future work.

IL.

Particle swarm algorithm imitates human or insects’
social behavior. The approach is derived in part from the
interesting way flocks of birds and swarms in nature search
for food [7]. It uses a number of particles that constitute a
swarm traversing in space searching for their target. The
particles continuously interact with one another while
learning from their own experience. Gradually, all the
particles, using a good technique move into better regions of
the problem space. The basic concept of PSO lies in guiding
each particle towards the resultant of its best position and
global best position [6]. Global best position is the position
of the particle having the best fitness value among all the
particles.

Here fitness is calculated using the Euclidian distance
function [8]-[9]. As the particle gets closer to the target, the
distance to the target location decreases, thereby decreasing
the value of fitness. Among the swarm, the particle with the
least fitness is considered as the global best particle as it is
closest to the target. The swarm is said to have accomplished
the task if all the particles in it have acquired fitness less than
or equal to half the range of sensors incorporated in the
robot.

AN OVERVIEW OF PARTICLE SWARM OPTIMIZATION

IEEE
computer
® psouety

In the particle swarm optimization algorithm, we perform
the following actions:

(i) Particles are initialized with random position and
velocity vectors.

(il) Fitness is evaluated for every particle at its current
position using Euclidian distance as the fitness function [6].

fitness(p)= \/ (Locs— Px)* + (Locy — Py)* ()
Where (Locy, Locy) is the target location and (Py, Py) is the
robot’s current position.

(iii) If the fitness of the particle is greater than that of the
best particle, then the particle would be the best particle for
the next move, and the fitness of this particle is taken as best
fitness.

(iv) Each particle is made to modify its current position,
current velocity, the distance between current position and
pbest, the distance between current position and gbest [6].

v(k+1)= inertia x v(k) + cfx rand () x (Pp(k)-P(k))
+ofx rand () x (Po(k)-P(k))

P(k+1) =P(k) + v(k+1)

@
3)

Where v(k+1) is next velocity, v(k) is current velocity, cf is
the correction factor, Py (k) is the particle’s best position,
Pgy(k) is the global best position, P(k) is particle’s current
position, P(k+1) the particle’s next position.

(v) If the next position of the particle is inside the
obstacle, then the particle chooses a new position, otherwise,
the same algorithm is continued.

(vi) This process is repeated in iterations, until all the
particles communicate with each other and generate a route
to the target location.

III. CIRCULAR DRIFT METHOD

A. Advantage

First, at every position, the robot checks whether its next
position falls within the boundary area of any random
obstacle. If this happens, the next position of the robot is
calculated using a circular drift function to drift the robot
around a corner of the obstacle at a specified angular value.
This gives a clear picture on the route that is planned near the
obstacles.

B. Algorithm

The input arguments of the circular drift function are the
coordinates of the corners of the obstacle that fall in the
sensor range of the robot, current position of the robot and
the angle of drift. The maximum velocity of robot is selected
in such a way that it is less than or equal to half of the sensor
range as in Equation 4.

V(k) = 0.5 * sensor range 4)

Now, the corner of the obstacle, which is nearer to the
robot, is taken as the centre. The distance between the robot

and the nearest corner is taken as the radius. Using these
parameters a virtual circle is drawn.

Two points are possible on the circle, each on either side
of the robot such that the arc between one of these points and
the robot subtends an angle @ at the centre of the circle. One
of these points becomes the next position of the robot
depending on its relative distances to the other corners of the
obstacle. Very acute values of @ may result in a situation
where all the robots get accumulated on one side of the
obstacle. In contrast, very obtuse values may lead the next
position of the robot to again fall inside the boundaries of the
obstacle. In this paper, we implemented this function using
60° and 90° for@. 60 ° and 90° are the angles at which the
drift is noticeable.

As shown in Fig. 2, if P1 is the robot’s current position,
circular drift function with angular drifts of 60° and 90°
decides the robot’s next position at P2 and P3 respectively.

obstacle

Fig. 2. Obstacle Avoidance using Circular Drift

The next position of a robot is calculated by using
circular drift function as follows:

®)

(X, Y)new = circular _drift((x, y), obstacle _corners,)

In equation (5), (x, y) is the current position of the robot,
(X, Y)uexs 1S the next position of the robot, obstacle corners
represents the four corners of the obstacle.

IVv.

The search space in each simulation is set to 20 by 20
units and the maximum velocity is limited to 1 unit. The
number of robots used for planning the route is 9. The initial
positions of the robots are randomly generated at a corner of
the search space. The inertial weight is chosen as 1.0 and the
correction factor is taken as 2.0. Four obstacles of sizes 2 by
2 units are randomly placed over the search space. The PSO
algorithm specified in section 2 is simulated by setting the
parameters.

SIMULATIONS

A. Route Planning without using Circular Drift Function

Here, we apply Particle Swarm Optimization without
using any special function for avoiding the obstacles. This
results in some robots passing through the obstacles, which is
not practically possible. The simulation is shown in Fig. 3

20

Fig. 3. Route Planning without using Circular Drift Function

As observed in Fig. 3, some robots have their path
through the obstacles encountered on their way to the target
location. To avoid this problem, we use circular drift
function.

B. Route Planning using Circular Drift Function

As a modification to the above algorithm, we
implement Circular Drift Function. Here, we check in every
iteration if the robot’s next position lies inside the obstacle
area. If this happens, circular drift function is initiated. Fig.
4 shows effective routes planned between the target and the
initial positions of the robots avoiding the obstacles by
drifting away from them. In this simulation, we have used
an angular drift of 60°.

20

0 2 4 5} &} 10 12 14 16 18 20

Fig. 4. Route Planning using Circular Drift Function

In Fig. 5, we can observe the angular drift of 90° at a
closer view. Here the robot uses the obstacle corner as its
virtual circle’s centre and drifts to a position on the circle
which makes an arc with the current position that subtends
90° at the centre.

obstacle

Fig. 5. Simulation showing 90° Circular Drift

A similar implementation is shown in Fig. 6. Here we
used an angular drift of 60°. The robot uses the obstacle
corner as its virtual circle’s centre and drifts to a position on
the circle which makes an arc with the current position that
subtends 60° at the centre.

]

Baf

7ar

obstacle

f4a g

Fig. 6. Simulation showing 60° Circular Drift

V. RESULTS

We performed the experiment using different number
of robots to compute the number of iterations and time taken
for route planning with circular drift function. We have
computed results for angular drifts of 60° and 90°. The
number of iterations is computed by taking the best of 20
simulations for the same number of robots. We have used
AMD Athlon 3200+ 64-bit Processor. The time taken may
vary with the use of a different processor.

Table I shows the number of robots against the
iterations the time taken to complete the task. Here the
angular drift used is 90°.

TABLE I
ITERATIONS AND TIME TAKEN BY THE ROBOTS WITH
90° ANGULAR DRIFT
No. of Time
Robots Iterations Taken(sec)
6 44 0.610527
8 38 0.647956
9 37 0.551106
10 33 0.453307
12 31 0.436187

Table II also shows the number of robots, the iterations
taken to complete and the time taken by the robots to reach
the target. Here the angular drift used is 60°.

TABLE II
ITERATIONS AND TIME TAKEN BY THE ROBOTS WITH
60° ANGULAR DRIFT
No. of Time
Robots Iterations | Taken(sec)
6 60 0.792262
8 39 0.523014
9 35 0.471768
10 32 0.448400
12 30 0.426324

The results in Table I and Table II show that the
iterations taken by the algorithm decrease with the increase
in the robot number no matter what the angular drift value is.

VL

The paper has presented a novel circular drifting
function for the robots to efficiently avoid the obstacles and
plan an optimal route to the target. Circular drift function is
a successful solution for the problem of the obstacle
avoidance in the route planning. The simulations and results
also prove that this function can be applied to real time
robotics. Future work includes programming multiple robots
and testing them in different environments with dynamic
obstacles.

CONCLUSIONS

VIL

This work was supported by Electronic Design and
Automation Laboratory, National Institute of Technology,
Warangal, India.

ACKNOWLEDGMENT

VIII. REFERENCES

Kashif Zafar, Shahzad Badar Qazi, A. Rauf Baig, ” Mine Detection
and Route Planning in Military Warfare using Multi Agent Systems”
Proceedings of the 30" Annual International Computer Software and
Applications Conference, volume 2, pp. 327-332, September 2006.

(1

[2] Min Gyu Park, Jae Hyun Jeon, Min Cheol Lee, ” Obstacle avoidance
for mobile robots using artificial potential field approach with

simulated annealing” ISIE 2001, vol. 3, pp. 1530-1535, 2001.

Fan Chunxia, WanYouhong, ”An adaptive simple particle swarm
optimization algorithm” CCDC 2008, pp. 3067-3072, July 2008.

Ming Chen, Zhengwei Yao, “Classification Techniques of Neural
Networks Using Improved Genetic Algorithms” WGEC 2008, pp.
115-119, September 2008.

Bin Lei, Wenfeng Li, Fan Zhang, “Flocking algorithm for multi-
robots formation control with a target steering agent”
SMC 2008, pp. 3536-3541, October 2008.

Li Lu, Dunwei Gong, “Robot Path Planning in Unknown
Environments Using Particle Swarm Optimization” ICNC apos 08,
vol. 4, pp. 422-426, October 2008.

James Lane, Andries Engelbrecht, James Gain, ” Particle Swarm
Optimization with Spatially Meaningful Neighbours” SIS 2008, pp.
1-8, September 2008.

Lisa L. Smith, Ganesh K Venayagamoorthy, Phllip G. Holloway,
”Obstacle Avoidance in Collective Robotic Search Using Particle
Swarm Optimization” IEEE Swarm Instelligence Symposium, May
2006.

X. Li, “A multimodal particle swarm optimizer based on fitness
euclidean-distance ratio” Proceedings of the 9th annual conference
on Genetic and evolutionary computation 2007, pp. 78-85.

[3]
(4]

(3]

(el

(7]

(8]

(91

