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Abstract

In this paper an exponentially fitted finite difference method is presented for solving

singularly perturbed two-point boundary value problems with the boundary layer at one

end (left or right) point. A fitting factor is introduced in a tridiagonal finite difference

scheme and is obtained from the theory of singular perturbations. Thomas algorithm is

used to solve the system. The stability of the algorithm is investigated. Several linear and

nonlinear problems are solved to demonstrate the applicability of the method. It is

observed that the present method approximates the exact solution very well.
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1. Introduction

Singularly perturbed second-order two-point boundary value problems arise

very frequently in fluid mechanics and other branches of Applied Mathematics.

These problems have been received a significant amount of attention in past

and recent years. These problems depend on a small positive parameter in such

a way that the solution varies rapidly in some parts and varies slowly in some
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other parts. So, typically there are thin transition layers where the solutions can

jump abruptly, while away from the layers the solution behaves regularly and
vary slowly. Thus more efficient, simpler computational techniques are re-

quired to solve singular perturbation problems. For a good analytical dis-

cussion one may refer to: Bender and Orszag [1], Kevorkian and Cole [5],

O� Malley [8], Nayfeh [7]. In the paper, Kadalbajoo and Reddy [4] gives an

erudite outline of the singular perturbation problems. For some numerical

methods one may refer to recent books: Miller [6], Hemker and Miller [3],

Doolan et al. [2].

In this paper an exponentially fitted finite difference method is presented for
solving singularly perturbed two-point boundary value problems with the

boundary layer at one end (left or right) point. A fitting factor is introduced in

a tridiagonal finite difference scheme and is obtained from the theory of sin-

gular perturbations. Thomas algorithm is used to solve the system. The sta-

bility of the algorithm is investigated. Several linear and nonlinear problems

are solved to demonstrate the applicability of the method. It is observed that

the present method approximates the exact solution very well.
2. Exponentially fitted finite difference method

A difference scheme with a fitting factor containing exponential functions is

known as exponentially fitted difference scheme.

To describe the method, we first consider a linear singularly perturbed two-

point boundary value problem of the form:
ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1�; ð1Þ

with yð0Þ ¼ a; ð2aÞ

and yð1Þ ¼ b; ð2bÞ
where e is a small positive parameter (0 < e � 1) and a, b are known constants.

We assume that aðxÞ, bðxÞ and f ðxÞ are sufficiently continuously differentiable
functions in [0,1]. Further more, we assume that bðxÞ6 0, aðxÞPM > 0

throughout the interval [0,1], where M is some positive constant. Under these

assumptions, (1) has a unique solution yðxÞ which in general, displays a

boundary layer of width OðeÞ at x ¼ 0 for small values of e.
From the theory of singular perturbations it is known that the solution of

(1) and (2) is of the form (cf. [8, pp. 22–26])
yðxÞ ¼ y0ðxÞ þ
að0Þ
aðxÞ ða� y0ð0ÞÞe

�
R x

0

aðxÞ
e �bðxÞ

aðxÞ

� �
dx
þOðeÞ; ð3Þ
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where y0ðxÞ is the solution of
aðxÞy 00ðxÞ þ bðxÞy0ðxÞ ¼ f ðxÞ; y0ð1Þ ¼ b: ð4Þ

By taking the Taylor�s series expansion for aðxÞ and bðxÞ about the point �0� and
restricting to their first terms, (3) becomes,
yðxÞ ¼ y0ðxÞ þ ða� y0ð0ÞÞe
� að0Þ

e �bð0Þ
að0Þ

� �
x
þOðeÞ: ð5Þ
Now we divide the interval [0, 1] into N equal parts with constant mesh length

h. Let 0 ¼ x0; x1; x2; . . . ; xN ¼ 1 be the mesh points. Then we have xi ¼ ih;
i ¼ 0; 1; 2; . . . ;N .

From (5) we have
yðxiÞ ¼ y0ðxiÞ þ ða� y0ð0ÞÞe
� að0Þ

e �bð0Þ
að0Þ

� �
xi þOðeÞ;

i:e:; yðihÞ ¼ y0ðihÞ þ ða� y0ð0ÞÞe
� að0Þ

e �bð0Þ
að0Þ

� �
ih
þOðeÞ:
Therefore
lim
h!0

yðihÞ ¼ y0ð0Þ þ ða� y0ð0ÞÞe
� a2ð0Þ�ebð0Þ

að0Þ

� �
iq
; ð6Þ
where q ¼ h=e.
Now, we consider the second-order finite difference scheme
erðqÞ yiþ1 � 2yi þ yi�1

h2

� �
þ aðxiÞ

yiþ1 � yi�1

2h

� �
þ bðxiÞyi ¼ f ðxiÞ;

16 i6N � 1; ð7Þ
y0 ¼ a; yN ¼ b; where rðqÞ is a fitting factor which is to be determined in such a

way that the solution of (7) converges uniformly to the solution of (1) and (2).
Multiplying (7) by h and taking the limit as h ! 0; we get
lim
h!0

rðqÞ
q

ðyiþ1

�
� 2yi þ yi�1Þ þ

1

2
aðihÞðyiþ1 � yi�1Þ

�
¼ 0

if f ðxiÞ � bðxiÞyi is bounded:

) lim
h!0

rðqÞ
q

ðyðih
�

þ hÞ � 2yðihÞ þ yðih� hÞÞ

þ 1

2
aðihÞðyðihþ hÞ � yðih� hÞÞ

�
¼ 0; ð8Þ
substituting (6) in (8) and simplifying, we get
lim
h!0

r
q
¼ 1

2
að0Þ coth a2ð0Þ � ebð0Þ

að0Þ

� �
q
2

� �
; ð9Þ
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) We have r ¼ q
2
að0Þ coth a2ð0Þ � ebð0Þ

að0Þ

� �
q
2

� �
; ð10Þ
which is a constant fitting factor.

From (7) we have
er
h2

�
� aðxiÞ

2h

�
yi�1 �

2er
h2

�
� bðxiÞ

�
yi þ

er
h2

�
þ aðxiÞ

2h

�
yiþ1 ¼ f ðxiÞ;

i ¼ 1; 2; . . . ;N � 1; ð11Þ
where the fitting factor r is given by (10).

Eq. (11) can be written as a three term recurrence relation:
Eiyi�1 � Fiyi þ Giyiþ1 ¼ Hi; i ¼ 1; 2; 3; . . . ;N � 1; ð12Þ
where
Ei ¼
er
h2

� aðxiÞ
2h

;

Fi ¼
2er
h2

� bðxiÞ;

Gi ¼
er
h2

þ aðxiÞ
2h

;

Hi ¼ f ðxiÞ;
This gives us the tridiagonal system which can be solved easily by Thomas

algorithm described in Section 3.

Remark. For bð0Þ ¼ 0 we get the exponentially fitted method developed by

Doolan et al. [2, pp. 93–94], as
er
h2

�
� aðxiÞ

2h

�
yi�1 �

2er
h2

�
� bðxiÞ

�
yi þ

er
h2

�
þ aðxiÞ

2h

�
yiþ1 ¼ f ðxiÞ;

i ¼ 1; 2; . . . ;N � 1;
with the fitting factor r ¼ q
2
að0Þ coth að0Þ q

2

� �
.

3. Thomas algorithm

We briefly discuss the Thomas algorithm to solve the tridiagonal system:
Eiyi�1 � Fiyi þ Giyiþ1 ¼ Hi; i ¼ 1; 2; 3; . . . ;N � 1 ð13Þ
subject to the boundary conditions
y0 ¼ yð0Þ ¼ a; ð14aÞ
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yN ¼ yð1Þ ¼ b: ð14bÞ
We set
yi ¼ Wiyiþ1 þ Ti for i ¼ N � 1;N � 2; . . . ; 2; 1; ð15Þ
where Wi ¼ W ðxiÞ and Ti ¼ T ðxiÞ which are to be determined.

From (15), we have
yi�1 ¼ Wi�1yi þ Ti�1; ð16Þ
substituting (16) in (13), we have
EiðWi�1yi þ Ti�1Þ � Fiyi þ Giyiþ1 ¼ Hi:

)yi ¼
Gi

Fi � EiWi�1

� �
yiþ1 þ

EiTi�1 � Hi

Fi � EiWi�1

� �
: ð17Þ
By comparing (17) and (15), we get the recurrence relations
Wi ¼
Gi

Fi � EiWi�1

� �
; ð18aÞ

Ti ¼
EiTi�1 � Hi

Fi � EiWi�1

� �
: ð18bÞ
To solve these recurrence relations for i ¼ 1; 2; 3; . . . ;N � 1, we need the initial

conditions for W0 and T0. For this we have y0 ¼ a ¼ W0y1 þ T0. If we choose

W0 ¼ 0, then we get T0 ¼ a. With these initial values, we compute Wi and Ti for
i ¼ 1; 2; 3; . . . ;N � 1 from (17) in forward process, and then obtain yi in the
backward process from (15) and (14b).
4. Stability analysis

We will now show that the algorithm is computationally stable. By stability,

we mean that the effect of an error made in one stage of the calculation is not

propagated into larger errors at later stages of the calculations. Let us now
examine the recurrence relation given by (18a). Suppose that a small error ei�1

has been made in the calculation of Wi�1; then, we have
W i�1 ¼ Wi�1 þ ei�1 and we are actually calculating;

W i ¼
Gi

Fi � EiW i�1

� �
: ð19Þ



88 Y.N. Reddy, P. Pramod Chakravarthy / Appl. Math. Comput. 154 (2004) 83–101
From (19) and (18a), we have
ei ¼
Gi

Fi � EiðWi�1 þ ei�1Þ

� �
� Gi

Fi � EiWi�1

� �

¼ GiEiei�1

ðFi � EiðWi�1 þ ei�1ÞÞðFi � EiWi�1Þ

� �
¼ W 2

i Ei

Gi

� �
ei�1; ð20Þ
under the assumption that the error is small initially. From the assumptions

made earlier that aðxÞ > 0 and bðxÞ6 0, we have
Fi PEi þ Gi; i ¼ 1; 2; 3; . . . ;N � 1:
Form (18a) we have
W1 ¼
G1

F1
< 1; since F1 > G1;

W2 ¼
G2

F2 � E2W1

<
G2

F2 � E2

; since W1 < 1;

<
G2

E2 þ G2 � E2

¼ 1; since F2 PE2 þ G2;
successively, it follows that
jeij ¼ jWi j2
Ei

Gi

				
				jei�1j

< jei�1j since jEij6 jGij:
Therefore the recurrence relation (18a) is stable. Similarly we can prove that
the recurrence relation (18b) is also stable. Finally the convergence of the

Thomas algorithm is ensured by the condition jWi j < 1, i ¼ 1; 2; 3; . . . ;N � 1.
5. Numerical examples

To demonstrate the applicability of the method we have applied it to three

linear singular perturbation problems with left-end boundary layer. These

examples have been chosen because they have been widely discussed in liter-

ature and because approximate solutions are available for comparison. The

approximate solution is compared with the exact solution.

Example 5.1. Consider the following homogeneous singular perturbation

problem from Bender and Orszag ([1], p. 480; problem 9.17 with a ¼ 0)
ey 00ðxÞ þ y0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 1 and yð1Þ ¼ 1.
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The exact solution is given by
Table

Numer

x

Pan

0.00

0.01

0.02

0.04

0.06

0.08

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pan

0.00

0.01

0.02

0.04

0.06

0.08

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
yðxÞ ¼ ½ðem2 � 1Þem1x þ ð1� em1Þem2x�
½em2 � em1 � ;
where m1 ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p� �
=ð2eÞ and m2 ¼ �1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p� �
=ð2eÞ.

The numerical results are given in Table 1(Panel A) and (Panel B) for

e ¼ 10�3 and 10�4 respectively.
1

ical results of Example 5.1, (Panel A) e ¼ 10�3, h ¼ 10�2 and (Panel B) e ¼ 10�4, h ¼ 10�2

yðxÞ Exact solution

el A

1.0000000 1.0000000

0.3734365 0.3719724

0.3771425 0.3756784

0.3847230 0.3832599

0.3924560 0.3909945

0.4003443 0.3988851

0.4083913 0.4069350

0.4511180 0.4496879

0.4983149 0.4969323

0.5504497 0.5491403

0.6080388 0.6068334

0.6716532 0.6705877

0.7419230 0.7410401

0.8195445 0.8188941

0.9052870 0.9049277

1.0000000 1.0000000

el B

1.0000000 1.0000000

0.3734084 0.3716135

0.3771425 0.3753479

0.3847230 0.3829296

0.3924560 0.3906645

0.4003443 0.3985557

0.4083913 0.4066062

0.4511180 0.4493649

0.4983149 0.4966200

0.5504497 0.5488445

0.6080388 0.6065609

0.6716532 0.6703468

0.7419230 0.7408404

0.8195445 0.8187471

0.9052870 0.9048464

1.0000000 1.0000000
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Example 5.2. Now consider the following non-homogeneous singular pertur-

bation problem from fluid dynamics for fluid of small viscosity, ([9], Exam-
ple 2)
Table

Numer

x

Pan

0.00

0.01

0.02

0.04

0.06

0.08

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pan

0.00

0.01

0.02

0.04

0.06

0.08

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
ey 00ðxÞ þ y0ðxÞ ¼ 1þ 2x; x 2 ½0; 1�
with yð0Þ ¼ 0 and yð1Þ ¼ 1.

The exact solution is given by yðxÞ ¼ xðxþ 1� 2eÞ þ ð2e�1Þð1�e�x=eÞ
ð1�e�1=eÞ .

The numerical results are given in Table 2(Panel A) and (Panel B) for

e ¼ 10�3 and 10�4 respectively.
2

ical results of Example 5.2, (Panel A) e ¼ 10�3, h ¼ 10�2 and (Panel B) e ¼ 10�4, h ¼ 10�2

yðxÞ Exact solution

el A

0.0000000 0.0000000

)0.9799542 )0.9878747
)0.9697992 )0.9776400
)0.9487992 )0.9564800
)0.9269992 )0.9345200
)0.9043992 )0.9117600
)0.8809992 )0.8882000
)0.7519993 )0.7584000
)0.6029994 )0.6086000
)0.4339994 )0.4388000
)0.2449995 )0.2490000
)0.0359996 )0.0392001
0.1930003 0.1906000

0.4420002 0.4403999

0.7110001 0.7102000

1.0000000 1.0000000

el B

0.0000000 0.0000000

)0.9799999 )0.9897020
)0.9697999 )0.9794040
)0.9487999 )0.9582080
)0.9269999 )0.9362120
)0.9043999 )0.9134160
)0.8809999 )0.8898200
)0.7519999 )0.7598400
)0.6029999 )0.6098600
)0.4339999 )0.4398800
)0.2450000 )0.2499000
)0.0360000 )0.0399201
0.1930000 0.1900600

0.4420000 0.4400399

0.7110000 0.7100199

1.0000000 1.0000000
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Example 5.3. Finally we consider the following variable coefficient singular

perturbation problem from Kevorkian and Cole ([5], p. 33; Eqs. (2.3.26) and
(2.3.27) with a ¼ �1=2)
Table

Numer

x

Pan

0.00

0.01

0.02

0.04

0.06

0.08

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pan

0.00

0.01

0.02

0.04

0.06

0.08

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
ey 00ðxÞ þ 1
�

� x
2

�
y 0ðxÞ � 1

2
yðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 0 and yð1Þ ¼ 1.We have chosen to use uniformly valid approxi-

mation (which is obtained by the method given by Nayfeh [7], p. 148;

Eq. (4.2.32)) as our �exact� solution:
yðxÞ ¼ 1

2� x
� 1

2
e�ðx�x2=4Þ=e:
3

ical results of Example 5.3, (Panel A) e ¼ 10�3, h ¼ 10�2 and (Panel B) e ¼ 10�4, h ¼ 10�2

yðxÞ Exact solution

el A

0.0000000 0.0000000

0.5049049 0.5024893

0.5087239 0.5050505

0.5138949 0.5102041

0.5191650 0.5154639

0.5245441 0.5208333

0.5300354 0.5263158

0.5593066 0.5555555

0.5919883 0.5882353

0.6287109 0.6250000

0.6702697 0.6666667

0.7176828 0.7142857

0.7722733 0.7692308

0.8357928 0.8333333

0.9106092 0.9090909

1.0000000 1.0000000

el B

0.0000000 0.0000000

0.5049284 0.5025126

0.5087248 0.5050505

0.5138956 0.5102041

0.5191657 0.5154639

0.5245448 0.5208333

0.5300362 0.5263158

0.5593073 0.5555555

0.5919890 0.5882353

0.6287115 0.6250000

0.6702704 0.6666667

0.7176834 0.7142857

0.7722737 0.7692308

0.8357933 0.8333333

0.9106096 0.9090909

1.0000000 1.0000000
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The numerical results are given in Table 3(Panel A) and (Panel B) for e ¼ 10�3

and 10�4 respectively.
6. Nonlinear problems

Nonlinear singular perturbation problems were converted as a sequence of

linear singular perturbation problems by using quasi-linearization method. The

outer solution (the solution of the given problem by putting e ¼ 0) is taken to
be the initial approximation.

The approximate solution is compared with the exact solution.
7. Nonlinear examples

Again to demonstrate the applicability of the method, we have applied it to

three nonlinear singular perturbation problems with left-end boundary layer.
Example 7.1. Consider the following singular perturbation problem from

Bender and Orszag ([1], p. 463; Eq. (9.7.1))
ey 00ðxÞ þ 2y0ðxÞ þ eyðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 0 and yð1Þ ¼ 0.

The linear problem concerned to this example is
ey 00ðxÞ þ 2y0ðxÞ þ 2

xþ 1
yðxÞ ¼ 2

xþ 1

� �
loge

2

xþ 1

� ��
� 1

�
:

We have chosen to use Bender and Orszag�s uniformly valid approximation

([1], p. 463; Eq. (9.7.6)) for comparison,
yðxÞ ¼ loge
2

xþ 1

� �
� ðloge 2Þe�2x=e:
For this example, we have boundary layer of thickness OðeÞ at x ¼ 0 (cf. [1]).

The numerical results are given in Table 4(Panel A) and (Panel B) for

e ¼ 10�3 and 10�4 respectively.
Example 7.2. Now consider the following singular perturbation problem from
Kevorkian and Cole ([5], p. 56; Eq. (2.5.1))
ey 00ðxÞ þ yðxÞy0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ �1 and yð1Þ ¼ 3:9995.



Table 4

Numerical results of Example 7.1, (Panel A) e ¼ 10�3, h ¼ 10�2 and (Panel B) e ¼ 10�4, h ¼ 10�2

x yðxÞ Exact solution

Panel A

0.00 0.0000000 0.0000000

0.01 0.6866083 0.6831968

0.02 0.6766735 0.6733446

0.04 0.6570967 0.6539265

0.06 0.6378976 0.6348783

0.08 0.6190617 0.6161861

0.10 0.6005758 0.5978370

0.20 0.5129694 0.5108256

0.30 0.4324508 0.4307829

0.40 0.3579566 0.3566750

0.50 0.2886465 0.2876821

0.60 0.2238445 0.2231436

0.70 0.1629993 0.1625189

0.80 0.1056546 0.1053605

0.90 0.0514289 0.0512933

1.00 0.0000000 0.0000000

Panel B

0.00 0.0000000 0.0000000

0.01 0.6866081 0.6831968

0.02 0.6766733 0.6733446

0.04 0.6570964 0.6539265

0.06 0.6378974 0.6348783

0.08 0.6190615 0.6161861

0.10 0.6005756 0.5978370

0.20 0.5129692 0.5108256

0.30 0.4324506 0.4307829

0.40 0.3579564 0.3566750

0.50 0.2886464 0.2876821

0.60 0.2238446 0.2231436

0.70 0.1629993 0.1625189

0.80 0.1056545 0.1053605

0.90 0.0514289 0.0512933

1.00 0.0000000 0.0000000
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The linear problem concerned to this example is
ey 00ðxÞ þ ðxþ 2:9995Þy 0ðxÞ ¼ xþ 2:9995:
We have chosen to use the Kivorkian and Cole�s uniformly valid approxima-

tion ([5], pp. 57–58; Eq. (2.5.5), (2.5.11) and (2.5.14)) for comparison,
yðxÞ ¼ xþ c1 tanh
c1
2

� � x
e

��
þ c2

��
;

where c1 ¼ 2:9995 and c2 ¼ ð1=c1Þ loge½ðc1 � 1Þ=ðc1 þ 1Þ�.
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For this example also we have a boundary layer of width OðeÞ at x ¼ 0

(cf. [5], pp. 56–66).
The numerical results are given in Table 5(Panel A) and (Panel B) for

e ¼ 10�3 and 10�4 respectively.

Example 7.3. Finally we consider the following singular perturbation problem

from O� Malley ([8], p. 9; Eq. (1.10) Case 2):
Table

Numer

x

Pan

0.00

0.01

0.02

0.04

0.06

0.08

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Pan

0.00

0.01

0.02

0.04

0.06

0.08

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
ey 00ðxÞ � yðxÞy0ðxÞ ¼ 0; x 2 ½�1; 1�
with yð�1Þ ¼ 0 and yð1Þ ¼ �1.
5

ical results of Example 7.2, (Panel A) e ¼ 10�3, h ¼ 10�2 and (Panel B) e ¼ 10�4, h ¼ 10�2

yðxÞ Exact solution

el A

)1.0000000 )1.0000000
3.0161460 3.0095000

3.0194790 3.0195000

3.0395010 3.0395000

3.0595010 3.0595000

3.0795010 3.0795000

3.0995010 3.0995000

3.1995010 3.1995000

3.2995010 3.2995000

3.3995010 3.3995000

3.4995010 3.4995000

3.5995000 3.5995000

3.6995000 3.6995000

3.7995000 3.7995000

3.8995000 3.8995000

3.9995000 3.9995000

el B

)1.0000000 )1.0000000
3.0161450 3.0095000

3.0194790 3.0195000

3.0395010 3.0395000

3.0595010 3.0595000

3.0795010 3.0795000

3.0995010 3.0995000

3.1995010 3.1995000

3.2995010 3.2995000

3.3995010 3.3995000

3.4995010 3.4995000

3.5995000 3.5995000

3.6995000 3.6995000

3.7995000 3.7995000

3.8995000 3.8995000

3.9995000 3.9995000
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The linear problem concerned to this example is
Table

Numer

x

Pan

)1.0
)0.9
)0.9
)0.9
)0.8
)0.8
)0.8
)0.6
)0.4
)0.2
0.00

0.20

0.40

0.60

0.80

1.00

Pan

)1.0
)0.9
)0.9
)0.9
)0.8
)0.8
)0.8
)0.6
)0.4
)0.2
0.00

0.20

0.40

0.60

0.80

1.00
ey 00ðxÞ þ y0ðxÞ ¼ 0:
We have chosen to use O� Malley�s approximate solution ([8], pp. 9–10;

Eqs. (1.13) and (1.14)) for comparison,
yðxÞ ¼ �
1� e�ðxþ1Þ=e� �
1þ e�ðxþ1Þ=eð Þ :
6

ical results of Example 7.3, (Panel A) e ¼ 10�3, h ¼ 10�2 and (Panel B) e ¼ 10�4, h ¼ 10�2

yðxÞ Exact solution

el A

0 0.0000000 0.0000000

8 )1.0000000 )1.0000000
6 )1.0000000 )1.0000000
2 )1.0000000 )1.0000000
8 )1.0000000 )1.0000000
4 )1.0000000 )1.0000000
0 )1.0000000 )1.0000000
0 )1.0000000 )1.0000000
0 )1.0000000 )1.0000000
0 )1.0000000 )1.0000000

)1.0000000 )1.0000000
)1.0000000 )1.0000000
)1.0000000 )1.0000000
)1.0000000 )1.0000000
)1.0000000 )1.0000000
)1.0000000 )1.0000000

el B

0 0.0000000 0.0000000

8 )1.0000000 )1.0000000
6 )1.0000000 )1.0000000
2 )1.0000000 )1.0000000
8 )1.0000000 )1.0000000
4 )1.0000000 )1.0000000
0 )1.0000000 )1.0000000
0 )1.0000000 )1.0000000
0 )1.0000000 )1.0000000
0 )1.0000000 )1.0000000

)1.0000000 )1.0000000
)1.0000000 )1.0000000
)1.0000000 )1.0000000
)1.0000000 )1.0000000
)1.0000000 )1.0000000
)1.0000000 )1.0000000
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For this example, we have a boundary layer of width OðeÞ at x ¼ �1 (cf. [8],

p. 9–10, Eqs. (1.10), (1.13) and (1.14), Case 2).
The numerical results are given in Table 6(Panel A) and (Panel B) for

e ¼ 10�3 and 10�4 respectively.
8. Right-end boundary layer problems

Finally, we discuss our method for singularly perturbed two point boundary

value problems with right-end boundary layer of the underlying interval. To be

specific, we consider a class of singular perturbation problem of the form:
ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1�; ð21Þ

with yð0Þ ¼ a; ð22aÞ

and yð1Þ ¼ b; ð22bÞ
where e is a small positive parameter (0 < e � 1) and a, b are known constants.

We assume that aðxÞ, bðxÞ and f ðxÞ are sufficiently continuously differentiable

functions in [0, 1]. Further more, we assume that aðxÞ6M < 0 throughout the

interval [0, 1], where M is some negative constant. This assumption merely

implies that the boundary layer will be in the neighborhood of x ¼ 1.

From the theory of singular perturbations the solution of (21), and (22) is
of the form
yðxÞ ¼ y0ðxÞ þ
að1Þ
aðxÞ ðb� y0ð1ÞÞe

R 1

x

aðxÞ
e �bðxÞ

aðxÞ

� �
dx
þOðeÞ; ð23Þ
where y0ðxÞ is the solution of
aðxÞy 00ðxÞ þ bðxÞy0ðxÞ ¼ f ðxÞ; y0ð0Þ ¼ a: ð24Þ
By taking the Taylor�s series expansion for aðxÞ and bðxÞ about the point �1� and
restricting to their first terms, (23) becomes,
yðxÞ ¼ y0ðxÞ þ ðb� y0ð1ÞÞe
að1Þ
e �bð1Þ

að1Þ

� �
ð1�xÞ

þOðeÞ: ð25Þ
Now we divide the interval [0, 1] into N equal parts with constant mesh length

h. Let 0 ¼ x0; x1; x2; . . . ; xN ¼ 1 be the mesh points. Then we have xi ¼ ih;
i ¼ 0; 1; 2; . . . ;N .

From (25) we have
yðihÞ ¼ y0ðihÞ þ ðb� y0ð1ÞÞe
að1Þ
e �bð1Þ

að1Þ

� �
ð1�ihÞ

þOðeÞ:
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Therefore
lim
h!0

yðihÞ ¼ y0ð0Þ þ ðb� y0ð1ÞÞe
a2ð1Þ�ebð1Þ

að1Þ

� �
1
e�iqð Þ

; ð26Þ
where q ¼ h=e.
Now, we consider the second-order finite difference scheme
erðqÞ yiþ1 � 2yi þ yi�1

h2

� �
þ aðxiÞ

yiþ1 � yi�1

2h

� �
þ bðxiÞyi ¼ f ðxiÞ;

16 i6N � 1; ð27Þ
y0 ¼ a; yN ¼ b; where rðqÞ is a fitting factor which is to be determined in such a

way that the solution of (27) converges uniformly to the solution of (21) and

(22).

Multiplying (27) by h and taking the limit as h ! 0; we get
lim
h!0

rðqÞ
q

ðyiþ1

�
� 2yi þ yi�1Þ þ

1

2
aðihÞðyiþ1 � yi�1Þ

�
¼ 0

if f ðxiÞ þ bðxiÞyi is bounded:

i:e; lim
h!0

rðqÞ
q

ðyðih
�

þ hÞ � 2yðihÞ þ yðih� hÞÞ

þ 1

2
aðihÞðyðihþ hÞ � yðih� hÞÞ

�
¼ 0; ð28Þ
substituting (26) in (28) and simplifying, we get
lim
h!0

r
q
¼ 1

2
að0Þ coth a2ð1Þ � ebð1Þ

að1Þ

� �
q
2

� �
: ð29Þ

) We have r ¼ q
2
að0Þ coth a2ð1Þ � ebð1Þ

að1Þ

� �
q
2

� �
: ð30Þ
From (27) we have
er
h2

�
� aðxiÞ

2h

�
yi�1 �

2er
h2

�
� bðxiÞ

�
yi þ

er
h2

�
þ aðxiÞ

2h

�
yiþ1 ¼ f ðxiÞ;

i ¼ 1; 2; . . . ;N � 1; ð31Þ
where the fitting factor r is given by (30).

Eq. (31) can be written as a three term recurrence relation:
Eiyi�1 � Fiyi þ Giyiþ1 ¼ Hi; i ¼ 1; 2; 3; . . . ;N � 1; ð32Þ
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where
Ei ¼
er
h2

� aðxiÞ
2h

;

Fi ¼
2er
h2

� bðxiÞ;

Gi ¼
er
h2

þ aðxiÞ
2h

;

Hi ¼ f ðxiÞ:
This gives us the tridiagonal system which can be solved easily by Thomas

algorithm.
9. Examples with right-end boundary layer

To illustrate the method for singularly perturbed two point boundary value

problems with right-end boundary layer of the underlying interval we con-
sidered two examples. The approximate solution is compared with the exact

solution.

Example 9.1. Consider the following singular perturbation problem
ey 00ðxÞ � y0ðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 1 and yð1Þ ¼ 0.
Clearly, this problem has a boundary layer at x ¼ 1, i.e., at the right end

of the underlying interval.

The exact solution is given by
yðxÞ ¼ ðeðx�1Þ=e � 1Þ
ðe�1=e � 1Þ :
The numerical results are given in Table 7(Panel A) and (Panel B) for
e ¼ 10�3 and 10�4 respectively.

Example 9.2. Now we consider the following singular perturbation problem
ey 00ðxÞ � y0ðxÞ � ð1þ eÞyðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 1þ expð�ð1þ eÞ=eÞ, and yð1Þ ¼ 1þ 1=e.
Clearly this problem has a boundary layer at x ¼ 1. The exact solution is

given by yðxÞ ¼ eð1þeÞðx�1Þ=e þ e�x.

The numerical results are given in Table 8(Panel A) and (Panel B) for

e ¼ 10�3 and 10�4 respectively.



Table 7

Numerical results of Example 9.1, (Panel A) e ¼ 10�3, h ¼ 10�2 and (Panel B) e ¼ 10�4, h ¼ 10�2

x yðxÞ Exact solution

Panel A

0.00 1.0000000 1.0000000

0.10 0.9999999 1.0000000

0.20 0.9999999 1.0000000

0.30 0.9999999 1.0000000

0.40 0.9999999 1.0000000

0.50 0.9999999 1.0000000

0.60 0.9999999 1.0000000

0.70 0.9999999 1.0000000

0.80 0.9999999 1.0000000

0.90 0.9999999 1.0000000

0.92 0.9999999 1.0000000

0.94 0.9999999 1.0000000

0.96 0.9999999 1.0000000

0.98 0.9999999 1.0000000

0.99 0.9999546 0.9999546

1.00 0.0000000 0.0000000

Panel B

0.00 1.0000000 1.0000000

0.10 1.0000000 1.0000000

0.20 1.0000000 1.0000000

0.30 1.0000000 1.0000000

0.40 1.0000000 1.0000000

0.50 1.0000000 1.0000000

0.60 1.0000000 1.0000000

0.70 1.0000000 1.0000000

0.80 1.0000000 1.0000000

0.90 1.0000000 1.0000000

0.92 1.0000000 1.0000000

0.94 1.0000000 1.0000000

0.96 1.0000000 1.0000000

0.98 1.0000000 1.0000000

0.99 1.0000000 1.0000000

1.00 0.0000000 0.0000000
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10. Discussion and conclusions

We have presented an exponentially fitted finite difference method for

solving singularly perturbed two-point boundary value problems. We have

implemented the present method on three linear examples, three nonlinear

examples, with left-end boundary layer and two examples with right-end

boundary layer by taking different values of e. Numerical results are presented

in tables and compared with the exact solutions. It can be observed from the
tables that the present method approximates the exact solution very well.



Table 8

Numerical results of Example 9.2, (Panel A) e ¼ 10�3, h ¼ 10�2 and (Panel B) e ¼ 10�4, h ¼ 10�2

x yðxÞ Exact solution

Panel A

0.00 1.0000000 1.0000000

0.10 0.9051976 0.9048374

0.20 0.8193827 0.8187308

0.30 0.7417031 0.7408183

0.40 0.6713879 0.6703200

0.50 0.6077387 0.6065307

0.60 0.5501237 0.5488117

0.70 0.4979706 0.4965853

0.80 0.4507618 0.4493290

0.90 0.4080285 0.4065697

0.92 0.3999808 0.3985191

0.94 0.3920919 0.3906278

0.96 0.3843585 0.3828929

0.98 0.3767777 0.3753111

0.99 0.3730880 0.3716217

1.00 1.3678790 1.3678790

Panel B

0.00 1.0000000 1.0000000

0.10 0.9052780 0.9048374

0.20 0.8195282 0.8187308

0.30 0.7419009 0.7408183

0.40 0.6716266 0.6703200

0.50 0.6080087 0.6065307

0.60 0.5504170 0.5488117

0.70 0.4982805 0.4965853

0.80 0.4510824 0.4493290

0.90 0.4083550 0.4065697

0.92 0.4003080 0.3985191

0.94 0.3924196 0.3906278

0.96 0.3846866 0.382929

0.98 0.3771060 0.3753111

0.99 0.3733720 0.3715767

1.00 1.3678790 1.3678790
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