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ABSTRACT 

A fuzzy system that automatically develops its rule base 
from a linearized performance model of the engine by selecting 
the membership functions and number of fuzzy sets is 
developed in this study to perform gas turbine fault isolation. 
The faults modeled are module faults in five modules: fan, low 
pressure compressor, high pressure compressor, high pressure 
turbine and low pressure turbine. The measurements used are 
deviations in exhaust gas temperature, low rotor speed, high 
rotor speed and fuel flow from a base line ‘good engine’. A 
genetic algorithm is used to tune the fuzzy sets to maximize 
fault isolation success rate. A novel scheme is developed which 
optimizes the fuzzy system using very few design variables and 
therefore is computationally efficient. Results with simulated 
data show that genetic fuzzy system isolates faults with 
accuracy greater than that of a manually developed fuzzy 
system developed by the authors. Furthermore, the genetic 
fuzzy system allows rapid development of the rule base if the 
fault signatures and measurement uncertainties change. In 
addition, the genetic fuzzy system reduces the human effort 
needed in the trial and error process used to design the fuzzy 
system and makes the development of such a system easier and 
faster. A radial basis neural network is also used to preprocess 
the measurements before fault isolation. The radial basis 
network shows significant noise reduction and when combined 
with the genetic fuzzy system leads to a diagnostic system that 
is highly robust to the presence of noise in data. 
 

 
INTRODUCTION 

Several researchers have proposed model based engine 
condition monitoring systems for gas turbine engines over the 
past few years. A recent review of some of this work is given in 
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[1]. These systems were initially developed for predicting the 
long-term deterioration in gas turbine engines which occurs due 
to operating in a harsh aero-thermodynamic environment [2-3]. 
Because of the high levels on uncertainty in gas path 
measurements [4], researchers have tried to estimate the engine 
state from measurement deltas, which are deviations in the 
measurement from a baseline good engine. Since many older 
engines which are in service have limited instrumentation, with 
high levels of noise in the data, the fault isolation problem is a 
hard inverse problem and is difficult to address. While 
commercial software tools tend to use Kalman filter and 
weighed least square type approaches [5-8], researchers have 
also focused on soft computing based methods in recent years 
[9-12]. Soft computing encompasses genetic algorithms, fuzzy 
logic, neural networks and Bayesian networks among others 
and has emerged as a powerful approach in automated 
reasoning [13]. 

Recently, some work has also been directed at finding a 
fault in the engine once a measurement change in the form of a 
trend shift has been identified. This work is motivated by the 
realization that many engine faults are preceded by a sharp 
change in the measurement deltas and occur because of a fault 
in one module [14]. The isolation of these so-called “single 
faults” from gas path measurement deltas has been studied by 
neural network [14-15], Kalman filter [16] and fuzzy logic [17] 
based methods. 

Fuzzy systems are also universal function approximations 
in a manner similar to neural networks [18]. However, fuzzy 
systems have the added advantage that they are expressed in 
linguistic terms that are easy to understand [19]. Fuzzy systems 
also address the issue of uncertainty using a built in fuzzifier 
whereas a neural network learns the noise characteristics of the 
data through training. Ganguli has shown that fuzzy systems 
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provide very accurate fault isolation results for gas turbine 
diagnostics [17]. However, the neural and fuzzy methods for 
diagnostics are highly configuration dependent, meaning that if 
the underlying model used to obtain fault signatures or the 
measurement uncertainties of the signal changed, the diagnostic 
systems have to be redeveloped. Since there are many different 
engines operating with different airlines, there are likely to be 
many possible combinations of fault signatures and 
measurement uncertainties for the fault isolation systems which 
need to be developed. Very often the process of redeveloping 
the underlying numerics or rules for the diagnostic system is a 
trial and error process that can be very tedious and require 
considerable human effort.  

Another way to address uncertainty in diagnostics systems 
is to filter the measurement deltas prior to fault isolation. 
Neural network [14, 20] and median filter [21] based methods 
have been suggested as alternatives to the moving average and 
exponential average filters for gas path measurement deltas. 

In this paper, we propose a genetic fuzzy system [22] that 
allows for easy development of rule base for an engine given 
fault signature and measurement uncertainties. In such a 
system, genetic algorithms are used to tune the fuzzy 
membership functions and rules. Typically, if Gaussian fuzzy 
sets are used, the number of fuzzy sets, their midpoints and 
standard deviations can be used as design variables. A measure 
of the performance of the fuzzy system is then maximized 
using a genetic algorithm. The genetic fuzzy system thus 
automates the creation of fuzzy system, greatly reducing the 
human effort needed. Furthermore, a radial basis neural 
network preprocessor is studied for denoising signals typical of 
path measurements. The advantages of using such a signal 
processing algorithm prior to fault isolation by a genetic fuzzy 
system is shown.  

 

NOMENCLATURE 
EGT       Exhaust gas temperature 
FC          Flow capacity 
FP4        High-pressure turbine area 
FP45     Low-pressure turbine area 
m  Midpoint of fuzzy set 
MAE Mean absolute error 
N1          Low rotor speed 
N2          High rotor speed 
NR  Noise reduction 
T            Set of terms 
U            Universe of discourse of fuzzy set 
WF        Fuel flow 
x             Elements of fuzzy sets 
x            Design variables for GA 
y            Module faults 
z             Measurement deltas 
∆  Change from baseline “good” engine 
η             Efficiency 
µA(x)       Degree of membership of x in fuzzy set A 
σ         Uncertainty as standard deviation  
L             Length of universe of discourse 
N  Number of fuzzy sets 

(max)N  Maximum number of fuzzy sets 

genN        Number of generations of GA 
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genN  Maximum number of generations of GA 

 

PROBLEM FORMULATION 
Consider a twin spool gas turbine with five modules: fan, 

low-pressure compressor (LPC), high- pressure compressor 
(HPC), high- pressure turbine (HPT) and low- pressure turbine 
(LPT). Most damages to the engine manifest themselves as 
changes in either the module efficiency or flow capacity/area. 
The FAN, LPC and HPC modules have efficiencies and the 
flow capacities associated with them, while the HPT and LPT 
modules have efficiencies and areas associated with them. The 
fingerprints or fault signatures relating a change in 
measurements deltas for four basic parameters with the faulty 
module is shown in Table 1 [17]. 

 
Table 1. Signature for Module Faults 

Measurement 
Deltas 

Module Faults 

∆EGT 
(C) 

∆N1  
(%) 

∆N2 
(%) 

∆WF 
(%) 

FAN -7.72 1.35 -0.59 -1.40 
LPC 9.09 0.28 0.57 1.32 
HPC 13.60 0.10 -0.11 1.60 
HPT 21.77 0.15 -1.13 2.58 
LPT 2.38 -1.96 1.27 -1.92 

 
The four basic parameters are found in almost all engines 

and are exhaust gas term (EGT), low rotor speed (N1), high 
rotor speed (N2) and fuel flow (WF). They are also called 
cockpit parameters as they are displayed to the pilot of a jet 
engine aircraft. The fault signatures in Table 1 assume the 
following couplings between module efficiencies and flow 
capacities [16]: 

1.  FAN  Coupled FAN (-2%η,-2.5 FC) 
2.  LPC  Coupled LPC (-2% η,-2.2%FC) 
3.  HPC Coupled HPC (-2% η,-1.6 FC) 
4.  HPT Coupled HPT (-2% η,-1.5 FP4) 
5.  LPT Coupled LPT (-2% η, +3.3% FP45) 
Each fault is modeled as a 2 percent decrease in efficiency 

from the baseline “good” engine. Since the fault signatures are 
derived from influence coefficients, they are only 
approximately correct because they do not account for 
uncertainties in the measurement process.  Each gas path 
measurement is associated with an uncertainty. One measure of 
this uncertainty is the standard deviations from revenue service 
data. As given in [16] and [17], typical standard deviations for 
∆EGT, ∆N1, ∆N2, and ∆WF as 4.23C, 0.25%, 0.17% and 
0.50%, respectively. These numbers are obtained from an 
analysis of airline monitoring data. 
 

NEURAL SIGNAL PROCESSING 
Since gas turbine measurements are often contaminated 

with noise and outliers, it is useful to perform a data cleaning 
function prior to fault isolation. In this study, we use a radial 
basis neural network for removing noise from simulated 
signals. Radial basis networks are an alternative to the more 
widely used multilayer perceptron networks trained using the 
backpropagation algorithm and take much less computer time 
for training [23]. 
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The radial basis function network (RBFN) model consists 
of three layers: an input layer, a hidden (kernel) layer and an 
output layer. The nodes within each layer are fully connected to 
the previous layer. The input variables are each assigned to a 
node in an input layer and pass directly to the hidden layer 
without weights. The hidden nodes or units contain the RBF, 
also called transfer functions.  

An RBF is symmetrical about a given mean or center point 
in a multidimensional space. In the RBFN, a number of hidden 
nodes with RBF activation functions are connected in a feed 
forward parallel architecture. The parameters associated with 
the RBFs are optimized during training. These parameter values 
are not necessarily the same throughout the network nor are 
they directly related to or constrained by the actual training 
vectors. When the training vectors are presumed to be accurate, 
i.e. non stochastic, and it is desirable to perform a smooth 
interpolation between them, then linear combinations of RBFs 
can be found which give no error at the training vectors. The 
methods of fitting RBFs to data, for function approximation, 
are closely related to distance weighted regression. The RBF 
expansion for one hidden layer and an arbitrary RBF is 
represented by the equation  

∑
=

−−=
H

i
iikik xcwxy

1

2 )exp()( σ  

where yk = kth output, wki = weight from the ith kernel node to 
the kth output node, ci = centroid of the ith kernel node, σi = 
width of the ith kernel node and H = number of kernel nodes. 
The parameters of the RBF wki, ci and σi are commonly chosen 
by first selecting randomly or uniformly the ci and then using 
singular value decomposition (SVD) to solve for wki and σi. 
This approach is not the most satisfactory. A better approach, 
suggested by Leonard et al [23], involves using K-means 
clustering to determine the ci, a K-nearest heuristic to determine 
the σi and multiple linear regressions to determine the wki. The 
K-means clustering algorithm finds a set of cluster centers and 
a partition of the training data into subsets. Each cluster center 
is then associated with one of the H kernels or centers in the 
hidden layer. After the centers are established the width of each 
kernel is determined to cover the training points to allow a 
smooth fit of the desired network outputs.  
 

FUZZY LOGIC SYSTEM 
A fuzzy logic system (FLS) is a nonlinear mapping of an 

input feature vector into a scalar output [17]. A typical FLS 
maps crisp inputs to crisp outputs using four basic components: 
rules, fuzzifier, inference engine, and defuzzifier. Once the 
rules driving the FLS have been fixed, the FLS can be 
expressed as a mapping of inputs to outputs. Rules can come 
from experts or can be obtained from numerical data. The 
discussion below is condensed from [17] where a more 
comprehensive account of FLS is given. 

The fuzzifier maps crisp input numbers into fuzzy sets. An 
inference engine of the FLS maps fuzzy sets to fuzzy sets and 
determines the way in which the fuzzy sets are combined. In 
several applications, crisp numbers are needed as an output of 
the FLS. In those cases, a defuzzifier is used to calculate crisp 
values from fuzzy values. 

A fuzzy set generalizes the concept of an ordinary set 
whose membership function only takes two values, zero and 
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unity. The most commonly used shapes for membership 
functions µ(x) are triangular, trapezoidal, piecewise linear or 
Gaussian.  Rules for the fuzzy system can be expressed as: 

Ri : IF x1 is F1 AND x2 is F2 AND xm is Fm THEN  y=Ci, 
i=1,2,3….M 

where m and M are the number of input variables and rules, 
xi and y are the input and output variables, and Fi є Vi and Ci є 
W are fuzzy sets characterized by membership functions µFi(x) 
and µCi(x), respectively. Each rule can be viewed as a fuzzy 
implication F1,2,3…m  =F1 x F2 x …..Fm → Ci, that is a fuzzy set 
in V x W= V1 x V2 x V3 x … x Vm with membership function 
given by 

            µRi (x,y) = µF1 (x1) * µF2  (x2) * …* µFm (xm) * µCi (y)       
where * is the product with x=[ x1 x2…. xm] є V and y є W. 

In pattern recognition problem the outputs are often crisp sets, 
and µCi (y) =1 is often used for the product inference formula. 
Popular defuzzification methods include maximum matching 
and centroid defuzzification. In our study, we keep the output 
as fuzzy sets as they are easier to interpret linguistically for 
diagnostic and prognostic action. Rules for the fuzzy system are 
obtained by fuzzification of the numerical values in the 
fingerprint charts using the following procedure [17]: 

Algorithm 1 
1. Each measurement delta is divided into N fuzzy 

sets whose geometry is selected by the designer. 
2. A set of four measurements delta corresponding to 

a given module fault is input to the FLS and the 
degree of membership of the elements of the 
∆EGT, ∆WF, ∆N2 and ∆N1 are obtained.                      

3. Each measurement delta is then assigned to the 
fuzzy set with the maximum degree of 
membership. 

4. One rule is obtained for each module fault by 
relating the measurement deltas with maximum 
degree of membership to a module fault. 

For any given input set of measurement deltas, the fuzzy 
rules are applied using product implication. Once the fuzzy 
rules are applied for a given measurement, we have degree of 
membership for FAN, LPC, HPC, HPT and LPT. For fault 
isolation, we are interested in the most likely fault. The fault 
with the highest degree of membership is selected as the most 
likely fault.  

The main problem in Algorithm 1 is in the selection of the 
number and type of fuzzy sets in Step 1. Typically, designers 
select the number and geometry of the fuzzy sets based on 
knowledge of the problem. For example, the measurements 
may be classified into five fuzzy sets named very low, low, 
medium, high and very high. In case Gaussian functions are 
selected as membership functions, the midpoints and standard 
deviations associated with each Gaussian fuzzy set needs to be 
selected so that the entire measurement range is spanned by the 
fuzzy sets and there is some intersection between the sets.  

Thus, the designer must manually iterate over Algorithm 1 
to obtain a fuzzy system which has good performance. This is a 
trial and error process. Genetic algorithms are one way of 
automating this process. 

GENETIC ALGORITHM 
Genetic algorithms (GA) are a probabilistic search method. 

A brief introduction to GA is given below. Goldberg [24] and 
recent papers [25], give more details about genetic algorithms. 
3 Copyright © 2004 by ASME 
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The genetic algorithm is motivated by the hypothesized 
natural process of evolution in biological populations, where 
genetic information stored in chromosomal strings evolve over 
generations to adapt favorably to a static or changing 
environment. The algorithm is based on elitist reproduction 
strategy, where members of population, which are deemed most 
fit, are selected for reproduction, and are given the opportunity 
to strengthen the chromosomal makeup of progeny generation. 
This approach is facilitated by defining a fitness function or a 
measure indicating the goodness of a member of the population 
in the given generation during the evaluation process. 

To represent designs as chromosome-like strings, the 
design variable is converted to its binary equivalent and thereby 
mapped into a fixed length string of 0’s and 1’s. A number of 
such strings constitute a population of designs, with each 
design having a corresponding fitness value. This fitness value 
could be the objective function F(X) for a function 
maximization problem. Thus, the GA can be used to solve 
optimization problems of the form, 

Maximize F(X)          
Subject to Xi 

(min) ≤ Xi ≤ Xi 
(max)            

The starting population is selected randomly in the domain 
lying between the minimum and maximum values of X and 
then the following genetic operators applied to improve results. 

1. Reproduction. Individuals are selected and the 
probability of selection is based on their fitness value. 
The new population pool has higher average fitness 
value than the previous pool. 

2. Crossover. In the two-point crossover approach, two 
mating parents are selected at random; the random 
number generator is invoked to identify two sites on 
the strings, and the strings of 0’s and 1’s enclosed 
between the chosen sites are swapped between the 
mating strings. 

3. Mutation. A few members from the population pool 
are taken according to probability of mutation pm, and 
a 0 to 1 or vice versa are switched at randomly 
selected mutation site on the chosen string. 

The process of reproduction, crossover and mutation 
constitute one generation of the GA. After several generations 
the GA is stopped and the best point among the values taken as 
the optimal point. Being a probabilistic search method, GA’s 
are very good at finding global maxima. Furthermore, GA’s 
need only function values and not gradient information, which 
makes them easy to use for real systems where accurate 
gradient information is difficult to obtain, and local minima 
may occur. However, they are computationally expensive. 

GENETIC FUZZY SYSTEM 
There are two main problems in the generation of fuzzy 

systems [22]. The first is that it is difficult to select the 
appropriate number of fuzzy sets. The second is selection of the 
membership functions. For a given number of fuzzy sets and 
type of membership functions the rules need to be created. 
However, if the number of fuzzy sets or type of membership 
function changes, the rules can change. Most fuzzy systems are 
designed using a trial and error process. Therefore, any change 
in the membership functions or the number of fuzzy sets leads 
to a change in the rule base; the process of designing a fuzzy 
system is iterative and can become very cumbersome for a 
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human designer. It is therefore desirable to create an automated 
procedure for the design of fuzzy systems.  

A genetic algorithm is used to facilitate the design of the 
fuzzy system. The approach is discussed below: 

Algorithm 2 
1. Define maximum and minimum values for a 

measurement delta ∆z by ∆z(max) and ∆z(min), 
respectively.  

2. Define the universe of discourse for ∆z to be the 
set of real numbers between the minimum and 
maximum values, U (∆z) = [∆z(min), ∆z(max)]. 

3. Define L(∆z) = ∆z(max) - ∆z(min) as the length of the 
universe of discourse. 

4. Divide U into N Gaussian fuzzy sets F1, F2,…FN  
and define the midpoint of fuzzy point F1 by 
∆z(min) and of fuzzy set FN by ∆z(max), respectively.  
These fuzzy sets can be defined using the 
following equation: 

2

5.0
)(







 −−

= σµ
mx

ex  
where m is the midpoint of the fuzzy set and σ is 
the uncertainty (standard deviation) associated 
with the variable. 

5. Assuming the fuzzy sets are equally spaced, 
calculate the mid points of fuzzy set F2  as ∆z(min)  

+ ∆m, of set F3 as ∆z(min)  + 2*∆m and set  Fi  as 
∆z(min)  + (i-1)∆m where  

 
1
)(

−
∆=∆

N
zLm     

6. Allow the fuzzy sets for the measurement delta ∆z 
to move together along the number line by an 
amount x. This allows the midpoints of the fuzzy 
sets to change, along with the values ∆z(min) and 
∆z(max). However, the distance L(∆z) remains 
constant. With this definition, the midpoints of the 
fuzzy sets are defined once N and x are selected.  

7. Select the standard deviation of the fuzzy set for 
measurement ∆z as the measurement uncertainty 
of ∆z. 

The above approach can now be applied to the four 
measurement deltas considered in this study. This procedure is 
discussed in the algorithm below. 

Algorithm 3 
1. Define the maximum and minimum values for 

each measurement ∆EGT, ∆N1, ∆N2 and ∆WF 
from the fault signatures shown in Table 1. Thus 
for ∆EGT, the maximum and minimum values are 
21.77C and -7.72C, respectively. 

2. Define the range spanned by each variable as 
L1=L(∆EGT), L2=L(∆N1), L3=L(∆N2), and 
L4=L(∆WF) 

3. Choose N fuzzy sets to partition each 
measurement. To start the algorithm, use N=2. 

4. Let x1, x2, x3 and x4 define the tuning variables 
associated with ∆EGT, ∆N1, ∆N2 and ∆WF 
respectively. To start the algorithm, select random 
values satisfying -25% Li ≤ xi ≤ 25%Li, i=1,4. 
Choose σ for ∆EGT, ∆N1, ∆N2 and ∆WF as 
4.23C, 0.25%, 0.17% and 0.50%, respectively. 
4 Copyright © 2004 by ASME 
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5. Generate the fuzzy system from the numerical 
data using the conventional procedure outlined 
before in Algorithm 1.  

6. Using a sample of 100 noisy data points, calculate 
success rate as 

T

C

N
N

S 100=  

where NC is the number of correct classifications 
and NT is the total number of classifications.  

7. Use GA to solve the optimization problem by 
taking the best solution from (max)

genN generations: 
Maximize  

S(x1, x2, x3, x4 )        
Subject to  

-25% Li ≤ xi ≤ 25%Li, i=1,4. 
8. Increase N by 1, 

a.  if N<N(max)  
i. Go to 3,  

b. else  
i. Select N with highest success rate S 

(if highest S is obtained by more 
than one value of N, select the 
lowest N that gives the highest S) 

The only values, which need to be the input of the Genetic-
Fuzzy system, are the values of measurement deltas 
corresponding to each fault, and the fault signature based on the 
linearized influence coefficients at the current operating point. 
For the standard deviations of the Gaussian fuzzy sets, we use 
the measurement uncertainty data that can be obtained by a 
statistical analysis of engine data. If the measurement 
uncertainties change, the genetic fuzzy system can be tuned to 
the different numerics. Thus we get an automatic system that 
greatly reduces the need of manual manipulation. 

NUMERICAL RESULTS 
In this study, a maximum of nine generation of the GA are 

used for each N values of the fuzzy sets. The population size, 
crossover probability and mutation probability are chosen as 
20, 0.8 and 0.1, respectively. The maximum number of fuzzy 
sets is selected as 10.  

Since genetic algorithms are computationally intensive, the 
issue about computation time is important for practical 
implementation. As an example, the code implementing the 
algorithm in this study takes about 3-5 minutes to run on 
Matlab on a Pentium 4 PC with the full nine generations of GA. 
However, in many cases, the convergences occur in 2-3 
generations given that we use only four design variables and 
have a starting population of 20 for each variable. Each design 
variable is represented by a 10 bit string. 

As mentioned earlier, a standard approach in the design of 
the optimal fuzzy system is to consider the midpoints and 
standard deviations of each fuzzy set as design variables. If 
there are N fuzzy sets and M measurements, the maximum 
number of midpoint design variables is N*M and the maximum 
number of standard deviation design variables is N*M. The 
total number of design variables is therefore 2*N*M. For the 
case with N=6 and M=4, we would have a total of 2*6*4=48 
design variables, leading to high computer time requirements.  

The algorithm in this study uses some prior knowledge of 
the problem to reduce the number of design variables 
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dramatically. The standard deviations are thus selected to be 
equal to the measurement uncertainties. In this manner, the 
fuzzifier is able to act as a filter which addresses noise in the 
data in a direct manner. By making the requirement that the 
universe of discourse only spans the neighborhood of the 
measurements, the region where fuzzy set discretization is 
needed is optimized. Using a uniform distribution of fuzzy sets 
leads to so-called design variable linking in optimization and 
allows the midpoints to be defined using only two variables for 
each measurement: the number of fuzzy sets N and the 
translation variable x. For a given number of fuzzy sets, the 
number of design variables is equal to the number of 
measurements which is four in this case. 
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Figure 1 Change in fault isolation success rate with 
increasing number of fuzzy sets 
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Figure 2 Evolution of success rate for fuzzy system with 6 
sets with generations of genetic algorithm 

 
The fuzzy system is tested using simulated data developed 

from the fault signatures shown in Table 1. For each module, 
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100 noisy data sets are generated for module faults with 2% 
deterioration in efficiency. Noise is added to the simulated 
measurement deltas using the typical standard deviations for 
∆EGT, ∆N1, ∆N2, and ∆WF as 4.23C, 0.25%, 0.17% and 
0.50%, respectively.  
 
Table 2. Midpoints of Two Fuzzy Sets 

∆EGT (C) -7.69 21.80 
∆N1 (%) -1.93 1.38 
∆N2 (%) -1.10 1.30 
∆WF (%) -1.89 2.61 

 
Table 3. Midpoints of Three Fuzzy sets 

∆EGT (C) -8.16 6.58 21.33 
∆N1 (%) -2.40 -0.75 0.91 
∆N2 (%) -1.57 -0.37 0.83 
∆WF (%) -2.36 -0.11 2.14 

 
Table 4. Midpoints of Four Fuzzy Sets 

∆EGT (C) -8.31 1.52 11.35 21.18 
∆N1 (%) -2.55 -1.45 -0.35 0.76 
∆N2 (%) -1.72 -0.92 -0.12 0.68 
∆WF (%) -2.51 -1.01 0.49 1.99 

 
Table 5. Midpoints of Five Fuzzy Sets 

∆EGT (C) -7.82 -0.44 6.92 14.30 21.67 
∆N1 (%) -2.06 -1.23 -0.40 0.42 1.25 
∆N2 (%) -1.23 -0.63 -0.03 0.57 1.17 
∆WF (%) -2.02 -0.89 0.23 1.36 2.48 

 
Table 6. Midpoints of Six Fuzzy Sets 

 VL L  ML  MH  H VH 
∆EGT (C) -9.62 -3.72 2.17 8.07 13.97 19.87 
∆N1 (%) -2.23 -1.56 -0.90 -0.24 0.42 1.08 
∆N2 (%) -1.21 -0.72 -0.25 0.23 0.71 1.19 
∆WF (%) -2.25 -1.35 -0.45 0.45 1.35 2.25 

 
Figure 1 shows the success rate for the optimal genetic 

fuzzy system as the number of fuzzy sets is increased from 2 to 
9. For each value of N in this figure, the optimal values of x are 
calculated using Algorithm 3. For only 2 fuzzy sets, the success 
rate is about 80 percent and quickly rises as the number of sets 
increases. The number N=6 is selected by Algorithm 3 as the 
point where the genetic fuzzy system is optimal with a 
minimum number of sets. Figure 2 shows the success rate of 
the fuzzy system with six sets as the GA generations’ progress. 
In this case, only two generations were needed to achieve a 
success rate of 100 percent and the values of x corresponding to 
the second generation of GA is selected by Algorithm 3 as the 
optimal fuzzy system. 

Tables 2-6 provide the midpoints of the fuzzy sets for the 
four measurements as the number of fuzzy sets increases from 
two to six. The starting values in Table 2 show two fuzzy sets 
with midpoints centered near the maximum and minimum 
values of the measurements. The values in Table 6 correspond 
to the case where N=6 in Figure 1 and Ngen=2 in Figure 2. 
Figures 3-7 show the evolution of the fuzzy system using the 
fuzzy sets for exhaust gas temperature as an example. Figure 3 
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shows the starting case with two fuzzy sets which is a crude 
descretization. In Figure 7, the optimal level of discretization 
with six fuzzy sets is achieved.  
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Figure 3 Discretization of universe of exhaust gas 
temperature using two fuzzy sets 
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Figure 4 Discretization of universe of exhaust gas 
temperature using three fuzzy sets 

In Table 6 each fuzzy set is assigned a linguistic value of 
very low (VL), low (L), medium-low (ML), medium-high 
(MH), high (H) and very high (VH). These “linguistic 
measures” are shown in Figure 7 for the six ∆EGT fuzzy sets. 
The fuzzy rule base for the case with six fuzzy sets is shown in 
Table 7. Table 7 is the result of fuzzification of the numerical 
data in Table 1. These rules can be read as follows for the FAN 
module: 

            IF 
                     ∆EGT is Very Low AND 
                     ∆N1 is Very High AND 
                     ∆N2 is Low AND 
                     ∆WF is Very Low 
            THEN  
6 Copyright © 2004 by ASME 
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Do
                       Problem in FAN module 
The rules for the other modules can be similarly interpreted. 
These rules provide a knowledge base and represent how a 
human engineer would interpret data to isolate an engine fault 
using fingerprint charts. 
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Figure 5 Discretization of universe of exhaust gas 
temperature using four fuzzy sets 
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Figure 6 Discretization of exhaust gas temperature using 
five fuzzy sets 

Table 7. Rules for Optimal Fuzzy System with Six Fuzzy Sets 
 ∆EGT ∆N1 ∆N2 ∆WF 

FAN VL VH L VL 
LPC ML MH H MH 
HPC MH MH ML H 
HPT VH MH VL VH 
LPT L VL VH VL 

 
Table 8 shows the success rate of the fuzzy set with 100 

noisy data points. The noisy data points for testing are different 
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from data used for developing the rule base of the fuzzy 
system. The average success rate is 100%, compared to 98.2% 
for the manually designed fuzzy system in Ref. [17]. The 
manually designed fuzzy system showed some problems in 
differentiating between faults in the LPC and those in the HPC. 
It is clear that the genetic-fuzzy system is able to identify the 
correct fault despite the presence of considerable uncertainty in 
measurements. 
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Figure 7 Discretization of universe of exhaust gas 
temperature using six fuzzy sets 

 
Table 8. Results for Optimal Fuzzy System and Manually 
Designed System 

Module Success Rate (%) Success Rate (%)** 

HPC 100 94 
HPT 100 100 
LPC 100 97 
FAN 100 100 
LPT 100 100 

Average Success 
Rate 

100 98.2 

**from [17] 
 
The effect of noise on the genetic fuzzy system is shown in 
Figure 8 and the results are compared with data from the fuzzy 
system from Ref. [17]. Here the noise ratio is defined as σ/σ0 
where σ0 is the baseline noise level used for developing the 
genetic fuzzy system and σ is the noise level in the simulated 
data used for testing. It is clear that both the systems show a 
decline in the average fault isolation success rate with 
increasing noise levels in the data. However, the genetic fuzzy 
systems appear to show a somewhat better performance as the 
noise level increases. This is due to the “optimal” nature of the 
fuzzy system developed and the use of formal optimization 
methods rather than a trial and error process in maximizing the 
success rate. The result of applying a neural network 
preprocessor to the genetic fuzzy system is discussed below. 
    To study the signal processor, we assume time series of 100 
discrete points. From k=0 to k=50, the signal changes linearly 
from 0 to sign(∆z) σ0/2. From k=50 to k=51, the signal changes 
7 Copyright © 2004 by ASME 
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Dow
by ∆z. From k=51 to 100 the signal changes from ∆z to 
∆z+sign(∆z) σ0/2. This simulates a “single fault” situation, 
where a step jump equal to the measurement deltas 
corresponding to the module faults is added to a linearly 
varying signal. As an example, the ∆EGT variation for an HPC 
fault is simulated using a linear variation from 0C at k=1 to 
4.23/2=2.115C at k=50, followed by a change to 
13.6+4.23/2=15.715C at k=51, and a linear variation thereafter 
to 13.6+4.23=17.83C. Figure 9 shows the noisy signal and RBF 
filtered signal. 
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Figure 8 Success Rate in Fault Isolation with Increasing 
Noise Levels in Data 
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Figure 9 Noisy and filtered ∆∆∆∆EGT signal simulating HPC 
fault 

For determining the RBF unit centers, we use a ‘K-means’ 
clustering algorithm. The ‘K-means’ clustering algorithm finds 
a set of clusters each with centers from the given training data. 
The cluster centers become the centers of the RBF units. The 
number of clusters is a design parameter and determines the 
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number of RBF units, i.e. nodes, in the hidden layer.  We have 
used H=20. When the RBF centers have been established, the 
widths of each RBF can be calculated. The width of any RBF 
distance to the nearest p RBF units, where p is a design 
parameter for the RBFN, for unit t is given by 









−= ∑∑

= =
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j
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k kjki
i xx

p 1
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where ∧
ki

x and ∧
kj

x are the kth entries of the centers of the ith 

and jth hidden units. We have used p=5. When the centers and 
widths of the RBF units have been chosen, then the N=100 
training samples are processed through the hidden nodes to 
generate an H ×N matrix, called A. Let T be the M × N desired 
output matrix for the training patterns and M=100 is the 
number of output nodes. The objective is to find the weights 
that minimize the error between the actual output and the 
desired output of the network. Essentially, we are trying to 
minimize the objective (cost) function 

WAT −  
where W is the M × H matrix of weights on the connections 
between the hidden and output nodes of the network. We train 
the RBF network with added Guassian noise at σ0=4.23C, 
0.25%, 0.17% and 0.50%, respectively for ∆EGT, ∆N1, ∆N2, 
∆WF. 
 
Table 9. Noise reduction using radial basis neural network 

 ∆EGT (C)  ∆N1 (%) ∆N2 (%) ∆WF 
(%) 

HPC 78.84 67.03 67.38 81.87 
HPT 84.24 72.07 83.38 83.71 
LPC 77.50 74.34 78.48 77.95 
FAN 74.80 82.43 79.04 80.62 
LPT 68.76 83.83 84.68 82.95 

Average 76.83 75.94 78.59 81.42 
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Figure 10 Noisy and Filtered ∆∆∆∆WF signal simulating LPT 
fault 
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Noise is added to the ideal signal using a baseline value σ0 
of typical standard deviations for ∆EGT, ∆N1, ∆N2, and ∆WF 
as 4.23C, 0.25%, 0.17% and 0.50%, respectively. The filtered 
signal in Figures 9 and 10 show considerable noise reduction 
while preserving the nature of the step edge. This data 
represents one noisy signal for each measurement. The visual 
quality of the data is considerably improved. Similar results are 
obtained for all the signals corresponding to the faults in Table 
1. To summarize these results concisely, the following noise 
reduction measure is defined based on the mean absolute error 
(MAE) criteria. 

∑
=
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N

i
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i
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i
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)()()( 1
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)()()( 1
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)()(
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filterednoisy

R MAE
MAEMAEN −=  

For each signal, 100 samples of noisy test data are created and 
the noise reduction calculated. These values are summarized in 
Table 9 and show a noise reduction averaging between 75 to 81 
percent. Results in this paper clearly demonstrate the power of 
the soft computing framework for automated decision making 
under uncertainty. The approach uses the concept of 
“hybridization in soft computing” where using different 
techniques such as neural networks, genetic algorithms and 
fuzzy logic together gives better results than if each method is 
used individually [26]. The “hybridization” process uses the 
strengths of each different approach to attack the problem. It is 
however also possible to device alternate strategies such as 
hardware smoothing and a neural network processor to get 
good results. Many soft computing based implementations are 
possible. 
 

CONCLUSIONS 
A genetic fuzzy system is developed in this study for fault 

isolation in gas turbine engines. The system automatically 
selects the number of fuzzy sets and membership functions 
based on the fault signatures of the engine and measurement 
uncertainties. The fault signatures are derived from influence 
coefficients. A radial basis neural network is also studied for 
data cleaning prior to fault isolation. The following conclusions 
can be drawn from this study. 

1. For simulated faults considered in this study, the 
genetic fuzzy system achieved a success rate of 100% 
for the five module faults (HPC, LPC, FAN, HPT, and 
LPT) and four measurements (∆EGT, ∆N1, ∆N2, 
∆WF). In contrast, a manually developed fuzzy system 
in [17] achieved a success rate of 98% with some 
confounding between the LPC and HPC module 
faults. 

2. The trial and error process used to design a fuzzy 
system leads to considerable human labor and is often 
sub optimal. Different aircraft engines operated by 
different airlines can have different numerics such as 
influence coefficients and measurement uncertainties 
and it is a tedious process to develop a fuzzy system 
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for each case. The genetic fuzzy system automates the 
process of design of the fuzzy system. 

3. By using a priori information about measurement 
uncertainties and through design variable linking, the 
design of the fuzzy system is posed as an optimization 
problem with low number of design variables which 
can be solved using genetic algorithm in considerably 
low amount of computer time. 

4. As noise levels in data increase, the genetic fuzzy 
system retains its edge over the manually designed 
fuzzy system, giving 2-5 percent higher success rate 
with the same numerics.  

5. A radial basis neural network prefilter achieved 75-81 
percent noise reduction for simulated signals with 
linear deterioration and step changes. When the neural 
network is used to prefilter signals prior to fault 
isolation, the accuracy of the genetic fuzzy system is 
further improved for lower quality data by 2-4 percent.  

6. The use of several tools of the soft computing 
approach (neural network, genetic algorithm and fuzzy 
logic) together gives better performance than if they 
are used individually and shows the advantage of 
“hybridization” in soft computing. 

A drawback of the soft computing approach discussed in this 
paper is its complexity since it involves the simultaneous use of 
several different methods. While this paper looks at fault 
isolation of gas turbines using soft computing, it is also possible 
to use such approaches for gas path performance estimation 
which is typically conducted using Kalman filter and least 
square type methods. This is a topic of ongoing work by the 
authors. 
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