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Creeping flow past a porous approximate sphere
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This paper concerns the creeping flow of incompressible viscous fluid past and through a porous approximate sphere. The
Brinkman model for the flow inside the porous particle and Stokes model for the flow outside the particle in their stream
function formulations are used. The stream function and the pressure distribution, both for the flow inside and outside are
obtained in terms of Bessel and Gegenbauer functions of the first kind. The drag force experienced by the particle is determined
and its variation with respect to permeability parameter is studied numerically. The special cases of flow past a porous sphere
and spheroid are obtained from the present analysis.

Introduction

The flow of fluid around porous bodies has many industrial and engineering applications, such as flow through porous beds
(fixed or fluidized), sedimentation of fine particulate suspensions, modeling of polymer macromolecule coils in a solvent,
catalytic reactions where porous pallets are used, floc settling processes, the flow of oil in oil fields or reservoirs during oil
recovery etc. Several researchers have considered the flow of Newtonian fluids past a porous body with different models.
Joseph and Tao [1] considered the creeping flow past a porous spherical shell immersed in a uniform viscous incompressible
fluid using Darcy’s law for the flow inside the porous region and Stokes equations for the fluid outside the sphere with continuity
of normal velocity and pressure at the surface of the porous sphere and no-slip of tangential velocity component of the free
fluid. They found that the drag on the porous sphere is same as that of a rigid sphere with reduced radius. The same problem,
with Saffman’s boundary conditions at the surface of the sphere was studied by Padmavathi et al. [2] and it was shown therein
that the torque on a porous sphere is always less than that on a rigid sphere, where as the drag in general is not.

However Darcy’s law appears to be inadequate for the flows with high porosity, and large shear rates and for flows near
the surface of the bounded porous medium. To model such flows a modification of Darcy’s law was proposed by Brinkman
[3] and Debye and Bueche [4] independently. The validity of this equation was confirmed by experimental verification of
Oomes et al. [5] and Matsumoto and Suganuma [6] and theoretically justified by Tam [7] and Lundgren [8]. Using Brinkman
model for the flow inside the porous sphere and Navier-Stokes equations for the free fluid region, Qin and Kaloni [9] obtained
a Cartesian tensor solution for the creeping flow past a porous sphere. Higdon and Kojima [10] have studied Stokes flow past
porous particles using Brinkman’s equations for the flow inside. They derived some asymptotic results for small and large
permeability by using Green’s function formulation of the Brinkman’s equation. Recently, Zlatanovski [11] has considered
the axisymmetric flow past a porous prolate spheroidal particle using the Brinkman model for the flow inside the spheroidal
particle and Stokes model for the free flow region.

In the present paper, we consider the creeping flow past a porous approximate sphere. We have used the Brinkman’s equation
for the flow inside the porous region and the Stokes equation for the free flow region using the stream function formulation. As
boundary conditions, continuity of the velocity, pressure and tangential stresses across the interface are employed. The stream
function (and thus the velocity) and pressure (both for the flow inside and outside) are calculated. The drag force experienced
by the particle is determined. The cases of sphere and oblate spheroid are obtained as special cases.

Statement of the problem

Let (r, θ, φ) denote a spherical polar co-ordinate system with (�er, �eθ, �eφ) unit base vectors and h1 = 1, h2 = r, and h3 = r sin θ
as the corresponding scale factors.

Consider an incompressible viscous fluid flow past a porous approximate sphere with a uniform velocity U far away from
the body along the axis of symmetry θ = 0. Consider the body r = a[1 + f(θ)], where f(θ) is a function of θ which can be
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expressed as f(ζ) =
∞∑

m=2
βmϑm(ζ), where ϑm(ζ) = [Pm−2(ζ) − Pm(ζ)] /(2m− 1), ζ = cos θ in which Pm(ζ) is Legendre

function of the first kind. For small βms we refer to this body as an approximate sphere.
We assume that the flow outside the porous approximate sphere to be Stokesian and inside to be governed by Brinkman

model. The equations of motion for the region outside the approximate sphere are

div �q (1) = 0, (1)

grad p(1) + µ curl curl �q (1) = 0, (2)

where �q (1) is the velocity, µ is the coefficient of viscosity, and p(1) is the pressure.
For the region inside the approximate sphere the equations of the motion are

div �q (2) = 0, (3)

grad p(2) +
µ

k
�q (2) + µ curl curl �q (2) = 0, (4)

where �q (2) is the velocity, p(2) is the pressure, µ is the viscosity, and k is the permeability of the porous medium.
Since the flow of the fluid is in the meridian plane and the flow is axially symmetric, all the physical quantities are independent

of φ. We choose the velocity vectors �q (1) and �q (2) in the form

�q (i) =
[
u(i)(r, θ)�er + v(i)(r, θ)�eθ

]
, i = 1, 2. (5)

In view of the incompressibility condition div �q (i) = 0, i = 1, 2, we introduce the stream function ψ(i)(r, θ), i = 1, 2,
through

u(i) =
−1

r2 sin θ
∂ψ(i)

∂θ
; v(i) =

1
r sin θ

∂ψ(i)

∂r
, i = 1, 2. (6)

Eliminating pressure from (2) and (4), and substituting (6) in the resulting equations, we get the following dimensionless
equations for ψ(i), i = 1, 2 :

E4ψ(1) = 0, (7)

E2(E2 − α2)ψ(2) = 0, (8)

where α2 = a2/k and E2 = ∂2

∂r2 + (1−ζ2)
r2

∂2

∂ζ2 is the Stokesian stream function operator.

Boundary conditions

The boundary conditions are [9,11]:
(i) Continuity of velocity components on the boundary of the approximate sphere, i.e.,

u(1)(r, θ) = u(2)(r, θ) and v(1)(r, θ) = v(2)(r, θ) on r = a
[
1 +

∑
βmϑm(ζ)

]
. (9)

(ii) Continuity of pressure on the boundary, i.e.,

p(1)(r, θ) = p(2)(r, θ) on r = a
[
1 +

∑
βmϑm(ζ)

]
. (10)

(iii) Continuity of tangential stress components on the boundary, i.e.,

τ (1)
rθ(r, θ) = τ (2)

rθ(r, θ) on r = a
[
1 +

∑
βmϑm(ζ)

]
. (11)

Additionally, we have the regularity conditions at infinity, i.e.,

Lt
r→∞u(1)(r, θ) = U cos θ, Lt

r→∞ v(1)(r, θ) = −U sin θ (12)

and the condition that velocity and pressure must be nonsingular everywhere in the flow field.



ZAMM · Z. Angew. Math. Mech. 83, No. 7 (2003) 501

Solution of the problem

The solution of (7) which is regular at infinity is

ψ(1) =
[
r2 +

A2

r
+B2r

]
ϑ2(ζ) +

∞∑
n=3

[
Anr

1−n +Bnr
3−n

]
ϑn(ζ) (13)

and the solution of ( 8), which is finite as r → 0 is

ψ(2) =
[
C2r

2 +D2
√
rI3/2(αr)

]
ϑ2(ζ) +

∞∑
n=3

[
Cnr

−n +Dn

√
rIn−1/2(αr)

]
ϑn(ζ), (14)

where In−1/2(αr) denotes the modified Bessel function of the first kind and ϑn(ζ) is the Gegenbauer function of the first kind
of order n and degree −1/2.

Using the eqs. (13) and (14), the expressions for the pressure in both flow regions are

p(1) = µ
B2

r2
P1(ζ) + µ

∞∑
n=3

Bn

(
6 − 4n
n

)
r−nPn−1(ζ), (15)

p(2) = µ

[
α2C2rP1(ζ) +

∞∑
n=3

Cnα
2 r

n−1

n− 1
Pn−1(ζ)

]
. (16)

Determination of arbitrary constants

We first propose to develop the solution corresponding to the boundary r = a[1 + βmϑm(ζ)] and assume that the coefficient
βm is sufficiently small so that squares and higher powers of βm can be neglected, i.e., (r/a)k ≈ 1 + kβmϑm(ζ), where k is
positive or negative.

Comparison of the above solution with those obtained in case of flow of an incompressible viscous fluid past a porous
sphere, indicates that the terms involving An, Bn, Cn, and Dn for n > 2 are the extra terms here which are not present in the
case of sphere. The body that we are considering now is an approximate sphere and the flow generated is not expected to be
far different from the one generated by flow past a porous sphere. Also the coefficients An, Bn, Cn, and Dn for n > 2 are
of order βm. Therefore as in [12] in the terms involving An, Bn, Cn, and Dn for n > 2, we ignore the departure from the
spherical form and set r = 1 while implementing the boundary conditions.

The boundary conditions (9) to (11) in terms of stream function are

ψ(1)(r, θ) = ψ(2)(r, θ), ψ(1)
r (r, θ) = ψ(2)

r (r, θ),

ψ(2)
rr (r, θ) = ψ(2)

rr (r, θ), p(1)(r, θ) = p(2)(r, θ).
(17)

Using the above boundary conditions and the observations made above, the constants appearing in the solutions of the
problem are seen to be

A2 =
α(6 + α2) cosh(α) − 3(2 + α2) sinh(α)

α(3 + 2α2) cosh(α) − 3 sinh(α)
, B2 =

3α2(−α cosh(α) + sinh(α))
α(3 + 2α2) cosh(α) − 3 sinh(α)

,

C2 =
3α

√
2πα

α(3 + 2α2) cosh(α) − 3 sinh(α)
, D2 =

3α cosh(α) − 3 sinh(α)
α(3 + 2α2) cosh(α) − 3 sinh(α)

.

(18)

For n �= m− 2,m,m+ 2,

An = Bn = Cn = Dn = 0, (19)

and for n = m− 2,m,m+ 2, we have the following system of equations:

An +Bn − Cn −DnIn−1/2(α) = (−2 +A2 −B2 + 2C2)bn, (20)

(1 − n)An + (3 − n)Bn − nCn −Dn

{
(n− 1)In−1/2(α) − (aα)In−3/2(α)

}
= (−2 − 2A2 + 2C2 +D2I3/2(α))bn, (21)

n(n− 1)An + (n− 2)(n− 3)Bn − n(n− 1)Cn −Dn

{
n(n− 1) + α2} In−1/2(α) = (6A2 − 4D2I3/2(α))bn, (22)

(n− 1)(6 − 4n)Bn − nα2Cn = n(n− 1)
[−2B2 + α2C2

]
an, (23)
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Fig. 1 Variation of drag coefficient with α.

where

bm−2 = − (m− 2)(m− 3)
2(2m− 1)(2m− 3)

, bm =
m(m− 1)

(2m+ 1)(2m− 3)
, bm+2 = − (m+ 1)(m+ 2)

2(2m− 1)(2m+ 1)
,

am−2 =
(m− 2)

2(2m− 1)(2m− 3)
, am =

1
(2m+ 1)(2m− 3)

, am+2 = − (m+ 1)
2(2m− 1)(2m+ 1)

.

(24)

Solving these equations, we obtain the values of An, Bn, Cn, and Dn. Substituting these values in (13) and (14), we get
the expressions for the stream functions ψ(1)(r, θ) and ψ(2)(r, θ). Hence the velocity components are determined. In case the
equation of the approximate sphere is r = a[1 +

∑
βmϑm(ζ)], we employ the same technique as above and determine the

corresponding arbitrary constants.

Drag on the body

The drag force acting on the porous approximate sphere is given by

D = 2πa2

π∫
0

[
τ (1)
rr cos θ − τ

(1)
rθ sin θ

]
r=a[1+

∑
βmϑm(ζ)]

sin θdθ. (25)

On carrying out the integration it is found to be

D = 4πµUa

[
3α2 {−α cosh(α) + sinh(α)}
α(3 + 2α2) cosh(α) − 3 sinh(α)

+
3α2

{−35 − α2 − 4α4 +
(
35 + 7α2 − 4α4

)
cosh(2α) − 38α sinh(2α)

}
10 {α(3 + 2α2) cosh(α) − 3 sinh(α)}2 β2

+
3α2

{
10 + 8α2 + 2α4 − (

10 − 4α2 − 2α4
)
cosh(2α) + 4α sinh(2α)

}
70 {α(3 + 2α2) cosh(α) − 3 sinh(α)}2 β4

]
. (26)

It is interesting to note that though the boundary surface is r = a [1 +
∑
βmϑm(ζ)] the coefficients β2 and β4 only,

contribute to the drag. This implies that the drag on the approximate sphere is relatively insensitive to the details of the surface
geometry. This is similar to the observations made by Iyengar and Srinivasacharya [12] in case of micropolar fluids.

The variation of drag coefficient DN = D/(4πµUa) for various values of α and β2 = β4 = ε is shown in Fig. 1. From
Fig. 1 it can be observed that the drag coefficient is decreasing as the permeability parameter (α) is increasing. There is slight
decrease in the drag coefficient as the deformation parameter (ε) is increasing. It is interesting to note that the drag on the
sphere is more than that of the drag on the approximate sphere.
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Fig. 2 Variation of drag coefficient with α (oblate spheroid).

Special cases

Case (i). Sphere
If βm = 0, for m > 2, the approximate sphere reduces to a sphere and the drag is

12πµUaα2 {−α cosh(α) + sinh(α)}
α(3 + 2α2) cosh(α) − 3 sinh(α)

(27)

which can be simplified to

−12πµUaα2 {1 − tanh(α)/α}
2α2 + 3 {1 − tanh(α)/α} (28)

which agrees with the porous sphere case derived Brinkman [3], Neal et al. [13] and Qin and Kaloni [9].

Case (ii). Oblate spheroid
Consider the oblate spheroid given by

x2 + y2

a2 +
z2

a2(1 − ε)2
= 1 (29)

whose equatorial radius is a in which ε is so small that ε2 and higher powers may be neglected.
Following Happel and Brenner [14] its polar equation can be put in the form r = a [1 + 2εϑm(ζ)] where c = a(1 − ε) (see

[14], p. 144). This is like r = a [1 + β2ϑ2(ζ)], where a = c and β2 = 2ε.
Using (13) and (14), the expressions for stream functions can be determined. The drag on oblate spheroidal particle is seen

to be

D = 4πµUa

[
3α2 {−α cosh(α) + sinh(α)}
α(3 + 2α2) cosh(α) − 3 sinh(α)

+

{
3α2 {−α cosh(α) + sinh(α)}
α(3 + 2α2) cosh(α) − 3 sinh(α)

+
3α2

{−35 − α2 − 4α4 +
(
35 + 7α2 − 4α4

)
cosh(2α) − 38α sinh(2α)

}
5 {α(3 + 2α2) cosh(α) − 3 sinh(α)}2

}
ε

]
. (30)

The variation of the drag coefficient DN = D/(4πµUa) for various values of α and ε is shown in Fig. 2. From Fig. 2 it
can be observed that the drag coefficient is decreasing as the permeability parameter (α) and ε is increasing. Also the drag on
the porous sphere is more than that of the drag on the porous oblate spheroid.
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