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Abstract

In this paper an exponentially fitted finite difference method is presented for solving
singularly perturbed two-point boundary value problems with the boundary layer at one
end (left or right) point. A fitting factor is introduced in a tridiagonal finite difference
scheme and is obtained from the theory of singular perturbations. Thomas algorithm is
used to solve the system. The stability of the algorithm is investigated. Several linear and
nonlinear problems are solved to demonstrate the applicability of the method. It is
observed that the present method approximates the exact solution very well.
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1. Introduction

Singularly perturbed second-order two-point boundary value problems arise
very frequently in fluid mechanics and other branches of Applied Mathematics.
These problems have been received a significant amount of attention in past
and recent years. These problems depend on a small positive parameter in such
a way that the solution varies rapidly in some parts and varies slowly in some
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other parts. So, typically there are thin transition layers where the solutions can
jump abruptly, while away from the layers the solution behaves regularly and
vary slowly. Thus more efficient, simpler computational techniques are re-
quired to solve singular perturbation problems. For a good analytical dis-
cussion one may refer to: Bender and Orszag [1], Kevorkian and Cole [5],
O’ Malley [8], Nayfeh [7]. In the paper, Kadalbajoo and Reddy [4] gives an
erudite outline of the singular perturbation problems. For some numerical
methods one may refer to recent books: Miller [6], Hemker and Miller [3],
Doolan et al. [2].

In this paper an exponentially fitted finite difference method is presented for
solving singularly perturbed two-point boundary value problems with the
boundary layer at one end (left or right) point. A fitting factor is introduced in
a tridiagonal finite difference scheme and is obtained from the theory of sin-
gular perturbations. Thomas algorithm is used to solve the system. The sta-
bility of the algorithm is investigated. Several linear and nonlinear problems
are solved to demonstrate the applicability of the method. It is observed that
the present method approximates the exact solution very well.

2. Exponentially fitted finite difference method

A difference scheme with a fitting factor containing exponential functions is
known as exponentially fitted difference scheme.

To describe the method, we first consider a linear singularly perturbed two-
point boundary value problem of the form:

&' (x) + a(x)y'(x) + b(x)y(x) = f(x), x€[0,1], (1)
with y(0) = «, (2a)
and y(1) = f, (2b)

where ¢ is a small positive parameter (0 < ¢ < 1) and «, f are known constants.
We assume that a(x), b(x) and f(x) are sufficiently continuously differentiable
functions in [0,1]. Further more, we assume that 5(x) <0, a(x) =M >0
throughout the interval [0,1], where M is some positive constant. Under these
assumptions, (1) has a unique solution y(x) which in general, displays a
boundary layer of width O(¢) at x = 0 for small values of .

From the theory of singular perturbations it is known that the solution of
(1) and (2) is of the form (cf. [8, pp. 22-26])
Y) =) + 20 (= (0 ()% o, 3

aly) b(x)

~—
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where yy(x) is the solution of
a(x)yp(x) + by (x) = f(x), (1) = 4. )

By taking the Taylor’s series expansion for a(x) and b(x) about the point ‘0’ and
restricting to their first terms, (3) becomes,

. m,m)x
y(x) = y(x) + (2 = 30(0))e ( © 7+ 0(). ()
Now we divide the interval [0, 1] into N equal parts with constant mesh length
h. Let 0 =xg,x1,X2,...,xy =1 be the mesh points. Then we have x; = ik;

i=0,1,2,...,N.
From (5) we have

a(0) _b(0)

y(xi) = yo(xir) + (o0 = yo(O))ef< W) +0(),

. - (ﬂ_&) ih
ie., y(ih) = w(ih) + (x — 3 (0))e \° 77 4 O(e).
Therefore
_ (a2<0>—ab<0>> ip
lim y(ih) = yo(0) + (o = 3o (0))e \ 7 /7, (6)
where p = h/e.

Now, we consider the second-order finite difference scheme

1 — 2V + Vie i1 — Vie
solp) (21 ) ) (22 bl = 1)
1<i<N -1, (7)

Yo = o; yv = f; where o(p) is a fitting factor which is to be determined in such a
way that the solution of (7) converges uniformly to the solution of (1) and (2).
Multiplying (7) by 4 and taking the limit as # — 0; we get

) 1
lim [@(J’m =2y +yia) + za(ih)(ym y"‘)] =0

h—0

if f(x;) — b(x;)y; is bounded.

- lim [@ (v(ih + k) — 29(ih) + y(ih — h))

+ %a(ih)(y(ih +h) — y(ih — h))} =0, (8)

substituting (6) in (8) and simplifying, we get

1imf=%a(0)coth KW)%] 9)



86 Y.N. Reddy, P. Pramod Chakravarthy | Appl. Math. Comput. 154 (2004) 83-101
2(0) — &b (0
. We have azga(O)coth K%)g] (10)

which is a constant fitting factor.
From (7) we have

ea  a(x;) 2e0 eo a(x;) _
(]12 7 )yil — <hz b(x,))y,- + <hz+ oY Yit1 *f(xi)v
i=1,2,... N—1, (11)

where the fitting factor ¢ is given by (10).
Eq. (11) can be written as a three term recurrence relation:

Eyi—Fy+Gy =H;, i=123...N-1, (12)
where
_ &0 alx)
TR 2n
2e0

k= h—2 b(x1)7

e a(x;)
Gi= T
]—[i :f'(-xi)a

This gives us the tridiagonal system which can be solved easily by Thomas
algorithm described in Section 3.

Remark. For 5(0) =0 we get the exponentially fitted method developed by
Doolan et al. [2, pp. 93-94], as

ea  a(x;) 2e0 eo a(x;) _
(hz_ > )yl.l — (;lz_b(xi)>yi+ <hz+2h Yir1 = f(x),
i=1,2,...,N—1,

with the fitting factor o = £a(0) coth (a(0)%).

3. Thomas algorithm

We briefly discuss the Thomas algorithm to solve the tridiagonal system:
Eiyi—l_F;'yi'i_Giyi-%—l:[{i i:17273a"'7N_1 (13)
subject to the boundary conditions

w =y(0) =a, (14a)
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w=y(1)=§. (14b)
We set
J’i:Winl‘Fﬂ' fOI‘l':N—l,N—27...,2,1, (15)

where W; = W(x;) and T; = T(x;) which are to be determined.
From (15), we have

Vi =Wy + Ty, (16)
substituting (16) in (13), we have

E(Wieiyi + T1) — Fyy + Gy = H,.

o= (=g o+ (B ) "
By comparing (17) and (15), we get the recurrence relations
G;
W= (=g (15
To solve these recurrence relations fori = 1,2,3,..., N — 1, we need the initial

conditions for W, and T;. For this we have y, = o = Wyy, + Tp. If we choose
Wy = 0, then we get Ty = «. With these initial values, we compute W, and 7; for
i=1,2,3,...,N—1 from (17) in forward process, and then obtain y; in the
backward process from (15) and (14b).

4. Stability analysis

We will now show that the algorithm is computationally stable. By stability,
we mean that the effect of an error made in one stage of the calculation is not
propagated into larger errors at later stages of the calculations. Let us now
examine the recurrence relation given by (18a). Suppose that a small error e;_,
has been made in the calculation of W,_;; then, we have

W. 1= W_,+e_, and we are actually calculating,

Fi— EiW;
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From (19) and (18a), we have

. G; - G;
CO\E-E(Witen) F—EW_,

o GiEe;_, o Wiin e (20)
T \NE-EW +e ))E-EW_)) G )"

under the assumption that the error is small initially. From the assumptions
made earlier that a(x) > 0 and b(x) <0, we have

E?E,‘+Gl‘, 1:1,2,3,7N71

Form (18a) we have

G .
W1:—1<1, since | > Gy,
I

W, = & < G since W, < 1

BE—-EW B-E’ ’
<L:1 since > = E, + G,
E24+G,—E, - ’

successively, it follows that

E;
les| = || el lei1]

1

< |e;—1| since |E;| < |Gyl

Therefore the recurrence relation (18a) is stable. Similarly we can prove that
the recurrence relation (18b) is also stable. Finally the convergence of the
Thomas algorithm is ensured by the condition || < 1,i=1,2,3,...,N — 1.

5. Numerical examples

To demonstrate the applicability of the method we have applied it to three
linear singular perturbation problems with left-end boundary layer. These
examples have been chosen because they have been widely discussed in liter-
ature and because approximate solutions are available for comparison. The
approximate solution is compared with the exact solution.

Example 5.1. Consider the following homogeneous singular perturbation

problem from Bender and Orszag ([1], p. 480; problem 9.17 with « = 0)
&"(x) +(x) —y(x) =0, x€[0,1]

with »(0) =1 and y(1) = 1.
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The exact solution is given by

[(emz _ l)emlx + (1 _ em])emzx]

y(x) = o — o] ;

where m; = (—1+ V1 +4¢)/(2¢) and my = (=1 — V1 + 4¢) /(2e).
The numerical results are given in Table 1(Panel A) and (Panel B) for
¢ =10"% and 10~* respectively.

Table 1
Numerical results of Example 5.1, (Panel A) ¢ = 1073, 4 = 102 and (Panel B) ¢ = 1074, 7 = 1072

x y(x) Exact solution
Panel A

0.00 1.0000000 1.0000000
0.01 0.3734365 0.3719724
0.02 0.3771425 0.3756784
0.04 0.3847230 0.3832599
0.06 0.3924560 0.3909945
0.08 0.4003443 0.3988851
0.10 0.4083913 0.4069350
0.20 0.4511180 0.4496879
0.30 0.4983149 0.4969323
0.40 0.5504497 0.5491403
0.50 0.6080388 0.6068334
0.60 0.6716532 0.6705877
0.70 0.7419230 0.7410401
0.80 0.8195445 0.8188941
0.90 0.9052870 0.9049277
1.00 1.0000000 1.0000000
Panel B

0.00 1.0000000 1.0000000
0.01 0.3734084 0.3716135
0.02 0.3771425 0.3753479
0.04 0.3847230 0.3829296
0.06 0.3924560 0.3906645
0.08 0.4003443 0.3985557
0.10 0.4083913 0.4066062
0.20 0.4511180 0.4493649
0.30 0.4983149 0.4966200
0.40 0.5504497 0.5488445
0.50 0.6080388 0.6065609
0.60 0.6716532 0.6703468
0.70 0.7419230 0.7408404
0.80 0.8195445 0.8187471
0.90 0.9052870 0.9048464

1.00 1.0000000 1.0000000
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Example 5.2. Now consider the following non-homogeneous singular pertur-
bation problem from fluid dynamics for fluid of small viscosity, ([9], Exam-
ple 2)

&/(x) +)(x) =1+2x, x€[0,1]

with »(0) = 0 and y(1) = 1.
The exact solution is given by y(x) = x(x + 1 —2¢) + %jﬂ)
The numerical results are given in Table 2(Panel A) and (Panel B) for
¢ =10"% and 10~* respectively.

Table 2
Numerical results of Example 5.2, (Panel A) ¢ = 1073, 4 = 1072 and (Panel B) ¢ = 1074, # = 1072

x y(x) Exact solution
Panel A

0.00 0.0000000 0.0000000
0.01 —-0.9799542 —-0.9878747
0.02 —-0.9697992 —-0.9776400
0.04 —-0.9487992 -0.9564800
0.06 —-0.9269992 —0.9345200
0.08 —-0.9043992 —-0.9117600
0.10 —-0.8809992 —-0.8882000
0.20 —-0.7519993 —-0.7584000
0.30 —-0.6029994 —-0.6086000
0.40 —-0.4339994 —0.4388000
0.50 —0.2449995 —-0.2490000
0.60 —-0.0359996 —-0.0392001
0.70 0.1930003 0.1906000
0.80 0.4420002 0.4403999
0.90 0.7110001 0.7102000
1.00 1.0000000 1.0000000
Panel B

0.00 0.0000000 0.0000000
0.01 —-0.9799999 —-0.9897020
0.02 -0.9697999 —-0.9794040
0.04 —0.9487999 —0.9582080
0.06 -0.9269999 -0.9362120
0.08 —-0.9043999 —-0.9134160
0.10 —-0.8809999 —-0.8898200
0.20 —-0.7519999 —0.7598400
0.30 -0.6029999 —-0.6098600
0.40 —-0.4339999 —0.4398800
0.50 —0.2450000 —0.2499000
0.60 —-0.0360000 —-0.0399201
0.70 0.1930000 0.1900600
0.80 0.4420000 0.4400399
0.90 0.7110000 0.7100199

1.00 1.0000000 1.0000000
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Example 5.3. Finally we consider the following variable coefficient singular
perturbation problem from Kevorkian and Cole ([5], p. 33; Egs. (2.3.26) and
(2.3.27) with o = —1/2)

o)+ (13 )90 300 =0, x e [0,1]

with y(0) =0 and y(1) = 1.We have chosen to use uniformly valid approxi-
mation (which is obtained by the method given by Nayfeh [7], p. 148;
Eq. (4.2.32)) as our ‘exact’ solution:

1 1 2
_ D a—(x—x/4) /e
y(x) 2 —x 2 € °
Table 3
Numerical results of Example 5.3, (Panel A) ¢ = 1073, 7/ = 1072 and (Panel B) ¢ = 1074, 1 = 102

x y(x) Exact solution
Panel A

0.00 0.0000000 0.0000000
0.01 0.5049049 0.5024893
0.02 0.5087239 0.5050505
0.04 0.5138949 0.5102041
0.06 0.5191650 0.5154639
0.08 0.5245441 0.5208333
0.10 0.5300354 0.5263158
0.20 0.5593066 0.5555555
0.30 0.5919883 0.5882353
0.40 0.6287109 0.6250000
0.50 0.6702697 0.6666667
0.60 0.7176828 0.7142857
0.70 0.7722733 0.7692308
0.80 0.8357928 0.8333333
0.90 0.9106092 0.9090909
1.00 1.0000000 1.0000000
Panel B

0.00 0.0000000 0.0000000
0.01 0.5049284 0.5025126
0.02 0.5087248 0.5050505
0.04 0.5138956 0.5102041
0.06 0.5191657 0.5154639
0.08 0.5245448 0.5208333
0.10 0.5300362 0.5263158
0.20 0.5593073 0.5555555
0.30 0.5919890 0.5882353
0.40 0.6287115 0.6250000
0.50 0.6702704 0.6666667
0.60 0.7176834 0.7142857
0.70 0.7722737 0.7692308
0.80 0.8357933 0.8333333
0.90 0.9106096 0.9090909

1.00 1.0000000 1.0000000
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The numerical results are given in Table 3(Panel A) and (Panel B) for ¢ = 1073
and 10~* respectively.

6. Nonlinear problems

Nonlinear singular perturbation problems were converted as a sequence of
linear singular perturbation problems by using quasi-linearization method. The
outer solution (the solution of the given problem by putting ¢ = 0) is taken to
be the initial approximation.

The approximate solution is compared with the exact solution.

7. Nonlinear examples

Again to demonstrate the applicability of the method, we have applied it to
three nonlinear singular perturbation problems with left-end boundary layer.

Example 7.1. Consider the following singular perturbation problem from
Bender and Orszag ([1], p. 463; Eq. (9.7.1))

&y (x) +2)/(x) + & =0, x €[0,1]

with y(0) = 0 and y(1) = 0.
The linear problem concerned to this example is

o0+ 2/ + 0 = (27 ) 1o (57 ) 1]

We have chosen to use Bender and Orszag’s uniformly valid approximation
([1], p. 463; Eq. (9.7.6)) for comparison,

x+1

y(x) = loge <L> - (loge 2)672)(/}:‘

For this example, we have boundary layer of thickness O(e) at x = 0 (cf. [1]).
The numerical results are given in Table 4(Panel A) and (Panel B) for
e =10"3 and 10~ respectively.

Example 7.2. Now consider the following singular perturbation problem from
Kevorkian and Cole ([5], p. 56; Eq. (2.5.1))

&y (x) + y(x)y'(x) —y(x) =0, x€[0,1]

with 1(0) = —1 and y(1) = 3.9995.
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Table 4
Numerical results of Example 7.1, (Panel A) ¢ = 1073, 4 = 102 and (Panel B) ¢ = 1074, # = 1072

x y(x) Exact solution
Panel A

0.00 0.0000000 0.0000000
0.01 0.6866083 0.6831968
0.02 0.6766735 0.6733446
0.04 0.6570967 0.6539265
0.06 0.6378976 0.6348783
0.08 0.6190617 0.6161861
0.10 0.6005758 0.5978370
0.20 0.5129694 0.5108256
0.30 0.4324508 0.4307829
0.40 0.3579566 0.3566750
0.50 0.2886465 0.2876821
0.60 0.2238445 0.2231436
0.70 0.1629993 0.1625189
0.80 0.1056546 0.1053605
0.90 0.0514289 0.0512933
1.00 0.0000000 0.0000000
Panel B

0.00 0.0000000 0.0000000
0.01 0.6866081 0.6831968
0.02 0.6766733 0.6733446
0.04 0.6570964 0.6539265
0.06 0.6378974 0.6348783
0.08 0.6190615 0.6161861
0.10 0.6005756 0.5978370
0.20 0.5129692 0.5108256
0.30 0.4324506 0.4307829
0.40 0.3579564 0.3566750
0.50 0.2886464 0.2876821
0.60 0.2238446 0.2231436
0.70 0.1629993 0.1625189
0.80 0.1056545 0.1053605
0.90 0.0514289 0.0512933
1.00 0.0000000 0.0000000

The linear problem concerned to this example is

& (x) + (x +2.9995)y (x) = x + 2.9995.

We have chosen to use the Kivorkian and Cole’s uniformly valid approxima-
tion ([5], pp. 57-58; Eq. (2.5.5), (2.5.11) and (2.5.14)) for comparison,

¥(x) =x + ¢ tanh ((%)(;-&-Cz)),

where ¢; = 2.9995 and ¢, = (1/¢y)log,[(c; — 1)/(ci + 1)].
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For this example also we have a boundary layer of width O(e) at x =0
(cf. [5], pp. 56-66).

The numerical results are given in Table 5(Panel A) and (Panel B) for
¢ =107 and 10~* respectively.

Example 7.3. Finally we consider the following singular perturbation problem
from O’ Malley ([8], p. 9; Eq. (1.10) Case 2):

Sy//(x) _y(x)y/(x) =0, xe€ [_17 1]
with y(—1) = 0 and y(1) = —1.

Table 5
Numerical results of Example 7.2, (Panel A) ¢ = 1073, 4 = 102 and (Panel B) ¢ = 1074, 7 = 1072

X y(x) Exact solution
Panel A

0.00 —1.0000000 —1.0000000
0.01 3.0161460 3.0095000
0.02 3.0194790 3.0195000
0.04 3.0395010 3.0395000
0.06 3.0595010 3.0595000
0.08 3.0795010 3.0795000
0.10 3.0995010 3.0995000
0.20 3.1995010 3.1995000
0.30 3.2995010 3.2995000
0.40 3.3995010 3.3995000
0.50 3.4995010 3.4995000
0.60 3.5995000 3.5995000
0.70 3.6995000 3.6995000
0.80 3.7995000 3.7995000
0.90 3.8995000 3.8995000
1.00 3.9995000 3.9995000
Panel B

0.00 —1.0000000 —1.0000000
0.01 3.0161450 3.0095000
0.02 3.0194790 3.0195000
0.04 3.0395010 3.0395000
0.06 3.0595010 3.0595000
0.08 3.0795010 3.0795000
0.10 3.0995010 3.0995000
0.20 3.1995010 3.1995000
0.30 3.2995010 3.2995000
0.40 3.3995010 3.3995000
0.50 3.4995010 3.4995000
0.60 3.5995000 3.5995000
0.70 3.6995000 3.6995000
0.80 3.7995000 3.7995000
0.90 3.8995000 3.8995000

1.00 3.9995000 3.9995000
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The linear problem concerned to this example is
& (x) +'(x) = 0.

We have chosen to use O’ Malley’s approximate solution ([8], pp. 9-10;
Egs. (1.13) and (1.14)) for comparison,

(1 _ ef(x+l)/s)
yix) =— (14 e /ey

Table 6
Numerical results of Example 7.3, (Panel A) ¢ = 1073, 4/ = 102 and (Panel B) ¢ = 1074, 7 = 1072

x y(x) Exact solution
Panel A

-1.00 0.0000000 0.0000000
-0.98 —1.0000000 —1.0000000
-0.96 —1.0000000 —1.0000000
-0.92 —1.0000000 —1.0000000
—-0.88 —1.0000000 —1.0000000
-0.84 —1.0000000 —-1.0000000
-0.80 —1.0000000 —1.0000000
—-0.60 —1.0000000 —1.0000000
-0.40 —1.0000000 —1.0000000
-0.20 —1.0000000 —-1.0000000
0.00 —1.0000000 —1.0000000
0.20 —1.0000000 —1.0000000
0.40 —1.0000000 —1.0000000
0.60 —1.0000000 —1.0000000
0.80 —1.0000000 —1.0000000
1.00 —1.0000000 —1.0000000
Panel B

-1.00 0.0000000 0.0000000
-0.98 —1.0000000 —1.0000000
-0.96 —1.0000000 —1.0000000
-0.92 —1.0000000 —1.0000000
—-0.88 —1.0000000 —1.0000000
—-0.84 —1.0000000 —1.0000000
-0.80 —1.0000000 —1.0000000
—-0.60 —1.0000000 —1.0000000
-0.40 —1.0000000 —1.0000000
-0.20 —1.0000000 —1.0000000
0.00 —1.0000000 —1.0000000
0.20 —1.0000000 —1.0000000
0.40 —1.0000000 —1.0000000
0.60 —1.0000000 —1.0000000
0.80 —1.0000000 —1.0000000

1.00 —1.0000000 —1.0000000
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For this example, we have a boundary layer of width O(e) at x = —1 (cf. [8],
p. 9-10, Egs. (1.10), (1.13) and (1.14), Case 2).

The numerical results are given in Table 6(Panel A) and (Panel B) for
¢ =107 and 10~* respectively.

8. Right-end boundary layer problems

Finally, we discuss our method for singularly perturbed two point boundary
value problems with right-end boundary layer of the underlying interval. To be
specific, we consider a class of singular perturbation problem of the form:

&"(x) + a(x)y'(x) + b(x)y(x) = f(x), x€[0,1], (1)
with y(0) = o, (22a)
and y(1) = p, (22b)

where ¢ is a small positive parameter (0 < ¢ < 1) and «, ff are known constants.
We assume that a(x), b(x) and f(x) are sufficiently continuously differentiable
functions in [0, 1]. Further more, we assume that a(x) <M < 0 throughout the
interval [0, 1], where M is some negative constant. This assumption merely
implies that the boundary layer will be in the neighborhood of x = 1.

From the theory of singular perturbations the solution of (21), and (22) is
of the form

) =00 + 2 - (e (#8), o), (23)
where yy(x) is the solution of
a(x)y(x) +b(x)y(x) = f(x), (0) =a. (24)

By taking the Taylor’s series expansion for a(x) and b(x) about the point ‘1’ and
restricting to their first terms, (23) becomes,

ﬁﬁ) (1=

y(x) =y(x) +(f - yo(l))e< - +0(e). (25)
Now we divide the interval [0, 1] into N equal parts with constant mesh length
h. Let 0 =x9,x1,X2,...,xy =1 be the mesh points. Then we have x; = ik;

i=0,1,2,... N.
From (25) we have

Wih) = yolih) + (B —yo<1>>e(*’m)“””) +0(e).
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Therefore

i

i »(i4) = 3(0) + (- eCEE) ) (26)

where p = h/e.
Now, we consider the second-order finite difference scheme

Vi1 = 20+ yi Yirl — Vi-
solp) (L) ) (M) bl = )
1<i<N -1, (27)

Yo = o yy = f; where o(p) is a fitting factor which is to be determined in such a
way that the solution of (27) converges uniformly to the solution of (21) and
(22).

Multiplying (27) by /& and taking the limit as # — 0; we get

. [o 1.
i | 72 (1 = 2314 3100 + 30801 = 310)] =0

if f(x;) + b(x;)y; is bounded.

i, lim ["(pp) ik + h) — 2p(ih) + (ih — )
+ %a(ih)(y(ih +h) — y(ih — h))} =0, (28)

substituting (26) in (28) and simplifying, we get

limy =5 a(0) coth K"Z(ll(_l;b(l)ﬁ} (29)
.. We have ¢ = Za(0) coth [(az(l)a(—lfb(l))g} (30)

From (27) we have

ea  a(x;) 2e0 &0 @ _
(/12 - )yi] — (hz b(xi)>yi + <h2 + 7 Vit = f(x:),
i=1,2,... N—1, (31)

where the fitting factor ¢ is given by (30).
Eq. (31) can be written as a three term recurrence relation:

Ey1 —Fy+Gyn=H;, i=123....N-1, (32)
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where
&0 alx;)
TR 2h
2e0
F= h_2 - b(xi)7
_ed a(x;)
=t on
H; = f(x;).

This gives us the tridiagonal system which can be solved easily by Thomas
algorithm.

9. Examples with right-end boundary layer

To illustrate the method for singularly perturbed two point boundary value
problems with right-end boundary layer of the underlying interval we con-
sidered two examples. The approximate solution is compared with the exact
solution.

Example 9.1. Consider the following singular perturbation problem
&'(x) =y(x) =0, x€[0,1]

with y(0) =1 and y(1) = 0.

Clearly, this problem has a boundary layer at x = 1, i.e., at the right end
of the underlying interval.

The exact solution is given by

(e )
y(x) = (1)

The numerical results are given in Table 7(Panel A) and (Panel B) for
¢ =103 and 10~ respectively.

Example 9.2. Now we consider the following singular perturbation problem
&"(x) =y(x) = (1 + &)y(x) =0, x€[0,1]

with y(0) = 1 +exp(—(l +¢)/¢), and y(1) =1+ 1/e.

Clearly this problem has a boundary layer at x = 1. The exact solution is
given by y(x) = eI+96-D/e 4 g=x,

The numerical results are given in Table 8(Panel A) and (Panel B) for
e =107 and 10~ respectively.
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Table 7
Numerical results of Example 9.1, (Panel A) ¢ = 1073, 4 = 102 and (Panel B) ¢ = 1074, # = 1072

x y(x) Exact solution
Panel A

0.00 1.0000000 1.0000000
0.10 0.9999999 1.0000000
0.20 0.9999999 1.0000000
0.30 0.9999999 1.0000000
0.40 0.9999999 1.0000000
0.50 0.9999999 1.0000000
0.60 0.9999999 1.0000000
0.70 0.9999999 1.0000000
0.80 0.9999999 1.0000000
0.90 0.9999999 1.0000000
0.92 0.9999999 1.0000000
0.94 0.9999999 1.0000000
0.96 0.9999999 1.0000000
0.98 0.9999999 1.0000000
0.99 0.9999546 0.9999546
1.00 0.0000000 0.0000000
Panel B

0.00 1.0000000 1.0000000
0.10 1.0000000 1.0000000
0.20 1.0000000 1.0000000
0.30 1.0000000 1.0000000
0.40 1.0000000 1.0000000
0.50 1.0000000 1.0000000
0.60 1.0000000 1.0000000
0.70 1.0000000 1.0000000
0.80 1.0000000 1.0000000
0.90 1.0000000 1.0000000
0.92 1.0000000 1.0000000
0.94 1.0000000 1.0000000
0.96 1.0000000 1.0000000
0.98 1.0000000 1.0000000
0.99 1.0000000 1.0000000
1.00 0.0000000 0.0000000

10. Discussion and conclusions

We have presented an exponentially fitted finite difference method for
solving singularly perturbed two-point boundary value problems. We have
implemented the present method on three linear examples, three nonlinear
examples, with left-end boundary layer and two examples with right-end
boundary layer by taking different values of &. Numerical results are presented
in tables and compared with the exact solutions. It can be observed from the
tables that the present method approximates the exact solution very well.
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Table 8

Numerical results of Example 9.2, (Panel A) ¢ = 1073, 4 = 102 and (Panel B) ¢ = 1074, # = 1072
x y(x) Exact solution
Panel A
0.00 1.0000000 1.0000000
0.10 0.9051976 0.9048374
0.20 0.8193827 0.8187308
0.30 0.7417031 0.7408183
0.40 0.6713879 0.6703200
0.50 0.6077387 0.6065307
0.60 0.5501237 0.5488117
0.70 0.4979706 0.4965853
0.80 0.4507618 0.4493290
0.90 0.4080285 0.4065697
0.92 0.3999808 0.3985191
0.94 0.3920919 0.3906278
0.96 0.3843585 0.3828929
0.98 0.3767777 0.3753111
0.99 0.3730880 0.3716217
1.00 1.3678790 1.3678790
Panel B
0.00 1.0000000 1.0000000
0.10 0.9052780 0.9048374
0.20 0.8195282 0.8187308
0.30 0.7419009 0.7408183
0.40 0.6716266 0.6703200
0.50 0.6080087 0.6065307
0.60 0.5504170 0.5488117
0.70 0.4982805 0.4965853
0.80 0.4510824 0.4493290
0.90 0.4083550 0.4065697
0.92 0.4003080 0.3985191
0.94 0.3924196 0.3906278
0.96 0.3846866 0.382929
0.98 0.3771060 0.3753111
0.99 0.3733720 0.3715767
1.00 1.3678790 1.3678790
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