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Abstract

A numerical patching method is presented for solving singularly perturbed two-point

boundary value problems with the boundary layer at one end (left or right) point. The

method is distinguished by the following fact: The original singularly perturbed two-

point boundary value problem is divided into two problems, namely inner and outer

region problems. The terminal boundary condition is obtained from the solution of the

reduced problem. Using general stretching transformation, a modified inner region

problem is constructed. Then, both inner region problem and outer region problems are

solved as two-point boundary value problems by employing cubic splines. Several linear

and non-linear problems are solved to demonstrate the applicability of the method.
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1. Introduction

Singularly perturbed second order two-point boundary value problems arise
very frequently in fluid mechanics and other branches of Applied Mathematics.
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These problems depend on a small positive parameter in such a way that the

solution varies rapidly in some parts and varies slowly in some other parts. So,
typically there are thin transition layers where the solutions can jump abruptly,

while away from the layers the solution behaves regularly and vary slowly. The

numerical treatment of the singular perturbation problems is far from the

trivial because of the boundary layer behavior of the solution. There are a wide

variety of asymptotic techniques for solving singular perturbation problems

(cf. [2–6]).

In this paper, a numerical patching method is presented for solving singu-

larly perturbed two-point boundary value problems with the boundary layer at
one end (left or right) point. The method is distinguished by the following fact:

The original singularly perturbed two-point boundary value problem is divided

into two problems, namely inner and outer region problems. The terminal

boundary condition is obtained from the solution of the reduced problem.

Using general stretching transformation, a modified inner region problem is

constructed. Then, both inner region problem and outer region problems are

solved as two-point boundary value problems by employing cubic splines. The

proposed method is iterative on the terminal point. The process is to be re-
peated for various choices of the terminal point, until the solution profiles do

not differ materially from iteration to iteration. Several linear and non-linear

problems are solved to demonstrate the applicability of the method.
2. Numerical patching method: linear problems

To describe the method, we first consider a linear singularly perturbed two-

point boundary value problem of the form:
ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1� ð1Þ
with
yð0Þ ¼ a ð2aÞ
and
yð1Þ ¼ b; ð2bÞ
where e is a small positive parameter ð0 < e � 1Þ and a, b are known constants.

We assume that aðxÞ, bðxÞ and f ðxÞ are sufficiently continuously differentiable

functions in [0, 1]. Further more, we assume that aðxÞPM > 0 throughout the

interval [0, 1], where M is some positive constant. This assumption merely

implies that the boundary layer will be in the neighborhood of x ¼ 0. Consider
xp ¼ OðeÞ be the thickness of the boundary layer.

Now we divide the original problem into two problems, an inner region

problem and an outer region problem. The inner region problem is defined in
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the interval 06 x6 xp and the outer region problem is defined in the interval

xp 6 x6 1.

3. Terminal boundary condition

To obtain the boundary condition at terminal point xp, we solve the reduced
problem with an appropriate boundary condition.

The reduced problem is
aðxÞy 0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ ð3Þ

with
yð1Þ ¼ b: ð4Þ
Let yRðxÞ be the (analytical or numerical) solution of the reduced problem.

At the terminal point xp we get yðxpÞ ¼ yRðxpÞ.
Let the terminal boundary condition: yðxpÞ ¼ c (say).

4. Inner region problem

Since the terminal boundary condition is common to both the inner and

outer regions, we define the inner region problem as a two-point boundary
value problem:
ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; 06 x6 xp ð5Þ

with
yð0Þ ¼ a ð6aÞ

and
yðxpÞ ¼ c: ð6bÞ
Now we introduce a stretched variable �t� to magnify the boundary layer

region and there by eliminate any rapid variation that might be exhibited by

the solution when the solution is considered as a function of the stretched

variable.

We can think of two stretching transformations:R

ðiÞ t ¼ x

e
and ðiiÞ t ¼

x
0
aðsÞds
e

:

The constant multiple of x=e would be equally effective.

Since aðxÞ > 0 8 x 2 ½0; 1�; we have að0Þ > 0.

Now we consider the transformation
t ¼ að0Þx
e

to construct a new differential equation for the inner region solution:
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Then we get
yðxÞ ¼ y
te

að0Þ

� �
¼ Y ðtÞ;

y0ðxÞ ¼ að0Þ
e

y0
te

að0Þ

� �
¼ að0Þ

e
Y 0ðtÞ;

y00ðxÞ ¼ að0Þ
e

� �2

y00
te

að0Þ

� �
¼ að0Þ

e

� �2

Y 00ðtÞ;

aðxÞ ¼ a
te

að0Þ

� �
¼ AðtÞ;

bðxÞ ¼ b
te

að0Þ

� �
¼ BðtÞ;

f ðxÞ ¼ f
te

að0Þ

� �
¼ F ðtÞ;

yð0Þ ¼ a ¼ Y ð0Þ and yðxpÞ ¼ c ¼ Y ðtP Þ:
Substituting these in (5), we get
ðað0ÞÞ2Y 00ðtÞ þ að0ÞAðtÞY 0ðtÞ þ eBðtÞY ðtÞ ¼ eF ðtÞ ð7Þ
with
Y ð0Þ ¼ a ð8aÞ
and
Y ðtpÞ ¼ c: ð8bÞ
This is the modified inner region problem over ½0; tp�.

5. Outer region problem

In the outer region, we have two-point boundary value problem as
ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; xp 6 x6 1 ð9Þ
with
yðxpÞ ¼ c ð10aÞ
and
yð1Þ ¼ b: ð10bÞ
This is the outer region problem over ½xp; 1�.
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6. Cubic spline approximation

In order to solve the two-point boundary value problems (7)–(8) and (9)–

(10), we have used cubic spline approximation [1].

By definition, cubic spline is a continuous function and has continuous first

and second derivatives. The spline proves to be an effective tool in the ele-

mentary process of interpolation and approximate integration. The outstand-

ing characteristic, however, is its effectiveness in numerical differentiation.

Cubic splines are frequently used to find the solution of two-point boundary

value problems. We briefly present the method of finding solution of two-point
boundary value problems by cubic splines:

Consider the two-point boundary value problem
y00ðxÞ þ pðxÞy0ðxÞ þ qðxÞyðxÞ ¼ rðxÞ; a6 x6 b ð11Þ
with
yðaÞ ¼ k1 ð12aÞ
and
yðbÞ ¼ k2: ð12bÞ
We divide the interval ½a; b� into n equal parts with mesh size h and having

nodes at a ¼ x0; x1; x2; x3; . . . ; xn ¼ b. By definition: A spline function of degree

m with nodes at the points xi; i ¼ 0; 1; 2; . . . ; n is a function SðxÞ with the
properties:

(i) on each interval ½xi�1; xi�; i ¼ 0; 1; 2; . . . ; n; SðxÞ is a polynomial of degree m.
(ii) SðxÞ and its first m� 1 are continuous on ½a; b�.

To find the cubic spline approximation for the function yðxÞ, x 2 ½x0; xn� at
the nodes we have
S00ðxÞ ¼ xi � x
h

� �
Mi�1 þ

x� xi�1

h

� �
Mi; ð13Þ
where S00ðxiÞ ¼ Mi.

The interpolating conditions are
Sðxi�1Þ ¼ yi�1 ð14Þ
and
SðxiÞ ¼ yi: ð15Þ
Integrating (13) twice and substituting the interpolating conditions (14) and

(15), we obtain the cubic spline approximation function
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SðxÞ ¼ ðxi � xÞ3

6h
Mi�1 þ

ðx� xi�1Þ3

6h
Mi þ yi�1

�
� h2

6
Mi�1

�
xi � x
h

� �

þ yi

�
� h2

6
Mi

�
x� xi�1

h

� �
: ð16Þ
The continuity of the first order derivative of SðxÞ at x ¼ xi requires
S0ðx�i Þ ¼ S0ðxþi Þ: ð17Þ
We have
ðiÞ S0ðx�i Þ ¼
h
3
Mi þ

h
6
Mi�1 þ

yi � yi�1

h
; i ¼ 1; 2; . . . ; n;

ðiiÞ S0ðxþi Þ ¼ � h
3
Mi �

h
6
Miþ1 þ

yiþ1 � yi
h

; i ¼ 0; 1; 2; . . . ; n� 1
and so that the continuity of the first order derivatives implies
h
6
Mi�1 þ

2h
3
Mi þ

h
6
Miþ1 ¼

yiþ1 � 2yi þ yi�1

h
; i ¼ 1; 2; . . . ; n� 1: ð18Þ
From (11) we have
y00ðxÞ ¼ �pðxÞy0ðxÞ � qðxÞyðxÞ þ rðxÞ:
We have Mi ¼ S00ðxiÞ ¼ y 00i ; i ¼ 0; 1; 2; . . . ; n, therefore
Mi ¼ �piy0i � qiyi þ ri; i ¼ 0; 1; 2; . . . ; n;
where pi ¼ pðxiÞ, qi ¼ qðxiÞ, ri ¼ rðxiÞ,
i:e:; Mi ¼ �piS0
i � qiSi þ ri: ð19Þ
Replacing S0
i by S0ðxþi Þ and Si by yi in (19) we get
1

�
� hpi

3

�
Mi �

hpi
6

Miþ1 ¼ ri � qiyi �
pi
h

yiþ1ð � yiÞ; i ¼ 0; 1; 2; . . . ; n� 1:

ð20Þ
Replacing S0
i by S0ðx�i Þ and Si by yi in (19) we get
hpi
6

Mi�1 þ 1

�
þ hpi

3

�
Mi ¼ ri � qiyi �

pi
h

yið � yi�1Þ; i ¼ 1; 2; . . . ; n: ð21Þ
Adding (20) and (21), we get
hpi
6
Mi�1 þ 2Mi �

hpi
6
Miþ1 ¼ 2ri � 2qiyi �

pi
h

yiþ1ð � yi�1Þ; i¼ 1;2; . . . ;n� 1:

ð22Þ
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Eliminating Mi from (22) and (18), we get
1

�
þ hpi

3

�
yiþ1 � 2 1

�
� h2qi

3

�
yi þ 1

�
� hpi

3

�
yi�1

¼ 2h2

3
ri þ

h2

6
1

�
� hpi

3

�
Mi�1 þ

h2

6
1

�
þ hpi

3

�
Miþ1: ð23Þ
Replacing i by i� 1 in (20) we have
1

�
� hpi�1

3

�
Mi�1 �

hpi�1

6
Mi ¼ ri�1 � qi�1yi�1 �

pi�1

h
yið � yi�1Þ;

i ¼ 1; 2; . . . ; n: ð24Þ
Eliminating Mi from (21) and (24), we get
1

��
þ hpi

3

�
1

�
� hpi�1

3

�
þ h2pi�1pi

36

�
Mi�1

¼ 1

�
þ hpi

3

�
ri�1ð � qi�1yi�1Þ � 1

�
þ hpi

3

�
pi�1

h

� �
yið � yi�1Þ

þ hpi�1

6
rið � qiyiÞ �

pipi�1

6
yið � yi�1Þ; i ¼ 1; 2; . . . ; n: ð25Þ
Consider
1

�
þ hpi

3

�
1

�
� hpi�1

3

�
þ h2pi�1pi

36
¼ ai: ð26Þ
Therefore (25) becomes
aiMi�1 ¼ 1

�
þ hpi

3

�
ri�1

h
� qi�1yi�1 �

pi�1

h
yið � yi�1Þ

i

þ hpi�1

6
ri
h

� qiyi �
pi
h

yið � yi�1Þ
i
; i ¼ 1; 2; . . . ; n: ð27Þ
Replacing i by iþ 1 in (21), we get
hpiþ1

6
Mi þ 1

�
þ hpiþ1

3

�
Miþ1 ¼ riþ1 � qiþ1yiþ1 �

piþ1

h
yiþ1ð � yiÞ;

i ¼ 0; 1; 2; . . . ; n� 1: ð28Þ
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Eliminating Mi from (20) and (28), we get
1

��
þ hpiþ1

3

�
1

�
� hpi

3

�
þ h2pipiþ1

36

�
Miþ1

¼ 1

�
� hpi

3

�
riþ1ð � qiþ1yiþ1Þ � 1

�
� hpi

3

�
piþ1

h

� �
yiþ1ð � yiÞ

� hpiþ1

6
rið � qiyiÞ þ

pipiþ1

6
yiþ1ð � yiÞ; i ¼ 0; 1; 2; . . . ; n� 1:
Consider bi ¼ aiþ1; i ¼ 0; 1; 2; . . . ; n� 1.

Therefore we have
biMiþ1 ¼ 1

�
� hpi

3

�
riþ1

h
� qiþ1yiþ1 �

piþ1

h
yiþ1ð � yiÞ

i

� hpiþ1

6
ri
h

� qiyi �
pi
h

yiþ1ð � yiÞ
i
; i ¼ 0; 1; 2; . . . ; n� 1: ð29Þ
Substituting (27) and (29) in (23), and by simplifying, we get
ai 1

�
þ hpiþ1

2
þ h2qiþ1

6

�
yiþ1 � ai 1

��
þ hpiþ1

2

�
þ bi 1

�
� hpi�1

2

�
� 2h2qici

3

�
yi

þ bi 1

�
� hpi�1

2
þ h2qi�1

6

�
yi�1

¼ h2

6
airiþ1ð þ 4ciri þ biri�1Þ; i¼ 1;2; . . . ;n� 1; ð30Þ
where
ci ¼ 1þ 7h
24

piþ1ð � pi�1Þ �
h2pi�1piþ1

12
:

Eq. (30) constitute a tridiagonal algebraic system. The solution of this tridi-

agonal system can be obtained by using Thomas algorithm also called discrete

invariant imbedding.

7. Solution of the original problem

After getting the solution of the inner region problem and outer region

problem, we combine both to obtain the approximate solution of the original

problem (1)–(2) over the interval 06 x6 1. We repeat the process for various
choices of xp, until the solution profiles do not differ materially from iteration

to iteration. For computational purposes we use an absolute error criterion,

namely
Y ðtÞmþ1
��� � Y ðtÞm

���6 r; 06 t6 tp;
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where Y ðtÞm is the mth iterate of the inner region solution and r is the pre-

scribed tolerance bound.

8. Linear examples

To demonstrate the applicability of the method we have applied it on four

linear singular perturbation problems with left-end boundary layer. These

examples have been chosen because they have been widely discussed in liter-

ature and because approximate solutions are available for comparison.

Example 8.1. Consider the following homogeneous singular perturbation

problem from Bender and Orszag [2, p. 480; problem 9.17 with a ¼ 0]
ey 00ðxÞ þ y0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 1 and yð1Þ ¼ 1.

For this example the stretching transformation is
t ¼ x
e

and the inner region problem is given by
Y 00ðtÞ þ Y 0ðtÞ � eY ðtÞ ¼ 0; with Y ð0Þ ¼ 1; Y ðtpÞ ¼ eetp�1
and the outer region problem is given by
ey 00ðxÞ þ y0ðxÞ � yðxÞ ¼ 0 with yðxpÞ ¼ exp�1; yð1Þ ¼ 1:
The exact solution is given by
yðxÞ ¼ ½ðem2 � 1Þem1x þ ð1� em1Þem2x�
½em2 � em1 � ;
where m1 ¼ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p
Þ=ð2eÞ and m2 ¼ ð�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e

p
Þ=ð2eÞ.

The numerical results are given in Table 1 for e ¼ 10�3 and 10�4, respec-

tively.

Example 8.2. Now consider the following non-homogeneous singular pertur-

bation problem
ey 00ðxÞ þ y0ðxÞ ¼ 1þ 2x; x 2 ½0; 1�
with yð0Þ ¼ 0 and yð1Þ ¼ 1.

For this example the stretching transformation is
t ¼ x
e



Table 1

Numerical results of Example 8.1

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

0.0000 1.0000000 1.0000000 1.0000000 1.0000000

0.0005 0.7456129 0.7471300 0.7471403 0.7514171

0.0010 0.5931332 0.5955608 0.5955774 0.6007918

0.0025 0.4143062 0.4178072 0.4178311 0.4208957

0.0050 0.3697234 0.3735048 0.3735305 0.3743263

0.0075 0.3709218 0.3709478 0.3713630

0.0100 0.3715767 0.3716028 0.3719724

0.0200 0.3753111 0.3756784

0.1000 0.4069324 0.4069451 0.4067746 0.4069350

0.2000 0.4496854 0.4496888 0.4497448 0.4496879

0.3000 0.4969299 0.4969331 0.4969121 0.4969323

0.4000 0.5491381 0.5491410 0.5491475 0.5491404

0.5000 0.6068313 0.6068341 0.6068309 0.6068334

0.6000 0.6705859 0.6705883 0.6705886 0.6705877

0.7000 0.7410386 0.7410405 0.7410397 0.7410401

0.8000 0.8188931 0.8188946 0.8188943 0.8188942

0.9000 0.9049271 0.9049280 0.9049277 0.9049277

1.0000 1.0000000 1.0000000 1.0000000 1.0000000

e ¼ 10�4

0.00000 1.0000000 1.0000000 1.0000000 1.0000000

0.00005 0.7456136 0.7471414 0.7471507 0.7512937

0.00010 0.5929970 0.5954415 0.5954563 0.6004604

0.00025 0.4135686 0.4170914 0.4171129 0.4198798

0.00050 0.3680634 0.3718610 0.3718841 0.3723570

0.00075 0.3684295 0.3684528 0.3685416

0.00100 0.3682475 0.3682709 0.3683130

0.00200 0.3686159 0.3686527

0.10000 0.4066143 0.4066097 0.4066016 0.4066062

0.20000 0.4493727 0.4493683 0.4493601 0.4493649

0.30000 0.4966276 0.4966233 0.4966155 0.4966201

0.40000 0.5488518 0.5488476 0.5488402 0.5488446

0.50000 0.6065675 0.6065637 0.6065568 0.6065609

0.60000 0.6703526 0.6703491 0.6703435 0.6703469

0.70000 0.7408450 0.7408426 0.7408376 0.7408405

0.80000 0.8187506 0.8187487 0.8187451 0.8187471

0.90000 0.9048485 0.9048474 0.9048455 0.9048465

1.00000 1.0000000 1.0000000 1.0000000 1.0000000
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and the inner region problem is given by
Y 00ðtÞ þ Y 0ðtÞ ¼ eð1þ 2etÞ; with Y ð0Þ ¼ 0; Y ðtpÞ ¼ e2t2p þ etp � 1
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and the outer region problem is given by
ey 00ðxÞ þ y0ðxÞ ¼ 1þ 2x with yðxpÞ ¼ x2p þ xp � 1; yð1Þ ¼ 1:
The exact solution is given by
yðxÞ ¼ xðxþ 1� 2eÞ þ
ð2e� 1Þ 1� e�x=e

	 

1� e�1=eð Þ :
The numerical results are given in Table 2 for e ¼ 10�3 and 10�4, respectively.

Example 8.3. Now we consider the following variable coefficient singular

perturbation problem from Kevorkian and Cole [4, p. 33; Eqs. (2.3.26) and

(2.3.27) with a ¼ �1=2]
ey 00ðxÞ þ 1
�

� x
2

�
y 0ðxÞ � 1

2
yðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 0 and yð1Þ ¼ 1.

For this example the stretching transformation is
t ¼ x
e

and the inner region problem is given by
Y 00ðtÞ þ 1
�

� te
2

�
Y 0ðtÞ � e

2
Y ðtÞ ¼ 0;
with
Y ð0Þ ¼ 0; Y ðtpÞ ¼
1

2� etp
and the outer region problem is given by
ey 00ðxÞ þ 1
�

� x
2

�
y 0ðxÞ � 1

2
yðxÞ ¼ 0
with
yðxpÞ ¼
1

2� xp
; yð1Þ ¼ 1:
We have chosen to use uniformly valid approximation (which is obtained by

the method) given by Neyfah [5, p. 148; Eq. (4.2.32)] as our �exact� solution:
yðxÞ ¼ 1

2� x
� 1

2
e�ðx�x2=4Þ=e:
The numerical results are given in Table 3 for e ¼ 10�3 and 10�4,

respectively.



Table 2

Numerical results of Example 8.2

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

0.0000 0.0000000 0.0000000 0.0000000 0.0000000

0.0005 )0.4019300 )0.3995073 )0.3994845 )0.3921832
0.0010 )0.6428878 )0.6390115 )0.6389750 )0.6298573
0.0025 )0.9253398 )0.9197540 )0.9197015 )0.9135779
0.0050 )0.9949750 )0.9889548 )0.9888982 )0.9862605
0.0075 )0.9920051 )0.9919482 )0.9899068
0.0100 )0.9899000 )0.9898432 )0.9878747
0.0200 )0.9796000 )0.9776400

0.1000 )0.8881999 )0.8881485 )0.8890784 )0.8882000
0.2000 )0.7584000 )0.7583989 )0.7580781 )0.7584000
0.3000 )0.6086000 )0.6085996 )0.6087180 )0.6086000
0.4000 )0.4387999 )0.4387994 )0.4387568 )0.4388000
0.5000 )0.2490000 )0.2489994 )0.2490159 )0.2490000
0.6000 )0.0392000 )0.0391994 )0.0391942 )0.0392001
0.7000 0.1906000 0.1906006 0.1905978 0.1906000

0.8000 0.4404000 0.4404005 0.4404007 0.4404000

0.9000 0.7102000 0.7102003 0.7101997 0.7102000

1.0000 1.0000000 1.0000000 1.0000000 1.0000000

e ¼ 10�4

0.00000 0.0000000 0.0000000 0.0000000 0.0000000

0.00005 )0.4023833 )0.3999644 )0.3999496 )0.3933406
0.00010 )0.6437932 )0.6399230 )0.6398994 )0.6318942
0.00025 )0.9276002 )0.9220233 )0.9219892 )0.9174814
0.00050 )0.9994997 )0.9934891 )0.9934524 )0.9925632
0.00075 )0.9988156 )0.9987786 )0.9984966
0.00100 )0.9989990 )0.9989620 )0.9987538
0.00200 )0.9979960 )0.9977964

0.10000 )0.8898200 )0.8898221 )0.8898211 )0.8898200
0.20000 )0.7598400 )0.7598396 )0.7598401 )0.7598400
0.30000 )0.6098599 )0.6098576 )0.6098590 )0.6098600
0.40000 )0.4398801 )0.4398761 )0.4398782 )0.4398800
0.50000 )0.2499001 )0.2498951 )0.2498977 )0.2499000
0.60000 )0.0399201 )0.0399147 )0.0399174 )0.0399199
0.70000 0.1900599 0.1900651 0.1900625 0.1900601

0.80000 0.4400400 0.4400442 0.4400421 0.4400400

0.90000 0.7100199 0.7100226 0.7100213 0.7100201

1.00000 1.0000000 1.0000000 1.0000000 1.0000000
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Example 8.4. Finally we consider the following singular perturbation problem
ey 00ðxÞ þ 2y0ðxÞ þ yðxÞ ¼ �3; x 2 ½�1; 1�
with yð�1Þ ¼ 1 and yð1Þ ¼ 2.



Table 3

Numerical results of Example 8.3

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

0.0000 0.0000000 0.0000000 0.0000000 0.0000000

0.0005 0.2013328 0.2001186 0.2001121 0.1968407

0.0010 0.3221646 0.3202217 0.3202114 0.3162644

0.0025 0.4645047 0.4617034 0.4616884 0.4595191

0.0050 0.5012531 0.4982302 0.4982141 0.4978630

0.0075 0.5016630 0.5016468 0.5016016

0.0100 0.5025126 0.5024964 0.5024893

0.0200 0.5050505 0.5050505

0.1000 0.5270723 0.5270895 0.5267506 0.5263158

0.2000 0.5563190 0.5563194 0.5564258 0.5555556

0.3000 0.5889998 0.5889999 0.5889670 0.5882353

0.4000 0.6257567 0.6257567 0.6257664 0.6250000

0.5000 0.6674021 0.6674022 0.6673999 0.6666667

0.6000 0.7149801 0.7149802 0.7149810 0.7142857

0.7000 0.7698538 0.7698539 0.7698540 0.7692308

0.8000 0.8338380 0.8338382 0.8338384 0.8333333

0.9000 0.9094033 0.9094036 0.9094036 0.9090909

1.0000 1.0000000 1.0000000 1.0000000 1.0000000

e ¼ 10�4

0.00000 0.0000000 0.0000000 0.0000000 0.0000000

0.00005 0.2012282 0.2000183 0.2000110 0.1967453

0.00010 0.3219684 0.3200324 0.3200208 0.3160807

0.00025 0.4639831 0.4611932 0.4611764 0.4590136

0.00050 0.5001251 0.4971178 0.4970998 0.4967540

0.00075 0.4999703 0.4999521 0.4999107

0.00100 0.5002501 0.5002319 0.5002274

0.00200 0.5005005 0.5005005

0.10000 0.5263911 0.5263913 0.5263919 0.5263158

0.20000 0.5556318 0.5556319 0.5556325 0.5555556

0.30000 0.5883117 0.5883120 0.5883123 0.5882353

0.40000 0.6250751 0.6250759 0.6250764 0.6250000

0.50000 0.6667399 0.6667402 0.6667413 0.6666667

0.60000 0.7143551 0.7143552 0.7143559 0.7142857

0.70000 0.7692937 0.7692935 0.7692939 0.7692308

0.80000 0.8333846 0.8333842 0.8333845 0.8333333

0.90000 0.9091222 0.9091225 0.9091226 0.9090909

1.00000 1.0000000 1.0000000 1.0000000 1.0000000
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For this example the stretching transformation is
t ¼ 2ðxþ 1Þ
e
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and the inner region problem is given by
Y 00ðtÞ þ Y 0ðtÞ þ e
4
Y ðtÞ ¼ �3e

4

with
Y ð0Þ ¼ 1; Y ðtpÞ ¼ �3þ 5e1�ðtpe=4Þ
and the outer region problem is given by
ey 00ðxÞ þ 2y0ðxÞ þ yðxÞ ¼ �3; with yðxpÞ ¼ �3þ 5eð1�xpÞ=2; yð1Þ ¼ 2:
The exact solution is given by
yðxÞ ¼ ð4e�m2 � 5em2Þe�m1x � ð4e�m1 � 5em1Þe�m2x

eðm1�m2Þ � e�ðm1�m2Þ
� 3;
where m1 ¼ ð1�
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
Þ=e and m2 ¼ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
Þ=e.

The numerical results are given in Table 4 for e ¼ 10�3 and 10�4, respec-

tively.

9. Non-linear problems

We have applied the present method on three non-linear singular pertur-

bation problems with left-end boundary layer. Non-linear singular perturba-

tion problems are first converted as a sequence of linear singular perturbation

problems by using quasilinearization method. The solution of the reduced

problem is taken as initial approximation.

Example 9.1. Consider the following singular perturbation problem from
Bender and Orszag [2, p. 463; Eq. (9.7.1)]
ey 00ðxÞ þ 2y0ðxÞ þ eyðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 0 and yð1Þ ¼ 0.

The linear problem concerned to this example is
ey 00ðxÞ þ 2y0ðxÞ þ 2

xþ 1
yðxÞ ¼ 2

xþ 1

� �
loge

2

xþ 1

� ��
� 1

�
:

For this example the stretching transformation is
t ¼ 2x
e



Table 4

Numerical results of Example 8.4

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

)1.00000 1.0000000 1.0000000 1.0000000 1.0000000

)0.99975 4.8575020 4.8342570 4.8341130 4.7726250

)0.99950 7.1716220 7.1344310 7.1342020 7.0609590

)0.99850 10.1891000 10.1337100 10.1333700 10.1065700

)0.99800 10.4740100 10.4169100 10.4165500 10.4053000

)0.99750 10.5744300 10.5167100 10.5163600 10.5130900

)0.99600 10.5618900 10.5615400 10.5644100

)0.99500 10.5574700 10.5571200 10.5604200

)0.99200 10.5371500 10.5405200

)0.99000 10.5236200 10.5269900

)0.80000 9.3005050 9.3007840 9.3009080 9.3007850

)0.60000 8.1297150 8.1299300 8.1299710 8.1299320

)0.40000 7.0703620 7.0705280 7.0705590 7.0705270

)0.20000 6.1118380 6.1119610 6.1119880 6.1119620

0.00000 5.2445480 5.2446370 5.2446580 5.2446380

0.20000 4.4598080 4.4598700 4.4598830 4.4598700

0.40000 3.7497590 3.7498010 3.7498100 3.7498010

0.60000 3.1072950 3.1073200 3.1073250 3.1073200

0.80000 2.5259830 2.5259930 2.5259950 2.5259930

1.00000 2.0000000 2.0000000 2.0000000 2.0000000

e ¼ 10�4

)1.000000 1.0000000 1.0000000 1.0000000 0.9999996

)0.999975 4.8596660 4.8364660 4.8363310 4.7708310

)0.999950 7.1754270 7.1383080 7.1380920 7.0632990

)0.999850 10.1985000 10.1432100 10.1428900 10.1133900

)0.999800 10.4863100 10.4292900 10.4289600 10.4146000

)0.999750 10.5897100 10.5320700 10.5317300 10.5253900

)0.999600 10.5863400 10.5860000 10.5858100

)0.999500 10.5880100 10.5876800 10.5879200

)0.999200 10.5859700 10.5863100

)0.999000 10.5846100 10.5849500

)0.800000 9.2972310 9.2983870 9.2983610 9.2982920

)0.600000 8.1270920 8.1280050 8.1279860 8.1279270

)0.400000 7.0683000 7.0690000 7.0689860 7.0689390

)0.200000 6.1102520 6.1107740 6.1107690 6.1107300

0.000000 5.2433610 5.2437410 5.2437390 5.2437090

0.200000 4.4589550 4.4592200 4.4592180 4.4591980

0.400000 3.7491870 3.7493590 3.7493580 3.7493440

0.600000 3.1069540 3.1070510 3.1070530 3.1070440

0.800000 2.5258310 2.5258710 2.5258720 2.5258680

1.000000 2.0000000 2.0000000 2.0000000 2.0000000
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and the inner region problem is given by
Y 00ðtÞ þ 2Y 0ðtÞ þ e
2þ te

Y ðtÞ ¼ e
2þ te

� �
loge

4

2þ te

� ��
� 1

�

with
Y ð0Þ ¼ 0; Y ðtpÞ ¼ loge
4

2þ etp

� �
and the outer region problem is given by
ey 00ðxÞ þ 2y0ðxÞ þ 2

xþ 1
yðxÞ ¼ 2

xþ 1

� �
loge

2

xþ 1

� ��
� 1

�

with
yðxpÞ ¼ loge
2

1þ xp

� �
; yð1Þ ¼ 0:
We have chosen to use Bender and Orszag�s uniformly valid approximation [2,
p. 463; Eq. (9.7.6)] for comparison,
yðxÞ ¼ logeð2=ð1þ xÞÞ � ðloge 2Þe�2x=e:
For this example, we have boundary layer of thickness OðeÞ at x ¼ 0 (cf. [2]).

The numerical results are given in Table 5 for e ¼ 10�3 and 10�4, respec-

tively.

Example 9.2. Now consider the following singular perturbation problem from

Kevorkian and Cole [4, p. 56; Eq. (2.5.1)]
ey 00ðxÞ þ yðxÞy0ðxÞ � yðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ �1 and yð1Þ ¼ 3:9995.

The linear problem concerned to this example is
ey 00ðxÞ þ ðxþ 2:9995Þy 0ðxÞ ¼ xþ 2:9995:
For this example the stretching transformation is
t ¼ ð2:9995Þx
e

and the inner region problem is given by
Y 00ðtÞ þ te

ð2:9995Þ2

"
þ 1

#
Y 0ðtÞ ¼ e

2:9995

� � te

ð2:9995Þ2

"
þ 1

#



Table 5

Numerical results of Example 9.1

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

0.00000 0.0000000 0.0000000 0.0000000 0.0000000

0.00025 0.2785943 0.2769114 0.2769021 0.2724822

0.00050 0.4456941 0.4430018 0.4429868 0.4376527

0.00125 0.6418320 0.6379539 0.6379324 0.6350010

0.00250 0.6906503 0.6864750 0.6864519 0.6859799

0.00375 0.6891031 0.6890798 0.6890208

0.00500 0.6881596 0.6881363 0.6881282

0.01000 0.6831968 0.6831968

0.10000 0.5981092 0.5981095 0.5981665 0.5978370

0.20000 0.5110389 0.5110391 0.5110467 0.5108256

0.30000 0.4309491 0.4309491 0.4309499 0.4307829

0.40000 0.3568026 0.3568026 0.3568026 0.3566749

0.50000 0.2877782 0.2877781 0.2877780 0.2876821

0.60000 0.2232134 0.2232133 0.2232133 0.2231436

0.70000 0.1625668 0.1625668 0.1625668 0.1625189

0.80000 0.1053898 0.1053898 0.1053898 0.1053605

0.90000 0.0513068 0.0513068 0.0513068 0.0512933

1.00000 0.0000000 0.0000000 0.0000000 0.0000000

e ¼ 10�4

0.000000 0.0000000 0.0000000 0.0000000 0.0000000

0.000025 0.2789103 0.2772330 0.2772226 0.2727072

0.000050 0.4462509 0.4435671 0.4435506 0.4381026

0.000125 0.6430061 0.6391391 0.6391152 0.6361252

0.000250 0.6928972 0.6887299 0.6887042 0.6882268

0.000375 0.6924715 0.6924456 0.6923889

0.000500 0.6926473 0.6926214 0.6926158

0.001000 0.6921477 0.6921477

0.100000 0.5978634 0.5978650 0.5978647 0.5978370

0.200000 0.5108468 0.5108471 0.5108473 0.5108256

0.300000 0.4307997 0.4307995 0.4307997 0.4307829

0.400000 0.3566880 0.3566877 0.3566878 0.3566749

0.500000 0.2876920 0.2876918 0.2876917 0.2876821

0.600000 0.2231507 0.2231505 0.2231505 0.2231435

0.700000 0.1625238 0.1625236 0.1625237 0.1625189

0.800000 0.1053635 0.1053634 0.1053634 0.1053605

0.900000 0.0512946 0.0512946 0.0512946 0.0512933

1.000000 0.0000000 0.0000000 0.0000000 0.0000000
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with
Y ð0Þ ¼ �1; Y ðtpÞ ¼
etp

2:9995
þ 2:9995
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and the outer region problem is given by
ey 00ðxÞ þ ðxþ 2:9995Þy 0ðxÞ ¼ xþ 2:9995
with
yðxpÞ ¼ xp þ 2:9995; yð1Þ ¼ 3:9995:
We have chosen to use the Kevorkian and Cole�s uniformly valid approxi-

mation [4, pp. 57–58; Eqs. (2.5.5), (2.5.11) and (2.5.14)] for comparison,
yðxÞ ¼ xþ c1 tanh
c1
2

� � x
e

��
þ c2

��
;

where c1 ¼ 2:9995 and c2 ¼ ð1=c1Þ loge½ðc1 � 1Þ=ðc1 þ 1Þ�.
For this example also we have a boundary layer of width OðeÞ at x ¼ 0 (cf.

[4, pp. 56–66]).
The numerical results are given in Table 6 for e ¼ 10�3 and 10�4, respec-

tively.

Example 9.3. Finally we consider the following singular perturbation problem

from O� Malley [6, p. 9; Eq. (1.10) case 2]:
ey 00ðxÞ � yðxÞy0ðxÞ ¼ 0; x 2 ½�1; 1�
with yð�1Þ ¼ 0 and yð1Þ ¼ �1.

The linear problem concerned to this example is
ey 00ðxÞ þ y0ðxÞ ¼ 0:
For this example the stretching transformation is
t ¼ xþ 1

e

and the inner region problem is given by
Y 00ðtÞ þ Y 0ðtÞ ¼ 0; with Y ð0Þ ¼ 0; Y ðtpÞ ¼ �1
and the outer region problem is given by
ey 00ðxÞ þ y0ðxÞ ¼ 0
with
yðxpÞ ¼ �1; yð1Þ ¼ �1:
We have chosen to use O� Malley�s approximate solution [6, pp. 9–10; Eqs.

(1.13) and (1.14)] for comparison,
yðxÞ ¼ �
1� e�ðxþ1Þ=e	 

1þ e�ðxþ1Þ=eð Þ :



Table 6

Numerical results of Example 9.2

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

0.000000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.000500 2.1554020 2.1364770 2.1363630 1.1487790

0.001000 2.8372090 2.8141980 2.8140590 2.4571870

0.100000 3.0994530 3.0994990 3.0995020 3.0995010

0.200000 3.1994600 3.1994990 3.1995020 3.1995010

0.300000 3.2994660 3.2995000 3.2995020 3.2995010

0.400000 3.3994710 3.3995000 3.3995010 3.3995010

0.500000 3.4994740 3.4995010 3.4995010 3.4995010

0.600000 3.5994790 3.5995010 3.5995000 3.5995000

0.700000 3.6994850 3.6995020 3.6995000 3.6995000

0.800000 3.7994900 3.7995010 3.7995000 3.7995000

0.900000 3.8994940 3.8995000 3.8995000 3.8995000

1.000000 3.9995000 3.9995000 3.9995000 3.9995000

e ¼ 10�4

0.000000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.000050 2.1547550 2.1357970 2.1356830 1.1483290

0.000100 2.8362060 2.8131540 2.8130140 2.4562870

0.100000 3.0994030 3.0995250 3.0995390 3.0995000

0.200000 3.1994130 3.1995290 3.1995400 3.1995000

0.300000 3.2994250 3.2995240 3.2995380 3.2995000

0.400000 3.3994370 3.3995230 3.3995370 3.3995000

0.500000 3.4994480 3.4995190 3.4995350 3.4995000

0.600000 3.5994560 3.5995150 3.5995270 3.5995000

0.700000 3.6994690 3.6995140 3.6995220 3.6995000

0.800000 3.7994820 3.7995100 3.7995160 3.7995000

0.900000 3.8994880 3.8995060 3.8995070 3.8995000

1.000000 3.9995000 3.9995000 3.9995000 3.9995000
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For this example, we have a boundary layer of width OðeÞ at x ¼ �1 (cf. [6,

pp. 9–10, Eqs. (1.10), (1.13), (1.14), case 2]).

The numerical results are given in Table 7 for e ¼ 10�3 and 10�4, respec-

tively.
10. Right-end boundary layer problems

Now we discuss our method for singularly perturbed two-point boundary

value problems with right-end boundary layer of the underlying interval. To be

specific, we consider a class of singular perturbation problem of the form:
ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; x 2 ½0; 1� ð31Þ



Table 7

Numerical results of Example 9.3

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

)1.0000 0.0000000 0.0000000 0.0000000 0.0000000

)0.9995 )0.4024333 )0.4000145 )0.3999998 )0.2449296
)0.9970 )0.9591436 )0.9533787 )0.9533435 )0.9051501
)0.9960 )0.9891850 )0.9832396 )0.9832034 )0.9640279
)0.9950 )1.0000000 )0.9939896 )0.9939529 )0.9866142
)0.9920 )0.9997544 )0.9997175 )0.9993293
)0.9900 )1.0000000 )0.9999632 )0.9999092
)0.9800 )1.0000000 )1.0000000

)0.4000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
)0.2000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.0000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.2000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.4000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.6000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.8000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
1.0000 )1.0000000 )1.0000000 )1.0000000 )1.0000000

e ¼ 10�4

)1.00000 0.0000000 0.0000000 0.0000000 0.0000000

)0.99995 )0.4024333 )0.4000145 )0.3999998 )0.2449577
)0.99970 )0.9591436 )0.9533787 )0.9533435 )0.9051394
)0.99960 )0.9891850 )0.9832396 )0.9832034 )0.9640300
)0.99950 )1.0000000 )0.9939896 )0.9939529 )0.9866174
)0.99900 )1.0000000 )0.9999632 )0.9999092
)0.99850 )0.9999994 )0.9999994
)0.99800 )1.0000000 )1.0000000

)0.40000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
)0.20000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.00000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.20000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.40000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.60000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
0.80000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
1.00000 )1.0000000 )1.0000000 )1.0000000 )1.0000000
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with
yð0Þ ¼ a ð32aÞ
and
yð1Þ ¼ b; ð32bÞ
where e is a small positive parameter ð0 < e � 1Þ and a, b are known constants.

We assume that aðxÞ, bðxÞ and f ðxÞ are sufficiently continuously differentiable
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functions in [0, 1]. Further more, we assume that aðxÞ6M < 0 throughout the

interval [0, 1], where M is some negative constant. This assumption merely
implies that the boundary layer will be in the neighborhood of x ¼ 1. Consider

xp ¼ OðeÞ be the thickness of the boundary layer.

Now we divide the original problem into two problems, an inner region

problem and an outer region problem. The outer region problem is defined in

the interval 06 x6 xp and the inner region problem is defined in the interval

xp 6 x6 1.

11. Terminal boundary condition

To obtain the boundary condition at terminal point xp, we solve the reduced
problem with an appropriate boundary condition.

The reduced problem is
aðxÞy 0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ
with yð0Þ ¼ a.
Let the terminal boundary condition: yðxpÞ ¼ c (say).

12. Inner region problem

Since the terminal boundary condition is common to both the inner and

outer regions, we define the inner region problem as a two-point boundary

value problem:
ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; xp 6 x6 1 ð33Þ
with
yðxpÞ ¼ c ð34aÞ
and
yð1Þ ¼ b: ð34bÞ
In this case we take the stretching transformation
t ¼ �að1Þð1� xÞ
e

to construct a new differential equation for the inner region solution:

Then, we get
yðxÞ ¼ y 1

�
þ te
að1Þ

�
¼ Y ðtÞ;

y0ðxÞ ¼ að1Þ
e

y0 1

�
þ te
að1Þ

�
¼ að1Þ

e
Y 0ðtÞ;
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y00ðxÞ ¼ að1Þ
e

� �2

y00 1

�
þ te
að1Þ

�
¼ að1Þ

e

� �2

Y 00ðtÞ;

aðxÞ ¼ a 1

�
þ te
að1Þ

�
¼ AðtÞ;

bðxÞ ¼ b 1

�
þ te
að1Þ

�
¼ BðtÞ;

f ðxÞ ¼ f 1

�
þ te
að1Þ

�
¼ F ðtÞ
and
yðxpÞ ¼ c ¼ Y ðtP Þ;
yð1Þ ¼ b ¼ Y ð0Þ:
Substituting these in (33), we get
ðað1ÞÞ2Y 00ðtÞ þ að1ÞAðtÞY 0ðtÞ þ eBðtÞY ðtÞ ¼ eF ðtÞ ð35Þ
with
Y ðtpÞ ¼ c ð36aÞ
and
Y ð0Þ ¼ b: ð36bÞ
This is the modified inner region problem ½0; tp�.

13. Outer region problem

In the outer region we have two-point boundary value problem as
ey 00ðxÞ þ aðxÞy0ðxÞ þ bðxÞyðxÞ ¼ f ðxÞ; 06 x6 xp ð37Þ
with
yð0Þ ¼ a ð38aÞ
and
yðxpÞ ¼ c: ð38bÞ
This is the outer region problem over ½0; xp�.

14. Solution of the original problem

After getting the solution of the inner region problem and outer region

problem, we combine both to obtain the approximate solution of the original
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problem (31)–(32) over the interval 06 x6 1. We repeat the process for various

choices of xp, until the solution profiles do not differ materially from iteration
to iteration. For computational purposes we use an absolute error criterion,

namely
Y ðtÞmþ1
��� � Y ðtÞm

���6 r; 06 t6 tp;
where Y ðtÞm is the mth iterate of the inner region solution and r is the pre-

scribed tolerance bound.

15. Examples with right-end boundary layer

To illustrate the method for singularly perturbed two-point boundary value

problems with right-end boundary layer of the underlying interval we have
implemented on three examples.

Example 15.1. Consider the following singular perturbation problem
ey 00ðxÞ � y0ðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 1 and yð1Þ ¼ 0.

Clearly, this problem has a boundary layer at x ¼ 1. That is; at the right end

of the underlying interval.

For this example the stretching transformation is
t ¼ 1� x
e

and the inner region problem is given by
Y 00ðtÞ þ Y 0ðtÞ ¼ 0; with Y ð0Þ ¼ 0; Y ðtpÞ ¼ 1
and the outer region problem is given by
ey 00ðxÞ � y0ðxÞ ¼ 0 with yð0Þ ¼ 1; yðxpÞ ¼ 1:
The exact solution is given by
yðxÞ ¼
eðx�1Þ=e � 1
	 

e�1=e � 1ð Þ :
The numerical results are given in Table 8 for e ¼ 10�3 and 10�4, respectively.

Example 15.2. Now we consider the following singular perturbation problem
ey 00ðxÞ � y0ðxÞ � ð1þ eÞyðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 1þ expð�ð1þ eÞ=eÞ; and yð1Þ ¼ 1þ 1=e.



Table 8

Numerical results of Example 15.1

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

0.000 1.0000000 1.0000000 1.0000000 1.0000000

0.200 1.0000000 1.0000000 1.0000000 1.0000000

0.400 1.0000000 1.0000010 1.0000000 1.0000000

0.600 1.0000000 1.0000010 1.0000000 1.0000000

0.800 1.0000000 1.0000010 1.0000000 1.0000000

0.980 1.0000000 1.0000000

0.982 1.0000000 1.0000000

0.990 1.0000000 0.9999831 0.9999546

0.992 0.9998645 0.9998477 0.9996645

0.995 1.0000000 0.9959016 0.9958848 0.9932620

0.996 0.9917355 0.9876710 0.9876544 0.9816845

0.998 0.8925620 0.8889039 0.8888890 0.8646612

0.999 0.6694215 0.6666780 0.6666667 0.6321158

1.000 0.0000000 0.0000000 0.0000000 0.0000000

e ¼ 10�4

0.0000 1.0000000 1.0000000 1.0000000 1.0000000

0.2000 1.0000000 1.0000010 1.0000010 1.0000000

0.4000 1.0000000 1.0000010 1.0000010 1.0000000

0.6000 1.0000000 1.0000010 1.0000010 1.0000000

0.8000 1.0000000 1.0000010 1.0000010 1.0000000

0.9980 1.0000000 1.0000000

0.9982 1.0000000 1.0000000

0.9990 1.0000000 0.9999831 0.9999546

0.9992 0.9998645 0.9998477 0.9996646

0.9995 1.0000000 0.9959016 0.9958848 0.9932636

0.9996 0.9917355 0.9876710 0.9876544 0.9816856

0.9998 0.8925620 0.8889039 0.8888890 0.8646290

0.9999 0.6694215 0.6666780 0.6666667 0.6321816

1.0000 0.0000000 0.0000000 0.0000000 0.0000000
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Clearly this problem has a boundary layer at x ¼ 1.

For this example the stretching transformation is
t ¼ 1� x
e

and the inner region problem is given by
Y 00ðtÞ þ Y 0ðtÞ � eð1þ eÞY ðtÞ ¼ 0
with
Y ð0Þ ¼ 1þ 1

e
; Y ðtpÞ ¼ e� 1�tpeð Þ
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and the outer region problem is given by
ey 00ðxÞ � y0ðxÞ � ð1þ eÞyðxÞ ¼ 0
with
yð0Þ ¼ 1þ expð�ð1þ eÞ=eÞ; yðxpÞ ¼ e�xp :
The exact solution is given by yðxÞ ¼ eð1þeÞðx�1Þ=e þ e�x.

The numerical results are given in Table 9 for e ¼ 10�3 and 10�4, respec-
tively.

Example 15.3. Consider the following singular perturbation problem
ey 00ðxÞ � 2y0ðxÞ ¼ 0; x 2 ½0; 1�
with yð0Þ ¼ 0 and yð1Þ ¼ 1.

Clearly, this problem has a boundary layer at x ¼ 1. That is; at the right end
of the underlying interval.

For this example the stretching transformation is
t ¼ 2ð1� xÞ
e

and the inner region problem is given by
Y 00ðtÞ þ Y 0ðtÞ ¼ 0; with Y ð0Þ ¼ 1; Y ðtpÞ ¼ 0
and the outer region problem is given by
ey 00ðxÞ � 2y0ðxÞ ¼ 0 with yð0Þ ¼ 0; yðxpÞ ¼ 0:
The exact solution is given by
yðxÞ ¼ e�2ð1�xÞ=e � e�2=e

1� e�2=e
:

The numerical results are given in Table 10 for e ¼ 10�3 and 10�4, respec-

tively.
16. Discussion and conclusions

We have presented a numerical patching method for solving singularly

perturbed two-point boundary value problems with the boundary layer at one

end point. The solution of the given singular perturbed two-point boundary
value problem is computed numerically by dividing it into inner region

problem and outer region problem. The terminal boundary condition is ob-

tained from the solution of the reduced problem. A new inner region problem



Table 9

Numerical results of Example 15.2

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

0.000 1.0000000 1.0000000 1.0000000 1.0000000

0.100 0.9048380 0.9048371 0.9048375 0.9048374

0.200 0.8187316 0.8187301 0.8187305 0.8187308

0.300 0.7408195 0.7408174 0.7408180 0.7408183

0.400 0.6703214 0.6703191 0.6703199 0.6703200

0.500 0.6065322 0.6065295 0.6065305 0.6065307

0.600 0.5488133 0.5488105 0.5488114 0.5488117

0.700 0.4965870 0.4965841 0.4965851 0.4965853

0.800 0.4493307 0.4493277 0.4493287 0.4493290

0.900 0.4065714 0.4065683 0.4065696 0.4065697

0.980 0.3753111 0.3753111

0.982 0.3745613 0.3745613

0.990 0.3715767 0.3715936 0.3716216

0.992 0.3709686 0.3709854 0.3711671

0.995 0.3697234 0.3737971 0.3738139 0.3764278

0.996 0.3775868 0.3816230 0.3816397 0.3875963

0.998 0.4758141 0.4794410 0.4794560 0.5036843

0.999 0.6984436 0.7011626 0.7011738 0.7357640

1.000 1.3678790 1.3678790 1.3678790 1.3678790

e ¼ 10�4

0.0000 1.0000000 1.0000000 1.0000000 1.0000000

0.1000 0.9048444 0.9048371 0.9048366 0.9048374

0.2000 0.8187437 0.8187308 0.8187295 0.8187308

0.3000 0.7408355 0.7408180 0.7408167 0.7408182

0.4000 0.6703411 0.6703197 0.6703184 0.6703200

0.5000 0.6065547 0.6065307 0.6065289 0.6065307

0.6000 0.5488379 0.5488117 0.5488096 0.5488116

0.7000 0.4966132 0.4965853 0.4965832 0.4965853

0.8000 0.4493578 0.4493291 0.4493269 0.4493290

0.9000 0.4065992 0.4065699 0.4065677 0.4065697

0.9980 0.3686159 0.3686159

0.9982 0.3685422 0.3685422

0.9990 0.3682475 0.3682643 0.3682929

0.9992 0.3683092 0.3683260 0.3685090

0.9995 0.3680634 0.3721593 0.3721761 0.3747965

0.9996 0.3762879 0.3803496 0.3803662 0.3863337

0.9998 0.4753670 0.4790219 0.4790369 0.5032970

0.9999 0.6984565 0.7011976 0.7012087 0.7356979

1.0000 1.3678790 1.3678790 1.3678790 1.3678790
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is constructed and solved as a two-point boundary value problem. The outer

region problem is also solved as a two-point boundary value problem. The

cubic spline approximation is used to solve these boundary value problems.



Table 10

Numerical results of Example 15.3

x tp ¼ 5 tp ¼ 10 tp ¼ 20 Exact solution

e ¼ 10�3

0.0000 0.0000000 0.0000000 0.0000000 0.0000000

0.2000 0.0000000 0.0000000 0.0000000 0.0000000

0.4000 0.0000000 0.0000000 0.0000000 0.0000000

0.6000 0.0000000 0.0000000 0.0000000 0.0000000

0.8000 0.0000000 0.0000000 0.0000000 0.0000000

0.9900 0.0000000 0.0000000

0.9920 0.0000000 0.0000001

0.9950 0.0000000 0.0000169 0.0000454

0.9960 0.0001355 0.0001524 0.0003355

0.9975 0.0000000 0.0040984 0.0041152 0.0067380

0.9980 0.0082645 0.0123290 0.0123457 0.0183166

0.9985 0.0330579 0.0370207 0.0370370 0.0497860

0.9990 0.1074380 0.1110961 0.1111111 0.1353388

0.9995 0.3305785 0.3333220 0.3333333 0.3678623

1.0000 1.0000000 1.0000000 1.0000000 1.0000000

e ¼ 10�4

0.00000 0.0000000 0.0000000 0.0000000 0.0000000

0.20000 0.0000000 0.0000000 0.0000000 0.0000000

0.40000 0.0000000 0.0000000 0.0000000 0.0000000

0.60000 0.0000000 0.0000000 0.0000000 0.0000000

0.80000 0.0000000 0.0000000 0.0000000 0.0000000

0.99900 0.0000000 0.0000000

0.99920 0.0000000 0.0000001

0.99950 0.0000000 0.0000169 0.0000454

0.99960 0.0001355 0.0001524 0.0003354

0.99975 0.0000000 0.0040984 0.0041152 0.0067404

0.99980 0.0082645 0.0123290 0.0123457 0.0183253

0.99985 0.0330579 0.0370207 0.0370370 0.0497623

0.99990 0.1074380 0.1110961 0.1111111 0.1352904

0.99995 0.3305785 0.3333220 0.3333333 0.3678184

1.00000 1.0000000 1.0000000 1.0000000 1.0000000
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Infact any standard analytical or numerical method can be used. We have

implemented the present method on four linear examples, three non-linear

example with left-end boundary layer and three examples with right-end

boundary layer by taking different values of e. The proposed method is it-

erative on the terminal point. The process is to be repeated for various

choices of xp, until the solution profiles do not differ materially from iteration

to iteration. Numerical results are presented in tables. It can be observed

from the tables that the present method approximates the exact solution very
well.
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