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ABSTRACT

A fuzzy system that automatically develops its rule base
from a linearized performance model of the engine by selecting
the membership functions and number of fuzzy sets is
developed in this study to perform gas turbine fault isolation.
The faults modeled are module faults in five modules: fan, low
pressure compressor, high pressure compressor, high pressure
turbine and low pressure turbine. The measurements used are
deviations in exhaust gas temperature, low rotor speed, high
rotor speed and fuel flow from a base line ‘good engine’. A
genetic algorithm is used to tune the fuzzy sets to maximize
fault isolation success rate. A novel scheme is developed which
optimizes the fuzzy system using very few design variables and
therefore is computationally efficient. Results with simulated
data show that genetic fuzzy system isolates faults with
accuracy greater than that of a manually developed fuzzy
system developed by the authors. Furthermore, the genetic
fuzzy system allows rapid development of the rule base if the
fault signatures and measurement uncertainties change. In
addition, the genetic fuzzy system reduces the human effort
needed in the trial and error process used to design the fuzzy
system and makes the development of such a system easier and
faster. A radial basis neural network is also used to preprocess
the measurements before fault isolation. The radial basis
network shows significant noise reduction and when combined
with the genetic fuzzy system leads to a diagnostic system that
is highly robust to the presence of noise in data.

INTRODUCTION

Several researchers have proposed model based engine
condition monitoring systems for gas turbine engines over the
past few years. A recent review of some of this work is given in
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[1]. These systems were initially developed for predicting the
long-term deterioration in gas turbine engines which occurs due
to operating in a harsh aero-thermodynamic environment [2-3].
Because of the high levels on uncertainty in gas path
measurements [4], researchers have tried to estimate the engine
state from measurement deltas, which are deviations in the
measurement from a baseline good engine. Since many older
engines which are in service have limited instrumentation, with
high levels of noise in the data, the fault isolation problem is a
hard inverse problem and is difficult to address. While
commercial software tools tend to use Kalman filter and
weighed least square type approaches [5-8], researchers have
also focused on soft computing based methods in recent years
[9-12]. Soft computing encompasses genetic algorithms, fuzzy
logic, neural networks and Bayesian networks among others
and has emerged as a powerful approach in automated
reasoning [13].

Recently, some work has also been directed at finding a
fault in the engine once a measurement change in the form of a
trend shift has been identified. This work is motivated by the
realization that many engine faults are preceded by a sharp
change in the measurement deltas and occur because of a fault
in one module [14]. The isolation of these so-called “single
faults” from gas path measurement deltas has been studied by
neural network [14-15], Kalman filter [16] and fuzzy logic [17]
based methods.

Fuzzy systems are also universal function approximations
in a manner similar to neural networks [18]. However, fuzzy
systems have the added advantage that they are expressed in
linguistic terms that are easy to understand [19]. Fuzzy systems
also address the issue of uncertainty using a built in fuzzifier
whereas a neural network learns the noise characteristics of the
data through training. Ganguli has shown that fuzzy systems
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provide very accurate fault isolation results for gas turbine
diagnostics [17]. However, the neural and fuzzy methods for
diagnostics are highly configuration dependent, meaning that if
the underlying model used to obtain fault signatures or the
measurement uncertainties of the signal changed, the diagnostic
systems have to be redeveloped. Since there are many different
engines operating with different airlines, there are likely to be
many possible combinations of fault signatures and
measurement uncertainties for the fault isolation systems which
need to be developed. Very often the process of redeveloping
the underlying numerics or rules for the diagnostic system is a
trial and error process that can be very tedious and require
considerable human effort.

Another way to address uncertainty in diagnostics systems
is to filter the measurement deltas prior to fault isolation.
Neural network [14, 20] and median filter [21] based methods
have been suggested as alternatives to the moving average and
exponential average filters for gas path measurement deltas.

In this paper, we propose a genetic fuzzy system [22] that
allows for easy development of rule base for an engine given
fault signature and measurement uncertainties. In such a
system, genetic algorithms are used to tune the fuzzy
membership functions and rules. Typically, if Gaussian fuzzy
sets are used, the number of fuzzy sets, their midpoints and
standard deviations can be used as design variables. A measure
of the performance of the fuzzy system is then maximized
using a genetic algorithm. The genetic fuzzy system thus
automates the creation of fuzzy system, greatly reducing the
human effort needed. Furthermore, a radial basis neural
network preprocessor is studied for denoising signals typical of
path measurements. The advantages of using such a signal
processing algorithm prior to fault isolation by a genetic fuzzy
system is shown.

NOMENCLATURE

EGT Exhaust gas temperature

FC Flow capacity

FP4 High-pressure turbine area

FP45 Low-pressure turbine area

m Midpoint of fuzzy set

MAE Mean absolute error

NI Low rotor speed

N2 High rotor speed

N Noise reduction

T Set of terms

U Universe of discourse of fuzzy set
WF Fuel flow

X Elements of fuzzy sets

X Design variables for GA

y Module faults

z Measurement deltas

A Change from baseline “good” engine
n Efficiency

Ha(x) Degree of membership of x in fuzzy set A
o Uncertainty as standard deviation
L Length of universe of discourse
N Number of fuzzy sets

N Maximum number of fuzzy sets
N gen Number of generations of GA

N (max)

gen Maximum number of generations of GA

PROBLEM FORMULATION

Consider a twin spool gas turbine with five modules: fan,
low-pressure compressor (LPC), high- pressure compressor
(HPC), high- pressure turbine (HPT) and low- pressure turbine
(LPT). Most damages to the engine manifest themselves as
changes in either the module efficiency or flow capacity/area.
The FAN, LPC and HPC modules have efficiencies and the
flow capacities associated with them, while the HPT and LPT
modules have efficiencies and areas associated with them. The
fingerprints or fault signatures relating a change in
measurements deltas for four basic parameters with the faulty
module is shown in Table 1 [17].

Table 1. Signature for Module Faults

Measurement AEGT AN1 AN2 AWF
Deltas © @ | ) | )
Module Faults
FAN -7.72 1.35 -0.59 -1.40
LPC 9.09 0.28 0.57 1.32
HPC 13.60 0.10 -0.11 1.60
HPT 21.77 0.15 -1.13 2.58
LPT 2.38 -1.96 1.27 -1.92

The four basic parameters are found in almost all engines
and are exhaust gas term (EGT), low rotor speed (N1), high
rotor speed (N2) and fuel flow (WF). They are also called
cockpit parameters as they are displayed to the pilot of a jet
engine aircraft. The fault signatures in Table 1 assume the
following couplings between module efficiencies and flow
capacities [16]:

FAN Coupled FAN (-2%m,-2.5 FC)

LPC Coupled LPC (-2% 1,-2.2%FC)
HPC Coupled HPC (-2% n,-1.6 FC)
HPT Coupled HPT (-2% n,-1.5 FP4)

. LPT Coupled LPT (-2% n, +3.3% FP45)

Each fault is modeled as a 2 percent decrease in efficiency
from the baseline “good” engine. Since the fault signatures are
derived from influence coefficients, they are only
approximately correct because they do not account for
uncertainties in the measurement process. Each gas path
measurement is associated with an uncertainty. One measure of
this uncertainty is the standard deviations from revenue service
data. As given in [16] and [17], typical standard deviations for
AEGT, AN1, AN2, and AWF as 4.23C, 0.25%, 0.17% and
0.50%, respectively. These numbers are obtained from an
analysis of airline monitoring data.

SNk =

NEURAL SIGNAL PROCESSING

Since gas turbine measurements are often contaminated
with noise and outliers, it is useful to perform a data cleaning
function prior to fault isolation. In this study, we use a radial
basis neural network for removing noise from simulated
signals. Radial basis networks are an alternative to the more
widely used multilayer perceptron networks trained using the
backpropagation algorithm and take much less computer time
for training [23].
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The radial basis function network (RBFN) model consists
of three layers: an input layer, a hidden (kernel) layer and an
output layer. The nodes within each layer are fully connected to
the previous layer. The input variables are each assigned to a
node in an input layer and pass directly to the hidden layer
without weights. The hidden nodes or units contain the RBF,
also called transfer functions.

An RBF is symmetrical about a given mean or center point
in a multidimensional space. In the RBFN, a number of hidden
nodes with RBF activation functions are connected in a feed
forward parallel architecture. The parameters associated with
the RBFs are optimized during training. These parameter values
are not necessarily the same throughout the network nor are
they directly related to or constrained by the actual training
vectors. When the training vectors are presumed to be accurate,
i.e. non stochastic, and it is desirable to perform a smooth
interpolation between them, then linear combinations of RBFs
can be found which give no error at the training vectors. The
methods of fitting RBFs to data, for function approximation,
are closely related to distance weighted regression. The RBF
expansion for one hidden layer and an arbitrary RBF is
represented by the equation

H
v ()= w, exp(—|c, — x| /o)
i=1

where y; = Kt output, wy; = weight from the i"™ kernel node to
the &™ output node, ¢; = centroid of the i™ kernel node, ; =
width of the i™ kernel node and H = number of kernel nodes.
The parameters of the RBF wy;, ¢; and o; are commonly chosen
by first selecting randomly or uniformly the ¢; and then using
singular value decomposition (SVD) to solve for wy; and o;.
This approach is not the most satisfactory. A better approach,
suggested by Leonard et al [23], involves using K-means
clustering to determine the ¢;, a K-nearest heuristic to determine
the o; and multiple linear regressions to determine the wy;. The
K-means clustering algorithm finds a set of cluster centers and
a partition of the training data into subsets. Each cluster center
is then associated with one of the H kernels or centers in the
hidden layer. After the centers are established the width of each
kernel is determined to cover the training points to allow a
smooth fit of the desired network outputs.

FUZZY LOGIC SYSTEM

A fuzzy logic system (FLS) is a nonlinear mapping of an
input feature vector into a scalar output [17]. A typical FLS
maps crisp inputs to crisp outputs using four basic components:
rules, fuzzifier, inference engine, and defuzzifier. Once the
rules driving the FLS have been fixed, the FLS can be
expressed as a mapping of inputs to outputs. Rules can come
from experts or can be obtained from numerical data. The
discussion below is condensed from [17] where a more
comprehensive account of FLS is given.

The fuzzifier maps crisp input numbers into fuzzy sets. An
inference engine of the FLS maps fuzzy sets to fuzzy sets and
determines the way in which the fuzzy sets are combined. In
several applications, crisp numbers are needed as an output of
the FLS. In those cases, a defuzzifier is used to calculate crisp
values from fuzzy values.

A fuzzy set generalizes the concept of an ordinary set
whose membership function only takes two values, zero and

unity. The most commonly used shapes for membership
functions p(x) are triangular, trapezoidal, piecewise linear or
Gaussian. Rules for the fuzzy system can be expressed as:

R;: IF x; is F; AND x, is F, AND x,, is F,, THEN y=C,
i=1,2,3...M

where m and M are the number of input variables and rules,
x; and y are the input and output variables, and F; € V; and C; €
W are fuzzy sets characterized by membership functions pz(x)
and pcd(x), respectively. Each rule can be viewed as a fuzzy
implication Fy,5. ., =F1x Fyx ..... F,, — C,; that is a fuzzy set
inVx W=V xV,x Vyx ... x V, with membership function
given by

Hri (X,Y) = Wrr (X)) * ez (X2) * o W (Xi) ™ B (y)

where * is the product with x=[ x; x,_ x,] € Vand y e W.
In pattern recognition problem the outputs are often crisp sets,
and pg; (y) =1 is often used for the product inference formula.
Popular defuzzification methods include maximum matching
and centroid defuzzification. In our study, we keep the output
as fuzzy sets as they are easier to interpret linguistically for
diagnostic and prognostic action. Rules for the fuzzy system are
obtained by fuzzification of the numerical values in the
fingerprint charts using the following procedure [17]:

Algorithm 1

1. Each measurement delta is divided into N fuzzy
sets whose geometry is selected by the designer.

2. A set of four measurements delta corresponding to
a given module fault is input to the FLS and the
degree of membership of the elements of the
AEGT, AWF, AN2 and ANI are obtained.

3. Each measurement delta is then assigned to the
fuzzy set with the maximum degree of
membership.

4. One rule is obtained for each module fault by
relating the measurement deltas with maximum
degree of membership to a module fault.

For any given input set of measurement deltas, the fuzzy
rules are applied using product implication. Once the fuzzy
rules are applied for a given measurement, we have degree of
membership for FAN, LPC, HPC, HPT and LPT. For fault
isolation, we are interested in the most likely fault. The fault
with the highest degree of membership is selected as the most
likely fault.

The main problem in Algorithm 1 is in the selection of the
number and type of fuzzy sets in Step 1. Typically, designers
select the number and geometry of the fuzzy sets based on
knowledge of the problem. For example, the measurements
may be classified into five fuzzy sets named very low, low,
medium, high and very high. In case Gaussian functions are
selected as membership functions, the midpoints and standard
deviations associated with each Gaussian fuzzy set needs to be
selected so that the entire measurement range is spanned by the
fuzzy sets and there is some intersection between the sets.

Thus, the designer must manually iterate over Algorithm 1
to obtain a fuzzy system which has good performance. This is a
trial and error process. Genetic algorithms are one way of
automating this process.

GENETIC ALGORITHM

Genetic algorithms (GA) are a probabilistic search method.
A brief introduction to GA is given below. Goldberg [24] and
recent papers [25], give more details about genetic algorithms.
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The genetic algorithm is motivated by the hypothesized
natural process of evolution in biological populations, where
genetic information stored in chromosomal strings evolve over
generations to adapt favorably to a static or changing
environment. The algorithm is based on elitist reproduction
strategy, where members of population, which are deemed most
fit, are selected for reproduction, and are given the opportunity
to strengthen the chromosomal makeup of progeny generation.
This approach is facilitated by defining a fitness function or a
measure indicating the goodness of a member of the population
in the given generation during the evaluation process.

To represent designs as chromosome-like strings, the
design variable is converted to its binary equivalent and thereby
mapped into a fixed length string of 0’s and 1’s. A number of
such strings constitute a population of designs, with each
design having a corresponding fitness value. This fitness value
could be the objective function F(X) for a function
maximization problem. Thus, the GA can be used to solve
optimization problems of the form,

Maximize F(X)

Subject tO)(i(min) S)(, S)(i(ma)()

The starting population is selected randomly in the domain
lying between the minimum and maximum values of X and
then the following genetic operators applied to improve results.

1. Reproduction. Individuals are selected and the
probability of selection is based on their fitness value.
The new population pool has higher average fitness
value than the previous pool.

2. Crossover. In the two-point crossover approach, two
mating parents are selected at random; the random
number generator is invoked to identify two sites on
the strings, and the strings of 0’s and 1’s enclosed
between the chosen sites are swapped between the
mating strings.

3. Mutation. A few members from the population pool
are taken according to probability of mutation p,,, and
a 0 to 1 or vice versa are switched at randomly
selected mutation site on the chosen string.

The process of reproduction, crossover and mutation
constitute one generation of the GA. After several generations
the GA is stopped and the best point among the values taken as
the optimal point. Being a probabilistic search method, GA’s
are very good at finding global maxima. Furthermore, GA’s
need only function values and not gradient information, which
makes them easy to use for real systems where accurate
gradient information is difficult to obtain, and local minima
may occur. However, they are computationally expensive.

GENETIC FUZZY SYSTEM

There are two main problems in the generation of fuzzy
systems [22]. The first is that it is difficult to select the
appropriate number of fuzzy sets. The second is selection of the
membership functions. For a given number of fuzzy sets and
type of membership functions the rules need to be created.
However, if the number of fuzzy sets or type of membership
function changes, the rules can change. Most fuzzy systems are
designed using a trial and error process. Therefore, any change
in the membership functions or the number of fuzzy sets leads
to a change in the rule base; the process of designing a fuzzy
system is iterative and can become very cumbersome for a

human designer. It is therefore desirable to create an automated
procedure for the design of fuzzy systems.

A genetic algorithm is used to facilitate the design of the
fuzzy system. The approach is discussed below:

Algorithm 2

1. Define maximum and minimum values for a
measurement delta Az by Az and Az"™™,
respectively.

2. Define the universe of discourse for Az to be the
set of real numbers between the minimum and
maximum values, U (Az) = [Az"™, AZ"*].

3. Define L(Az) = Az - Az™™ as the length of the
universe of discourse.

4. Divide U into N Gaussian fuzzy sets F;, F,,...Fy
and define the midpoint of fuzzy point F; by
Az"™ and of fuzzy set Fyby Az, respectively.
These fuzzy sets can be defined using the

following equation:
X—m 2
~ —0.5[ = j
px)=e

where m is the midpoint of the fuzzy set and o is

the uncertainty (standard deviation) associated

with the variable.
5. Assuming the fuzzy sets are equally spaced,
calculate the mid points of fuzzy set F, as Az""

+ Am, of set F;as AZ™™ + 2*Am and set F, as

AZ"™™ + (i-1)Am where
L(Az)

N-1

6. Allow the fuzzy sets for the measurement delta Az
to move together along the number line by an
amount x. This allows the midpoints of the fuzzy
sets to change, along with the values Az and
Az However, the distance L(Az) remains
constant. With this definition, the midpoints of the
fuzzy sets are defined once N and x are selected.

7. Select the standard deviation of the fuzzy set for
measurement Az as the measurement uncertainty
of Az.

The above approach can now be applied to the four
measurement deltas considered in this study. This procedure is
discussed in the algorithm below.

Algorithm 3

1. Define the maximum and minimum values for
each measurement AEGT, ANI, AN2 and AWF
from the fault signatures shown in Table 1. Thus
for AEGT, the maximum and minimum values are
21.77C and -7.72C, respectively.

2. Define the range spanned by each variable as
L;=L(AEGT), L,=L(ANI), L;=L(AN2), and
L,/ =L(AWF)

3. Choose N fuzzy sets to partition each
measurement. To start the algorithm, use N=2.

4. Let x1, x5, x3 and x, define the tuning variables
associated with AEGT, ANI, AN2 and AWF
respectively. To start the algorithm, select random
values satisfying -25% L; < x; < 25%L,, i=14.
Choose ¢ for AEGT, ANI, AN2 and AWF as
4.23C, 0.25%, 0.17% and 0.50%, respectively.

Am =
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5. Generate the fuzzy system from the numerical
data using the conventional procedure outlined
before in Algorithm 1.

6. Using a sample of 100 noisy data points, calculate
success rate as

S= 100&
T
where N is the number of correct classifications
and N7 is the total number of classifications.
7. Use GA to solve the optimization problem by

taking the best solution from N g}fx) generations:

Maximize
S(xs, x2, X3, X4)
Subject to
-25% L; <x; < 25%L;, i=1.4.
8. Increase Nby I,
a. if N<N™
i. Goto3,
b. else
i. Select N with highest success rate S
(if highest S is obtained by more
than one value of N, select the
lowest NV that gives the highest S)
The only values, which need to be the input of the Genetic-
Fuzzy system, are the values of measurement deltas
corresponding to each fault, and the fault signature based on the
linearized influence coefficients at the current operating point.
For the standard deviations of the Gaussian fuzzy sets, we use
the measurement uncertainty data that can be obtained by a
statistical analysis of engine data. If the measurement
uncertainties change, the genetic fuzzy system can be tuned to
the different numerics. Thus we get an automatic system that
greatly reduces the need of manual manipulation.

NUMERICAL RESULTS

In this study, a maximum of nine generation of the GA are
used for each N values of the fuzzy sets. The population size,
crossover probability and mutation probability are chosen as
20, 0.8 and 0.1, respectively. The maximum number of fuzzy
sets is selected as 10.

Since genetic algorithms are computationally intensive, the
issue about computation time is important for practical
implementation. As an example, the code implementing the
algorithm in this study takes about 3-5 minutes to run on
Matlab on a Pentium 4 PC with the full nine generations of GA.
However, in many cases, the convergences occur in 2-3
generations given that we use only four design variables and
have a starting population of 20 for each variable. Each design
variable is represented by a 10 bit string.

As mentioned earlier, a standard approach in the design of
the optimal fuzzy system is to consider the midpoints and
standard deviations of each fuzzy set as design variables. If
there are N fuzzy sets and M measurements, the maximum
number of midpoint design variables is N*M and the maximum
number of standard deviation design variables is N*M. The
total number of design variables is therefore 2*N*M. For the
case with N=6 and M=4, we would have a total of 2*6*4=48
design variables, leading to high computer time requirements.

The algorithm in this study uses some prior knowledge of
the problem to reduce the number of design variables

dramatically. The standard deviations are thus selected to be
equal to the measurement uncertainties. In this manner, the
fuzzifier is able to act as a filter which addresses noise in the
data in a direct manner. By making the requirement that the
universe of discourse only spans the neighborhood of the
measurements, the region where fuzzy set discretization is
needed is optimized. Using a uniform distribution of fuzzy sets
leads to so-called design variable linking in optimization and
allows the midpoints to be defined using only two variables for
each measurement: the number of fuzzy sets N and the
translation variable x. For a given number of fuzzy sets, the
number of design variables is equal to the number of
measurements which is four in this case.

100 ————¢
N e
90 /
85
80 /
75 : : : :
0 2 4 6 8 10

Success Rate (%)

Number of fuzzy sets

Figure 1 Change in fault isolation success rate with
increasing number of fuzzy sets

101

= 100

2

(]

2

[v]

14

w99

n

[}]

3]

(3]

=]

N 98

97 T T T T
0 2 4 6 8 10
Number of generations

Figure 2 Evolution of success rate for fuzzy system with 6
sets with generations of genetic algorithm

The fuzzy system is tested using simulated data developed
from the fault signatures shown in Table 1. For each module,

5 Copyright © 2004 by ASME

Downloaded From: http://proceedings.asmedigital collection.asme.or g/ on 02/03/2016 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



100 noisy data sets are generated for module faults with 2%
deterioration in efficiency. Noise is added to the simulated
measurement deltas using the typical standard deviations for
AEGT, ANI, AN2, and AWF as 4.23C, 0.25%, 0.17% and
0.50%, respectively.

Table 2. Midpoints of Two Fuzzy Sets

AEGT (C) -7.69 21.80
ANI (%) -1.93 1.38
AN2 (%) -1.10 1.30
AWF (%) -1.89 2.61
Table 3. Midpoints of Three Fuzzy sets
AEGT (C) -8.16 6.58 21.33
ANI (%) -2.40 -0.75 0.91
AN2 (%) -1.57 -0.37 0.83
AWF (%) -2.36 -0.11 2.14
Table 4. Midpoints of Four Fuzzy Sets
AEGT (C) -8.31 1.52 11.35 21.18
ANI (%) -2.55 -1.45 -0.35 0.76
AN2 (%) -1.72 -0.92 -0.12 0.68
AWF (%) -2.51 -1.01 0.49 1.99
Table 5. Midpoints of Five Fuzzy Sets
AEGT (C) -7.82 -0.44 6.92 14.30 21.67
ANI (%) -2.06 -1.23 -0.40 0.42 1.25
AN2 (%) -1.23 -0.63 -0.03 0.57 1.17
AWF (%) -2.02 -0.89 0.23 1.36 2.48

Table 6. Midpoints of Six Fuzzy Sets

VL L ML MH H VH

AEGT(C) | -9.62 | -3.72 | 2.17 | 8.07 | 13.97 | 19.87

ANI1 (%) -2.23 | -1.56 | -0.90 | -0.24 | 0.42 1.08

AN2 (%) -1.21 | -0.72 | -0.25 | 0.23 0.71 1.19

AWF (%) | -2.25 | -1.35 | -045 | 0.45 1.35 2.25

Figure 1 shows the success rate for the optimal genetic
fuzzy system as the number of fuzzy sets is increased from 2 to
9. For each value of N in this figure, the optimal values of x are
calculated using Algorithm 3. For only 2 fuzzy sets, the success
rate is about 80 percent and quickly rises as the number of sets
increases. The number N=6 is selected by Algorithm 3 as the
point where the genetic fuzzy system is optimal with a
minimum number of sets. Figure 2 shows the success rate of
the fuzzy system with six sets as the GA generations’ progress.
In this case, only two generations were needed to achieve a
success rate of 100 percent and the values of x corresponding to
the second generation of GA is selected by Algorithm 3 as the
optimal fuzzy system.

Tables 2-6 provide the midpoints of the fuzzy sets for the
four measurements as the number of fuzzy sets increases from
two to six. The starting values in Table 2 show two fuzzy sets
with midpoints centered near the maximum and minimum
values of the measurements. The values in Table 6 correspond
to the case where N=6 in Figure 1 and N,,=2 in Figure 2.
Figures 3-7 show the evolution of the fuzzy system using the
fuzzy sets for exhaust gas temperature as an example. Figure 3

shows the starting case with two fuzzy sets which is a crude
descretization. In Figure 7, the optimal level of discretization
with six fuzzy sets is achieved.

0.80 - 4
WEGT) /
0.60 1 /

0.40 . ;

0.20

-10 5 0 5 0 15 20
AEGT (C)

Figure 3 Discretization of universe of exhaust gas
temperature using two fuzzy sets

1.20

1.00 1 —~

0.80
/
W(EGT) \\ /

0.60 /

-10 -‘5 0 é 1‘0 1‘5 20
AEGT (C)

Figure 4 Discretization of universe of exhaust gas
temperature using three fuzzy sets

In Table 6 each fuzzy set is assigned a linguistic value of
very low (VL), low (L), medium-low (ML), medium-high
(MH), high (H) and very high (VH). These “linguistic
measures” are shown in Figure 7 for the six AEGT fuzzy sets.
The fuzzy rule base for the case with six fuzzy sets is shown in
Table 7. Table 7 is the result of fuzzification of the numerical
data in Table 1. These rules can be read as follows for the FAN
module:

IF
AEGT is Very Low AND
AN1 is Very High AND
AN2 is Low AND
AWF is Very Low
THEN
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Problem in FAN module
The rules for the other modules can be similarly interpreted.
These rules provide a knowledge base and represent how a
human engineer would interpret data to isolate an engine fault
using fingerprint charts.
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Figure 5 Discretization of universe of exhaust gas
temperature using four fuzzy sets
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Figure 6 Discretization of exhaust gas temperature using
five fuzzy sets

Table 7. Rules for Optimal Fuzzy System with Six Fuzzy Sets

from data used for developing the rule base of the fuzzy
system. The average success rate is 100%, compared to 98.2%
for the manually designed fuzzy system in Ref. [17]. The
manually designed fuzzy system showed some problems in
differentiating between faults in the LPC and those in the HPC.
It is clear that the genetic-fuzzy system is able to identify the
correct fault despite the presence of considerable uncertainty in
measurements.

1.20

1.00
0.80

W(EGT)
0.60

0.40

AEGT (C)

Figure 7 Discretization of universe of exhaust gas
temperature using six fuzzy sets

Table 8. Results for Optimal Fuzzy System and Manually
Designed System

AEGT ANI AN2 AWF
FAN VL VH L VL
LPC ML MH H MH
HPC MH MH ML H
HPT VH MH VL VH
LPT L VL VH VL

Table 8 shows the success rate of the fuzzy set with 100
noisy data points. The noisy data points for testing are different

Module Success Rate (%) | Success Rate (%)
HPC 100 94
HPT 100 100
LPC 100 97
FAN 100 100
LPT 100 100
Average Success 100 98.2
Rate
“from [17]

The effect of noise on the genetic fuzzy system is shown in
Figure 8 and the results are compared with data from the fuzzy
system from Ref. [17]. Here the noise ratio is defined as 6/G,
where G, is the baseline noise level used for developing the
genetic fuzzy system and o is the noise level in the simulated
data used for testing. It is clear that both the systems show a
decline in the average fault isolation success rate with
increasing noise levels in the data. However, the genetic fuzzy
systems appear to show a somewhat better performance as the
noise level increases. This is due to the “optimal” nature of the
fuzzy system developed and the use of formal optimization
methods rather than a trial and error process in maximizing the
success rate. The result of applying a neural network
preprocessor to the genetic fuzzy system is discussed below.

To study the signal processor, we assume time series of 100
discrete points. From 4=0 to k=50, the signal changes linearly
from 0 to sign(Az) 6¢/2. From k=50 to k=51, the signal changes
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by Az. From k=51 to 100 the signal changes from Az to
Az+sign(Az) o¢/2. This simulates a “single fault” situation,
where a step jump equal to the measurement deltas
corresponding to the module faults is added to a linearly
varying signal. As an example, the AEGT variation for an HPC
fault is simulated using a linear variation from OC at 4=1 to
4.23/2=2.115C at k=50, followed by a change to
13.6+4.23/2=15.715C at k=51, and a linear variation thereafter
to 13.6+4.23=17.83C. Figure 9 shows the noisy signal and RBF
filtered signal.

105
s
[4]
ot
[y
14
(7]
(7]
[]
Q
(3]
=1
" —— Genetic Fuzzy System (GFS)
85 | —
—a— Fuzzy System [17]
---e---- GFS with Radial Basis Neural Preprocessor
80 T T T T
0 0.5 1 1.5 2 25
Noise Ratio

Figure 8 Success Rate in Fault Isolation with Increasing
Noise Levels in Data
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Figure 9 Noisy and filtered AEGT signal simulating HPC
fault

For determining the RBF unit centers, we use a ‘K-means’
clustering algorithm. The ‘K-means’ clustering algorithm finds
a set of clusters each with centers from the given training data.
The cluster centers become the centers of the RBF units. The
number of clusters is a design parameter and determines the

number of RBF units, i.e. nodes, in the hidden layer. We have
used H=20. When the RBF centers have been established, the
widths of each RBF can be calculated. The width of any RBF
distance to the nearest p RBF units, where p is a design
parameter for the RBFN, for unit 7 is given by

o, = ZZ(X _x )

P =l k=l ki

where X, and X, are the kth entries of the centers of the ith
ki K

and jth hidden units. We have used p=5. When the centers and
widths of the RBF units have been chosen, then the N=100
training samples are processed through the hidden nodes to
generate an H XN matrix, called 4. Let T be the M x N desired
output matrix for the training patterns and M=100 is the
number of output nodes. The objective is to find the weights
that minimize the error between the actual output and the
desired output of the network. Essentially, we are trying to
minimize the objective (cost) function

|7~ 4|

where W is the M x H matrix of weights on the connections
between the hidden and output nodes of the network. We train
the RBF network with added Guassian noise at ¢;=4.23C,
0.25%, 0.17% and 0.50%, respectively for AEGT, ANI, AN2,
AWEF.

Table 9. Noise reduction using radial basis neural network

AEGT (C) | ANI (%) | AN2 (%) AWF
(%)
HPC 78.84 67.03 67.38 81.87
HPT 84.24 72.07 83.38 83.71
LPC 77.50 74.34 78.48 77.95
FAN 74.80 82.43 79.04 80.62
LPT 68.76 83.83 84.68 82.95
Average 76.83 75.94 78.59 81.42
! m}
m DD
[]D D[[E]hb
o 0O
0 fmﬁ%u 2 mm::
p o DDD m
-1 = S []D 5
AWF(%) 98 g "
O A D[] e O - of
2 1 Y N SN VY
O Noisy Signal 0@ o o o "o gO
a Filtered Signal o o
o O
-3 O
4
0 20 40 60 80 100
Epoch (k)

Figure 10 Noisy and Filtered AWF signal simulating LPT
fault
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Noise is added to the ideal signal using a baseline value G,
of typical standard deviations for AEGT, ANI, AN2, and AWF
as 4.23C, 0.25%, 0.17% and 0.50%, respectively. The filtered
signal in Figures 9 and 10 show considerable noise reduction
while preserving the nature of the step edge. This data
represents one noisy signal for each measurement. The visual
quality of the data is considerably improved. Similar results are
obtained for all the signals corresponding to the faults in Table
1. To summarize these results concisely, the following noise
reduction measure is defined based on the mean absolute error
(MAE) criteria.

MAE(noisy) — iL‘AZ(naisy) _ Az,(ideal)

N 1 1

i=1

N
MAE(_/iltered) — ZL‘AZ(ﬁltered) _ AZ(ideal)
N i i

i=1

MAE(nnisy) _ MAE(_/iltered)
MAE(noisy)

For each signal, 100 samples of noisy test data are created and
the noise reduction calculated. These values are summarized in
Table 9 and show a noise reduction averaging between 75 to 81
percent. Results in this paper clearly demonstrate the power of
the soft computing framework for automated decision making
under uncertainty. The approach uses the concept of
“hybridization in soft computing” where using different
techniques such as neural networks, genetic algorithms and
fuzzy logic together gives better results than if each method is
used individually [26]. The “hybridization” process uses the
strengths of each different approach to attack the problem. It is
however also possible to device alternate strategies such as
hardware smoothing and a neural network processor to get
good results. Many soft computing based implementations are
possible.

N, =100

CONCLUSIONS

A genetic fuzzy system is developed in this study for fault
isolation in gas turbine engines. The system automatically
selects the number of fuzzy sets and membership functions
based on the fault signatures of the engine and measurement
uncertainties. The fault signatures are derived from influence
coefficients. A radial basis neural network is also studied for
data cleaning prior to fault isolation. The following conclusions
can be drawn from this study.

1. For simulated faults considered in this study, the
genetic fuzzy system achieved a success rate of 100%
for the five module faults (HPC, LPC, FAN, HPT, and
LPT) and four measurements (AEGT, ANI, AN2,
AWEF). In contrast, a manually developed fuzzy system
in [17] achieved a success rate of 98% with some
confounding between the LPC and HPC module
faults.

2. The trial and error process used to design a fuzzy
system leads to considerable human labor and is often
sub optimal. Different aircraft engines operated by
different airlines can have different numerics such as
influence coefficients and measurement uncertainties
and it is a tedious process to develop a fuzzy system

for each case. The genetic fuzzy system automates the
process of design of the fuzzy system.

3. By using a priori information about measurement
uncertainties and through design variable linking, the
design of the fuzzy system is posed as an optimization
problem with low number of design variables which
can be solved using genetic algorithm in considerably
low amount of computer time.

4. As noise levels in data increase, the genetic fuzzy
system retains its edge over the manually designed
fuzzy system, giving 2-5 percent higher success rate
with the same numerics.

5. A radial basis neural network prefilter achieved 75-81
percent noise reduction for simulated signals with
linear deterioration and step changes. When the neural
network is used to prefilter signals prior to fault
isolation, the accuracy of the genetic fuzzy system is
further improved for lower quality data by 2-4 percent.

6. The use of several tools of the soft computing
approach (neural network, genetic algorithm and fuzzy
logic) together gives better performance than if they
are used individually and shows the advantage of
“hybridization” in soft computing.

A drawback of the soft computing approach discussed in this
paper is its complexity since it involves the simultaneous use of
several different methods. While this paper looks at fault
isolation of gas turbines using soft computing, it is also possible
to use such approaches for gas path performance estimation
which is typically conducted using Kalman filter and least
square type methods. This is a topic of ongoing work by the
authors.
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