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Abstract

A numerical patching method is presented for solving singularly perturbed two-point
boundary value problems with the boundary layer at one end (left or right) point. The
method is distinguished by the following fact: The original singularly perturbed two-
point boundary value problem is divided into two problems, namely inner and outer
region problems. The terminal boundary condition is obtained from the solution of the
reduced problem. Using general stretching transformation, a modified inner region
problem is constructed. Then, both inner region problem and outer region problems are
solved as two-point boundary value problems by employing cubic splines. Several linear
and non-linear problems are solved to demonstrate the applicability of the method.
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1. Introduction

Singularly perturbed second order two-point boundary value problems arise
very frequently in fluid mechanics and other branches of Applied Mathematics.
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These problems depend on a small positive parameter in such a way that the
solution varies rapidly in some parts and varies slowly in some other parts. So,
typically there are thin transition layers where the solutions can jump abruptly,
while away from the layers the solution behaves regularly and vary slowly. The
numerical treatment of the singular perturbation problems is far from the
trivial because of the boundary layer behavior of the solution. There are a wide
variety of asymptotic techniques for solving singular perturbation problems
(cf. [2-6]).

In this paper, a numerical patching method is presented for solving singu-
larly perturbed two-point boundary value problems with the boundary layer at
one end (left or right) point. The method is distinguished by the following fact:
The original singularly perturbed two-point boundary value problem is divided
into two problems, namely inner and outer region problems. The terminal
boundary condition is obtained from the solution of the reduced problem.
Using general stretching transformation, a modified inner region problem is
constructed. Then, both inner region problem and outer region problems are
solved as two-point boundary value problems by employing cubic splines. The
proposed method is iterative on the terminal point. The process is to be re-
peated for various choices of the terminal point, until the solution profiles do
not differ materially from iteration to iteration. Several linear and non-linear
problems are solved to demonstrate the applicability of the method.

2. Numerical patching method: linear problems

To describe the method, we first consider a linear singularly perturbed two-
point boundary value problem of the form:

&' (x) + a(x)y'(x) + b(x)y(x) = f(x), x€][0,1] (1)
with

¥(0) =« (2a)
and

y(1) =B, (2b)

where ¢ is a small positive parameter (0 < ¢ < 1) and «, ff are known constants.
We assume that a(x), b(x) and f(x) are sufficiently continuously differentiable
functions in [0, 1]. Further more, we assume that a(x) > M > 0 throughout the
interval [0, 1], where M is some positive constant. This assumption merely
implies that the boundary layer will be in the neighborhood of x = 0. Consider
x, = O(¢) be the thickness of the boundary layer.

Now we divide the original problem into two problems, an inner region
problem and an outer region problem. The inner region problem is defined in
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the interval 0 <x <x, and the outer region problem is defined in the interval
xp<x< 1.

3. Terminal boundary condition

To obtain the boundary condition at terminal point x,, we solve the reduced
problem with an appropriate boundary condition.
The reduced problem is
a(x)y'(x) + b(x)y(x) = f(x) 3)
with

y(1) = B. )

Let yr(x) be the (analytical or numerical) solution of the reduced problem.
At the terminal point x, we get y(x,) = yr (%p).
Let the terminal boundary condition: y(x,) = 7y (say).

4. Inner region problem
Since the terminal boundary condition is common to both the inner and

outer regions, we define the inner region problem as a two-point boundary
value problem:

&y’ (x) + a(x)y' (x) + blx)y(x) = f(x); 0<x<xp (5)
with

¥(0) =« (6a)
and

y(xp) =7 (6b)

Now we introduce a stretched variable ’ to magnify the boundary layer
region and there by eliminate any rapid variation that might be exhibited by
the solution when the solution is considered as a function of the stretched
variable.

We can think of two stretching transformations:

“a(s)ds
(i) t:z and (i) z:ﬁ’%.
The constant multiple of x/& would be equally effective.

Since a(x) > 0 V x € [0, 1]; we have a(0) > 0.

Now we consider the transformation

_a(0)x

&

to construct a new differential equation for the inner region solution:
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Then we get

b(x):b $ :B<t)7
10 =1 (555 ) = F0)
§0) == ¥(0) and y(xy) =7 =Yt

Substituting these in (5), we get

(a(0))’Y" (1) + a(0)A(2)Y'(¢) + eB() Y (¢) = eF(¢) (7)
with

Y(0) =« (8a)
and

Y(tp) = . (8b)

This is the modified inner region problem over [0, ,].
5. Outer region problem

In the outer region, we have two-point boundary value problem as

&"(x) + a(x)y'(x) + b(x)y(x) = f(x), x<x<1 )
with

y(xp) =7 (10a)
and

y(1) = B. (10b)

This is the outer region problem over [x,, 1].
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6. Cubic spline approximation

In order to solve the two-point boundary value problems (7)—(8) and (9)-
(10), we have used cubic spline approximation [1].

By definition, cubic spline is a continuous function and has continuous first
and second derivatives. The spline proves to be an effective tool in the ele-
mentary process of interpolation and approximate integration. The outstand-
ing characteristic, however, is its effectiveness in numerical differentiation.
Cubic splines are frequently used to find the solution of two-point boundary
value problems. We briefly present the method of finding solution of two-point
boundary value problems by cubic splines:

Consider the two-point boundary value problem

V'(x) +px)y (x) + q(x)y(x) = r(x); a<x<b (11)
with
y(a) =k (12a)
and
y(b) = k. (12b)
We divide the interval [a, b] into n equal parts with mesh size h and having
nodes at a = xg,x1, X2, X3, . .. ,x, = b. By definition: A spline function of degree
m with nodes at the points x;; i =0,1,2,...,n is a function S(x) with the
properties:
(i) on each interval [x;, ;,x];i=0,1,2,...,n; S(x) is a polynomial of degree m.

(if) S(x) and its first m — 1 are continuous on [a, b].

To find the cubic spline approximation for the function y(x), x € [xp,x,] at
the nodes we have

= (55 o (o m

where S”(x;) = M.
The interpolating conditions are

S(xi-1) = i1 (14)
and
S(x:) = (15)

Integrating (13) twice and substituting the interpolating conditions (14) and
(15), we obtain the cubic spline approximation function
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3 3 2
X; — X X — X;_ h Xi—X
5 =By 1)M+(yi_1—€M,-_l)( =)

6h 6h
h2 X — X1
+ (yi_€M>( P ) (16)

The continuity of the first order derivative of S(x) at x = x; requires

§') = S'(x)). (17)
We have

: h h i — Vi— .
(i) §'(x7) :gMH'gMH +J%; i=1,2,...,n,

. h h i1 = Vi
(11) Sl(xj):_gM_6M+l+)¥7 l:071727"'7n_1

and so that the continuity of the first order derivatives implies

%M,]A—%MA—%MH:W; i=1,2,...n—1. (18
From (11) we have
V'(x) = =p(x)y (x) — q(x)y(x) + r(x).
We have M; = 8"(x;) =/;i=0,1,2,...,n, therefore
M,=—py —qyi+r; i=0,1,2,....n,
where p; = p(x;), q: = q(x:), r; = r(x;),
ie; M; = —pS —q;S; +r. (19)

Replacing S by §'(x;") and S; by y; in (19) we get

h,‘ h[ i .
(1 _Tp)ﬁ/li_%]wﬂrl :ri_qiyi_%(yiﬂ -»); i=0,1,2,...,n—1

Replacing S; by §'(x; ) and S; by y; in (19) we get

h[ hi i .
5M1+<1+§>M,-r,-q,-yil;l(y,-ym); i=1,2,...,n. (21)

Adding (20) and (21), we get

hp: hp: .
ﬁjwz‘fl‘i’zj‘/li_ﬁjuz#l:27’1'_2%)}1‘_&()}#1_)}1‘71); i=1,2,...,n—1

6 6 h
(22)
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Eliminating M; from (22) and (18), we get

hp; W i hp;
(1 +?p)yz‘+1 - 2(1 - 3q >J’i + (1 _T)yil

212 W2 hp; " hp;
=" r+—(1-L )M — = \M,,. 2
3r,+6<1 3)M_1+6<1+3> i+l (3)

Replacing i by i — 1 in (20) we have

h
i=1,2,...,n. (24)

hp;_ hp;_ i
(1 - p3 1>Mi—1 - p6 LM, =1y — gy _P 1()’:‘ —Yin1);

Eliminating M; from (21) and (24), we get

hp; hp;_ thiflpi
1 +— 1 - M;_
() (15 ) 5 o

h i h i i
= (1 +§>(ri1 —qi1Vie1) — (1 +§> (phl)(% —Yil1)

hpi_ iDi— .
+ p61(”i—%)4‘)_p}; 1()’1‘—)4‘71)5 l:1,2,...,7’l. (25)
Consider
hp; hpi—y Rpi_pi _

Therefore (25) becomes

hp; i
aiM; = (1 +§> [I”i—l — qi-1Yi1 —[%(yi _yi—l)}

hp;_1

P ]
+ 6 |:I",' —4qi)i — h (yl yz—l):|; 1 1727' BN (27)

Replacing i by i + 1 in (21), we get

h i h I 3
p6+lM,- + (1 + p3+1 >Mi+1 = Fix1 — qix1)ix1 —1%(%41 — )

i=0,1,2,....n—1. (28)
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Eliminating M; from (20) and (28), we get

hpiy1 hp; thipiJrl
1 1-= M.
K+ 3)( 3)+ 36 )0

h i h i 3
= <1 —%)(ml — Gir1Yie1) — (1 —Tp> (pgl )(ym - )

hpiy1 DiDi+1
3 (ri—aqy) + 6
Consider b; =a;11;i=0,1,2,...,n— 1.
Therefore we have

hp; Di
biMiy, = (1 - T) [Vm — qis1Yir1 — Tﬂ(ym —yz‘)}

(yi+1_yi); i=0,1,2,...,n—1.

hp; i j
_ p6+l {”i*%)&'*%@m *y,-)} i=0,1,2,...,n—1. (29

Substituting (27) and (29) in (23), and by simplifying, we get

h ;. h2 i h i h i— 2h2 iCi
ai<1+ Pt QH)MH_ [ai(H p+1>+bi(1_ P, 1)_ q }yi

2 6 2 2 3
hpi_i hz%—l
+bi<1 ) + 6 Vi1
h2
:g(airi+l+4ciri+biri71); i:1a27"'7n_1a (30)
where
Th W2 pi_\p;
=1 +ﬁ(])l+l —pi-1) —%-

Eq. (30) constitute a tridiagonal algebraic system. The solution of this tridi-
agonal system can be obtained by using Thomas algorithm also called discrete
invariant imbedding.

7. Solution of the original problem

After getting the solution of the inner region problem and outer region
problem, we combine both to obtain the approximate solution of the original
problem (1)—(2) over the interval 0 <x < 1. We repeat the process for various
choices of x,, until the solution profiles do not differ materially from iteration
to iteration. For computational purposes we use an absolute error criterion,
namely
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where Y(¢)" is the mth iterate of the inner region solution and ¢ is the pre-
scribed tolerance bound.

8. Linear examples

To demonstrate the applicability of the method we have applied it on four
linear singular perturbation problems with left-end boundary layer. These
examples have been chosen because they have been widely discussed in liter-
ature and because approximate solutions are available for comparison.

Example 8.1. Consider the following homogeneous singular perturbation
problem from Bender and Orszag [2, p. 480; problem 9.17 with & = 0]

&"(x) +)/(x) —y(x) =0;  x€[0,1]
with y(0) =1 and y(1) = 1.

For this example the stretching transformation is

r="=
&

and the inner region problem is given by

Y'(t)+Y'(t) —eY(t) =0; with Y(0) =1, Y(t,)=¢e""
and the outer region problem is given by

8/(x) +9/(x) —y(x) = 0 with y(x,) =e*!,  y(1) = L.
The exact solution is given by

< =D e

where m; = (=1 + /1 +4¢)/(2¢) and my = (=1 — /1 + 4¢)/(2¢).
The numerical results are given in Table 1 for ¢ = 10~ and 107, respec-
tively.

)

Example 8.2. Now consider the following non-homogeneous singular pertur-
bation problem

/() +() =142 xe[o1]
with y(0) = 0 and y(1) = 1.

For this example the stretching transformation is

r="=
&
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Table 1

Numerical results of Example 8.1

x th=>5 t, =10 t, =20 Exact solution
e=107"

0.0000 1.0000000 1.0000000 1.0000000 1.0000000
0.0005 0.7456129 0.7471300 0.7471403 0.7514171
0.0010 0.5931332 0.5955608 0.5955774 0.6007918
0.0025 0.4143062 0.4178072 0.4178311 0.4208957
0.0050 0.3697234 0.3735048 0.3735305 0.3743263
0.0075 0.3709218 0.3709478 0.3713630
0.0100 0.3715767 0.3716028 0.3719724
0.0200 0.3753111 0.3756784
0.1000 0.4069324 0.4069451 0.4067746 0.4069350
0.2000 0.4496854 0.4496888 0.4497448 0.4496879
0.3000 0.4969299 0.4969331 0.4969121 0.4969323
0.4000 0.5491381 0.5491410 0.5491475 0.5491404
0.5000 0.6068313 0.6068341 0.6068309 0.6068334
0.6000 0.6705859 0.6705883 0.6705886 0.6705877
0.7000 0.7410386 0.7410405 0.7410397 0.7410401
0.8000 0.8188931 0.8188946 0.8188943 0.8188942
0.9000 0.9049271 0.9049280 0.9049277 0.9049277
1.0000 1.0000000 1.0000000 1.0000000 1.0000000
e=10"*

0.00000 1.0000000 1.0000000 1.0000000 1.0000000
0.00005 0.7456136 0.7471414 0.7471507 0.7512937
0.00010 0.5929970 0.5954415 0.5954563 0.6004604
0.00025 0.4135686 0.4170914 0.4171129 0.4198798
0.00050 0.3680634 0.3718610 0.3718841 0.3723570
0.00075 0.3684295 0.3684528 0.3685416
0.00100 0.3682475 0.3682709 0.3683130
0.00200 0.3686159 0.3686527
0.10000 0.4066143 0.4066097 0.4066016 0.4066062
0.20000 0.4493727 0.4493683 0.4493601 0.4493649
0.30000 0.4966276 0.4966233 0.4966155 0.4966201
0.40000 0.5488518 0.5488476 0.5488402 0.5488446
0.50000 0.6065675 0.6065637 0.6065568 0.6065609
0.60000 0.6703526 0.6703491 0.6703435 0.6703469
0.70000 0.7408450 0.7408426 0.7408376 0.7408405
0.80000 0.8187506 0.8187487 0.8187451 0.8187471
0.90000 0.9048485 0.9048474 0.9048455 0.9048465
1.00000 1.0000000 1.0000000 1.0000000 1.0000000

and the inner region problem is given by

Y'(8) + Y'(1) = e(1 + 2et);

with Y(0) = 0,

Y(t,) = &'t + ety — 1



Y.N. Reddy, P. Pramod Chakravarthy | Appl. Math. Comput. 149 (2004) 441-468 451

and the outer region problem is given by
& (x) +)'(x) =14+ 2x  with y(x,) :x}% +x,—1, p(1)=1.
The exact solution is given by

(26— 1)(1 — )
(1 —e 1)

The numerical results are given in Table 2 for ¢ = 1073 and 10~*, respectively.

yx)=x(x+1-2¢)+

Example 8.3. Now we consider the following variable coefficient singular
perturbation problem from Kevorkian and Cole [4, p. 33; Egs. (2.3.26) and
(2.3.27) with a = —1/2]

&) + (1= 5 )/) — 5 = 0 xe 0.1

with y(0) = 0 and y(1) = 1.
For this example the stretching transformation is
t=—

€
and the inner region problem is given by

v(e)+ (1- %8) r(n -5y =0
with
Y(0)=0, Y(1,)= 2_1%

and the outer region problem is given by
1 _ { / _ 1 _
&) + (13 /() =330 =0
with
1
2—x,’

y(xp) = y(1) =1
We have chosen to use uniformly valid approximation (which is obtained by
the method) given by Neyfah [5, p. 148; Eq. (4.2.32)] as our ‘exact’ solution:

1 1
J’(x)—z——ze

— X

(x—2?/4) /e

The numerical results are given in Table 3 for ¢=10"3 and 1074
respectively.
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Table 2
Numerical results of Example 8.2

x th=>5 t, =10 t, =20 Exact solution
e=1073

0.0000 0.0000000 0.0000000 0.0000000 0.0000000
0.0005 —0.4019300 —-0.3995073 —0.3994845 —-0.3921832
0.0010 —0.6428878 —0.6390115 —0.6389750 —0.6298573
0.0025 —0.9253398 —0.9197540 —-0.9197015 —-0.9135779
0.0050 —0.9949750 —0.9889548 —0.9888982 —0.9862605
0.0075 —0.9920051 —0.9919482 —0.9899068
0.0100 —0.9899000 —0.9898432 —0.9878747
0.0200 —0.9796000 —0.9776400
0.1000 —-0.8881999 —0.8881485 —0.8890784 —0.8882000
0.2000 —0.7584000 —0.7583989 —0.7580781 —0.7584000
0.3000 —0.6086000 —0.6085996 —0.6087180 —0.6086000
0.4000 —0.4387999 —0.4387994 —0.4387568 —0.4388000
0.5000 —0.2490000 —0.2489994 —0.2490159 —0.2490000
0.6000 —0.0392000 —-0.0391994 —0.0391942 —-0.0392001
0.7000 0.1906000 0.1906006 0.1905978 0.1906000
0.8000 0.4404000 0.4404005 0.4404007 0.4404000
0.9000 0.7102000 0.7102003 0.7101997 0.7102000
1.0000 1.0000000 1.0000000 1.0000000 1.0000000
e=10"*

0.00000 0.0000000 0.0000000 0.0000000 0.0000000
0.00005 —0.4023833 —0.3999644 —0.3999496 —0.3933406
0.00010 —0.6437932 —0.6399230 —0.6398994 —0.6318942
0.00025 -0.9276002 —0.9220233 —0.9219892 -0.9174814
0.00050 —0.9994997 —0.9934891 —0.9934524 —-0.9925632
0.00075 —0.9988156 —0.9987786 —0.9984966
0.00100 —0.9989990 —0.9989620 —0.9987538
0.00200 —0.9979960 —0.9977964
0.10000 —-0.8898200 —0.8898221 —0.8898211 —0.8898200
0.20000 —-0.7598400 —0.7598396 —0.7598401 —0.7598400
0.30000 —0.6098599 —0.6098576 —0.6098590 —0.6098600
0.40000 —0.4398801 —0.4398761 —0.4398782 —0.4398800
0.50000 —0.2499001 —0.2498951 —0.2498977 —0.2499000
0.60000 —0.0399201 —0.0399147 —0.0399174 —0.0399199
0.70000 0.1900599 0.1900651 0.1900625 0.1900601
0.80000 0.4400400 0.4400442 0.4400421 0.4400400
0.90000 0.7100199 0.7100226 0.7100213 0.7100201
1.00000 1.0000000 1.0000000 1.0000000 1.0000000

Example 8.4. Finally we consider the following singular perturbation problem
&"(x) +2/(x) +y(x) = =3; x€[-11]

with y(—1) =1 and y(1) = 2.
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Table 3

Numerical results of Example 8.3

x th=>5 t, =10 t, =20 Exact solution
e=10""

0.0000 0.0000000 0.0000000 0.0000000 0.0000000
0.0005 0.2013328 0.2001186 0.2001121 0.1968407
0.0010 0.3221646 0.3202217 0.3202114 0.3162644
0.0025 0.4645047 0.4617034 0.4616884 0.4595191
0.0050 0.5012531 0.4982302 0.4982141 0.4978630
0.0075 0.5016630 0.5016468 0.5016016
0.0100 0.5025126 0.5024964 0.5024893
0.0200 0.5050505 0.5050505
0.1000 0.5270723 0.5270895 0.5267506 0.5263158
0.2000 0.5563190 0.5563194 0.5564258 0.5555556
0.3000 0.5889998 0.5889999 0.5889670 0.5882353
0.4000 0.6257567 0.6257567 0.6257664 0.6250000
0.5000 0.6674021 0.6674022 0.6673999 0.6666667
0.6000 0.7149801 0.7149802 0.7149810 0.7142857
0.7000 0.7698538 0.7698539 0.7698540 0.7692308
0.8000 0.8338380 0.8338382 0.8338384 0.8333333
0.9000 0.9094033 0.9094036 0.9094036 0.9090909
1.0000 1.0000000 1.0000000 1.0000000 1.0000000
e=10"*

0.00000 0.0000000 0.0000000 0.0000000 0.0000000
0.00005 0.2012282 0.2000183 0.2000110 0.1967453
0.00010 0.3219684 0.3200324 0.3200208 0.3160807
0.00025 0.4639831 0.4611932 0.4611764 0.4590136
0.00050 0.5001251 0.4971178 0.4970998 0.4967540
0.00075 0.4999703 0.4999521 0.4999107
0.00100 0.5002501 0.5002319 0.5002274
0.00200 0.5005005 0.5005005
0.10000 0.5263911 0.5263913 0.5263919 0.5263158
0.20000 0.5556318 0.5556319 0.5556325 0.5555556
0.30000 0.5883117 0.5883120 0.5883123 0.5882353
0.40000 0.6250751 0.6250759 0.6250764 0.6250000
0.50000 0.6667399 0.6667402 0.6667413 0.6666667
0.60000 0.7143551 0.7143552 0.7143559 0.7142857
0.70000 0.7692937 0.7692935 0.7692939 0.7692308
0.80000 0.8333846 0.8333842 0.8333845 0.8333333
0.90000 0.9091222 0.9091225 0.9091226 0.9090909
1.00000 1.0000000 1.0000000 1.0000000 1.0000000

For this example the stretching transformation is

=

2(x+1)

&
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and the inner region problem is given by

g —3¢
Y'O)+Y () +-Y(t) =—
() +Y'()+ ¥ () =~
with
Y(0)=1, Y(t) = —3+ 5! ~/Y

and the outer region problem is given by
& (x) + 2/ (x) +y(x) = =3;  with p(x;) = =3+ 5P (1) =2.
The exact solution is given by

(487”’2 _ Semz)efmlx _ (4e7ml _ Seml)e—mzx

y(x) = e(m]*’”Z) _ e*(”7l*m2) B 37

where m; = (1 — V1 —¢)/eand my, =(14+ V1 —¢)/e.
The numerical results are given in Table 4 for ¢ = 10~3 and 107, respec-
tively.

9. Non-linear problems

We have applied the present method on three non-linear singular pertur-
bation problems with left-end boundary layer. Non-linear singular perturba-
tion problems are first converted as a sequence of linear singular perturbation

problems by using quasilinearization method. The solution of the reduced
problem is taken as initial approximation.

Example 9.1. Consider the following singular perturbation problem from
Bender and Orszag [2, p. 463; Eq. (9.7.1)]

&' (x) +20/(x) + &% =0; x€0,1]
with y(0) = 0 and y(1) = 0.
The linear problem concerned to this example is

& (x) + 20/ (x) —I—%y(x) - (xi 1) [loge (ﬁ) _ 1}

For this example the stretching transformation is

_
e

t
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Table 4

Numerical results of Example 8.4

x th=>5 t, =10 t, =20 Exact solution
e=10""

~1.00000 1.0000000 1.0000000 1.0000000 1.0000000
-0.99975 4.8575020 4.8342570 4.8341130 47726250
—-0.99950 7.1716220 7.1344310 7.1342020 7.0609590
-0.99850 10.1891000 10.1337100 10.1333700 10.1065700
-0.99800 10.4740100 10.4169100 10.4165500 10.4053000
—-0.99750 10.5744300 10.5167100 10.5163600 10.5130900
—-0.99600 10.5618900 10.5615400 10.5644100
-0.99500 10.5574700 10.5571200 10.5604200
-0.99200 10.5371500 10.5405200
-0.99000 10.5236200 10.5269900
-0.80000 9.3005050 9.3007840 9.3009080 9.3007850
-0.60000 8.1297150 8.1299300 8.1299710 8.1299320
-0.40000 7.0703620 7.0705280 7.0705590 7.0705270
-0.20000 6.1118380 6.1119610 6.1119880 6.1119620
0.00000 5.2445480 5.2446370 5.2446580 5.2446380
0.20000 4.4598080 4.4598700 4.4598830 4.4598700
0.40000 3.7497590 3.7498010 3.7498100 3.7498010
0.60000 3.1072950 3.1073200 3.1073250 3.1073200
0.80000 2.5259830 2.5259930 2.5259950 2.5259930
1.00000 2.0000000 2.0000000 2.0000000 2.0000000
e=10"*

-1.000000 1.0000000 1.0000000 1.0000000 0.9999996
—-0.999975 4.8596660 4.8364660 4.8363310 4.7708310
-0.999950 7.1754270 7.1383080 7.1380920 7.0632990
-0.999850 10.1985000 10.1432100 10.1428900 10.1133900
-0.999800 10.4863100 10.4292900 10.4289600 10.4146000
—0.999750 10.5897100 10.5320700 10.5317300 10.5253900
-0.999600 10.5863400 10.5860000 10.5858100
-0.999500 10.5880100 10.5876800 10.5879200
-0.999200 10.5859700 10.5863100
-0.999000 10.5846100 10.5849500
-0.800000 9.2972310 9.2983870 9.2983610 9.2982920
—0.600000 8.1270920 8.1280050 8.1279860 8.1279270
-0.400000 7.0683000 7.0690000 7.0689860 7.0689390
—0.200000 6.1102520 6.1107740 6.1107690 6.1107300
0.000000 5.2433610 5.2437410 5.2437390 5.2437090
0.200000 4.4589550 4.4592200 4.4592180 4.4591980
0.400000 3.7491870 3.7493590 3.7493580 3.7493440
0.600000 3.1069540 3.1070510 3.1070530 3.1070440
0.800000 2.5258310 2.5258710 2.5258720 2.5258680
1.000000 2.0000000 2.0000000 2.0000000 2.0000000
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and the inner region problem is given by

2jt6Y(t) - (24(:&3) [loge <2ifﬁ> - 1]

Y(0)=0, Y(4)=log, <2f.stp>

Y'(2) +2Y'(¢) +

with

and the outer region problem is given by

/9 +2/0) + ) = (7 ) [low (27 ) -1

with
2
I +x,

y(xp) = log, ( ) y(1) =0.

We have chosen to use Bender and Orszag’s uniformly valid approximation [2,
p. 463; Eq. (9.7.6)] for comparison,

y(x) = log,(2/(1 +x)) — (log, 2)e ",

For this example, we have boundary layer of thickness O(¢) at x = 0 (cf. [2]).
The numerical results are given in Table 5 for ¢ = 1073 and 107*, respec-
tively.

Example 9.2. Now consider the following singular perturbation problem from
Kevorkian and Cole [4, p. 56; Eq. (2.5.1)]

&y (x) + y(x)y'(x) —y(x) = 0;  x €[0,1]
with y(0) = —1 and y(1) = 3.9995.
The linear problem concerned to this example is
&) (x) + (x +2.9995))/ (x) = x + 2.9995.

For this example the stretching transformation is

(2.9995)x
&

and the inner region problem is given by

L e te
70 = (55995) [(2.9995)2 ! 11

te
(2.9995)*

0+ |
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Table 5

Numerical results of Example 9.1

x th=>5 t, =10 t, =20 Exact solution
e=10""

0.00000 0.0000000 0.0000000 0.0000000 0.0000000
0.00025 0.2785943 0.2769114 0.2769021 0.2724822
0.00050 0.4456941 0.4430018 0.4429868 0.4376527
0.00125 0.6418320 0.6379539 0.6379324 0.6350010
0.00250 0.6906503 0.6864750 0.6864519 0.6859799
0.00375 0.6891031 0.6890798 0.6890208
0.00500 0.6881596 0.6881363 0.6881282
0.01000 0.6831968 0.6831968
0.10000 0.5981092 0.5981095 0.5981665 0.5978370
0.20000 0.5110389 0.5110391 0.5110467 0.5108256
0.30000 0.4309491 0.4309491 0.4309499 0.4307829
0.40000 0.3568026 0.3568026 0.3568026 0.3566749
0.50000 0.2877782 0.2877781 0.2877780 0.2876821
0.60000 0.2232134 0.2232133 0.2232133 0.2231436
0.70000 0.1625668 0.1625668 0.1625668 0.1625189
0.80000 0.1053898 0.1053898 0.1053898 0.1053605
0.90000 0.0513068 0.0513068 0.0513068 0.0512933
1.00000 0.0000000 0.0000000 0.0000000 0.0000000
e=10"*

0.000000 0.0000000 0.0000000 0.0000000 0.0000000
0.000025 0.2789103 0.2772330 0.2772226 0.2727072
0.000050 0.4462509 0.4435671 0.4435506 0.4381026
0.000125 0.6430061 0.6391391 0.6391152 0.6361252
0.000250 0.6928972 0.6887299 0.6887042 0.6882268
0.000375 0.6924715 0.6924456 0.6923889
0.000500 0.6926473 0.6926214 0.6926158
0.001000 0.6921477 0.6921477
0.100000 0.5978634 0.5978650 0.5978647 0.5978370
0.200000 0.5108468 0.5108471 0.5108473 0.5108256
0.300000 0.4307997 0.4307995 0.4307997 0.4307829
0.400000 0.3566880 0.3566877 0.3566878 0.3566749
0.500000 0.2876920 0.2876918 0.2876917 0.2876821
0.600000 0.2231507 0.2231505 0.2231505 0.2231435
0.700000 0.1625238 0.1625236 0.1625237 0.1625189
0.800000 0.1053635 0.1053634 0.1053634 0.1053605
0.900000 0.0512946 0.0512946 0.0512946 0.0512933
1.000000 0.0000000 0.0000000 0.0000000 0.0000000

with
Y(0) = -1, Y(1,) = 24 2.9995
’ P7P729995 0



458 Y.N. Reddy, P. Pramod Chakravarthy | Appl. Math. Comput. 149 (2004) 441-468

and the outer region problem is given by
&' (x) + (x +2.9995)) (x) = x + 2.9995
with
¥(xp) = xp +2.9995, (1) = 3.9995.

We have chosen to use the Kevorkian and Cole’s uniformly valid approxi-
mation [4, pp. 57-58; Egs. (2.5.5), (2.5.11) and (2.5.14)] for comparison,

y(x) =x + ¢ tanh ((%)(§+cz)>7

where ¢; = 2.9995 and ¢, = (1/¢y)log.[(c1 — 1)/(c1 + 1)].

For this example also we have a boundary layer of width O(¢) at x = 0 (cf.
[4, pp. 56-66]).

The numerical results are given in Table 6 for ¢ = 1073 and 107*, respec-
tively.

Example 9.3. Finally we consider the following singular perturbation problem
from O’ Malley [6, p. 9; Eq. (1.10) case 2]:

&(x) —y(x)y'(x) =0; xe[-1,1]
with y(—1) =0 and y(1) = —1.

The linear problem concerned to this example is
6" (x) +/(x) = 0.
For this example the stretching transformation is

x+1
=
&

and the inner region problem is given by

Y'()+Y'(t)=0; with Y(0) =0, Y(z,)=-1
and the outer region problem is given by

&/"(x) +/(x) =0
with

yip) = -1, y(1) =-L
We have chosen to use O’ Malley’s approximate solution [6, pp. 9-10; Eqgs.
(1.13) and (1.14)] for comparison,

et/
ﬂwz—%¢§@m%
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Table 6
Numerical results of Example 9.2

x th=>5 t, =10 t, =20 Exact solution
e=10"3

0.000000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.000500 2.1554020 2.1364770 2.1363630 1.1487790
0.001000 2.8372090 2.8141980 2.8140590 2.4571870
0.100000 3.0994530 3.0994990 3.0995020 3.0995010
0.200000 3.1994600 3.1994990 3.1995020 3.1995010
0.300000 3.2994660 3.2995000 3.2995020 3.2995010
0.400000 3.3994710 3.3995000 3.3995010 3.3995010
0.500000 3.4994740 3.4995010 3.4995010 3.4995010
0.600000 3.5994790 3.5995010 3.5995000 3.5995000
0.700000 3.6994850 3.6995020 3.6995000 3.6995000
0.800000 3.7994900 3.7995010 3.7995000 3.7995000
0.900000 3.8994940 3.8995000 3.8995000 3.8995000
1.000000 3.9995000 3.9995000 3.9995000 3.9995000
e=10"*

0.000000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.000050 2.1547550 2.1357970 2.1356830 1.1483290
0.000100 2.8362060 2.8131540 2.8130140 2.4562870
0.100000 3.0994030 3.0995250 3.0995390 3.0995000
0.200000 3.1994130 3.1995290 3.1995400 3.1995000
0.300000 3.2994250 3.2995240 3.2995380 3.2995000
0.400000 3.3994370 3.3995230 3.3995370 3.3995000
0.500000 3.4994480 3.4995190 3.4995350 3.4995000
0.600000 3.5994560 3.5995150 3.5995270 3.5995000
0.700000 3.6994690 3.6995140 3.6995220 3.6995000
0.800000 3.7994820 3.7995100 3.7995160 3.7995000
0.900000 3.8994880 3.8995060 3.8995070 3.8995000
1.000000 3.9995000 3.9995000 3.9995000 3.9995000

For this example, we have a boundary layer of width O(¢) at x = —1 (cf. [6,
pp- 9-10, Egs. (1.10), (1.13), (1.14), case 2]).

The numerical results are given in Table 7 for ¢ = 1073 and 107*, respec-
tively.

10. Right-end boundary layer problems

Now we discuss our method for singularly perturbed two-point boundary
value problems with right-end boundary layer of the underlying interval. To be
specific, we consider a class of singular perturbation problem of the form:

&y (x) + a(x)y'(x) + b(x)y(x) = f(x), x€0,1] (31)
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Table 7

Numerical results of Example 9.3
x th=>5 t, =10 t, =20 Exact solution
e=10"3
—1.0000 0.0000000 0.0000000 0.0000000 0.0000000
—-0.9995 —0.4024333 —-0.4000145 —0.3999998 —0.2449296
—0.9970 —-0.9591436 —0.9533787 —0.9533435 —0.9051501
—-0.9960 —-0.9891850 —0.9832396 —0.9832034 —-0.9640279
—-0.9950 —1.0000000 —0.9939896 —0.9939529 —0.9866142
-0.9920 —0.9997544 -0.9997175 —0.9993293
—0.9900 —1.0000000 —0.9999632 —0.9999092
—-0.9800 —1.0000000 —1.0000000
—0.4000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
—-0.2000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.0000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.2000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.4000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.6000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.8000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
1.0000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
e=10"*
—1.00000 0.0000000 0.0000000 0.0000000 0.0000000
—0.99995 —0.4024333 —0.4000145 —0.3999998 —0.2449577
—-0.99970 —-0.9591436 —-0.9533787 —0.9533435 —-0.9051394
—0.99960 —-0.9891850 —0.9832396 —0.9832034 —0.9640300
—-0.99950 —1.0000000 —0.9939896 —-0.9939529 —-0.9866174
—0.99900 —1.0000000 —0.9999632 —0.9999092
—-0.99850 —0.9999994 —0.9999994
—0.99800 —1.0000000 —1.0000000
—-0.40000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
—0.20000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.00000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.20000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.40000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.60000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
0.80000 —1.0000000 —1.0000000 —1.0000000 —1.0000000
1.00000 —1.0000000 —1.0000000 —1.0000000 —1.0000000

with

W0)=a (32a)
and
y(1) =B, (32b)

where ¢ is a small positive parameter (0 < ¢ < 1) and «, f are known constants.
We assume that a(x), b(x) and f(x) are sufficiently continuously differentiable
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functions in [0, 1]. Further more, we assume that a(x) <M < 0 throughout the
interval [0, 1], where M is some negative constant. This assumption merely
implies that the boundary layer will be in the neighborhood of x = 1. Consider
xp = O(¢) be the thickness of the boundary layer.

Now we divide the original problem into two problems, an inner region
problem and an outer region problem. The outer region problem is defined in
the interval 0 <x < x, and the inner region problem is defined in the interval
xp<x< 1.

11. Terminal boundary condition

To obtain the boundary condition at terminal point x,, we solve the reduced
problem with an appropriate boundary condition.
The reduced problem is

a(x)y'(x) + b(x)y(x) = f(x)
with y(0) = o.
Let the terminal boundary condition: y(x,) = y (say).

12. Inner region problem

Since the terminal boundary condition is common to both the inner and
outer regions, we define the inner region problem as a two-point boundary
value problem:

&y"(x) + a(x)y'(x) + b(x)y(x) = f(x);  x <x<1 (33)
with
yixp) =7 (34a)
and
y(1) = p. (34b)
In this case we take the stretching transformation
_ —a(1)(1 —x)

B &
to construct a new differential equation for the inner region solution:
Then, we get

y@>J(1+j%)Y@,

v ="y (145 ) =D,
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a(1)

b(x) = b(l +a’—81)> — B(o),

1t =r (1455 ) = Fo
and

yxp) =7 = Y(tp),

y(1) = p = Y(0).
Substituting these in (33), we get

(a(1)’Y"(1) + a()A()Y' (1) + eB(1)Y () = eF (1) (35)
with

Y(t,) =7y (36a)
and

Y(0) = 4. (36b)

This is the modified inner region problem [0, #,].
13. Outer region problem

In the outer region we have two-point boundary value problem as

&' (x) + a(x)y/(x) + b(x)y(x) = f(x), 0<x<xp (37)
with

¥(0) = o (38a)
and

y(xp) = 7. (38b)

This is the outer region problem over [0, x,)].
14. Solution of the original problem

After getting the solution of the inner region problem and outer region
problem, we combine both to obtain the approximate solution of the original
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problem (31)—(32) over the interval 0 < x < 1. We repeat the process for various
choices of x,, until the solution profiles do not differ materially from iteration
to iteration. For computational purposes we use an absolute error criterion,
namely

Y(O)""' —Y(0)"|<o; 0<t<t,

where Y(¢)" is the mth iterate of the inner region solution and ¢ is the pre-
scribed tolerance bound.

15. Examples with right-end boundary layer

To illustrate the method for singularly perturbed two-point boundary value
problems with right-end boundary layer of the underlying interval we have
implemented on three examples.

Example 15.1. Consider the following singular perturbation problem
&'(x)—)y(x)=0; xe€l0,1]
with y(0) =1 and y(1) = 0.
Clearly, this problem has a boundary layer at x = 1. That is; at the right end

of the underlying interval.
For this example the stretching transformation is

1—x

&

and the inner region problem is given by

Y'(t) + Y'(1) =0; with Y(0) =0, Y(z,)=1
and the outer region problem is given by

&' (x) —y(x) =0 with y(0) =1, y(x,)=1.
The exact solution is given by

(et )
y )C) - (e,l/g _ 1) .

The numerical results are given in Table 8 for ¢ = 10~ and 107, respectively.

Example 15.2. Now we consider the following singular perturbation problem
&"'(x) =y'(x) = (L + e)y(x) =0; x€[0,1]
with y(0) = 1 +exp(—(1 +¢)/¢); and y(1) = 1+ 1/e.
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Table 8

Numerical results of Example 15.1

x th=>5 t, =10 t, =20 Exact solution
e=10""

0.000 1.0000000 1.0000000 1.0000000 1.0000000
0.200 1.0000000 1.0000000 1.0000000 1.0000000
0.400 1.0000000 1.0000010 1.0000000 1.0000000
0.600 1.0000000 1.0000010 1.0000000 1.0000000
0.800 1.0000000 1.0000010 1.0000000 1.0000000
0.980 1.0000000 1.0000000
0.982 1.0000000 1.0000000
0.990 1.0000000 0.9999831 0.9999546
0.992 0.9998645 0.9998477 0.9996645
0.995 1.0000000 0.9959016 0.9958848 0.9932620
0.996 0.9917355 0.9876710 0.9876544 0.9816845
0.998 0.8925620 0.8889039 0.8888890 0.8646612
0.999 0.6694215 0.6666780 0.6666667 0.6321158
1.000 0.0000000 0.0000000 0.0000000 0.0000000
e=10"*

0.0000 1.0000000 1.0000000 1.0000000 1.0000000
0.2000 1.0000000 1.0000010 1.0000010 1.0000000
0.4000 1.0000000 1.0000010 1.0000010 1.0000000
0.6000 1.0000000 1.0000010 1.0000010 1.0000000
0.8000 1.0000000 1.0000010 1.0000010 1.0000000
0.9980 1.0000000 1.0000000
0.9982 1.0000000 1.0000000
0.9990 1.0000000 0.9999831 0.9999546
0.9992 0.9998645 0.9998477 0.9996646
0.9995 1.0000000 0.9959016 0.9958848 0.9932636
0.9996 0.9917355 0.9876710 0.9876544 0.9816856
0.9998 0.8925620 0.8889039 0.8888890 0.8646290
0.9999 0.6694215 0.6666780 0.6666667 0.6321816
1.0000 0.0000000 0.0000000 0.0000000 0.0000000

Clearly this problem has a boundary layer at x = 1.
For this example the stretching transformation is

_l—x

&

and the inner region problem is given by
Y'()+ Y (t)—e(l+e)Y(t)=0

with
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and the outer region problem is given by
&"(x) =y (x) = (1 +&)y(x) =0
with
y(0) =1+exp(—(1+¢)/e), p(xp) =e™.

The exact solution is given by y(x) = e(!+?=D/e 4 e=x,
The numerical results are given in Table 9 for ¢ = 10~ and 10~*, respec-
tively.

Example 15.3. Consider the following singular perturbation problem
&'(x) =2/(x) =0; x€[0,1]
with y(0) =0 and y(1) = 1.
Clearly, this problem has a boundary layer at x = 1. That is; at the right end

of the underlying interval.
For this example the stretching transformation is

2(1—x)

=

and the inner region problem is given by
Y'(t)+ Y'(t) =0; with Y(0)=1, Y(s)=0
and the outer region problem is given by
& (x) —2)/(x) =0 with (0) =0, y(x,)=0.
The exact solution is given by
e-201=0)/c _ g-2/s

YO =

The numerical results are given in Table 10 for ¢ = 10~* and 10~*, respec-
tively.

16. Discussion and conclusions

We have presented a numerical patching method for solving singularly
perturbed two-point boundary value problems with the boundary layer at one
end point. The solution of the given singular perturbed two-point boundary
value problem is computed numerically by dividing it into inner region
problem and outer region problem. The terminal boundary condition is ob-
tained from the solution of the reduced problem. A new inner region problem
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Table 9
Numerical results of Example 15.2

x th=>5 t, =10 t, =20 Exact solution
e=10"3

0.000 1.0000000 1.0000000 1.0000000 1.0000000
0.100 0.9048380 0.9048371 0.9048375 0.9048374
0.200 0.8187316 0.8187301 0.8187305 0.8187308
0.300 0.7408195 0.7408174 0.7408180 0.7408183
0.400 0.6703214 0.6703191 0.6703199 0.6703200
0.500 0.6065322 0.6065295 0.6065305 0.6065307
0.600 0.5488133 0.5488105 0.5488114 0.5488117
0.700 0.4965870 0.4965841 0.4965851 0.4965853
0.800 0.4493307 0.4493277 0.4493287 0.4493290
0.900 0.4065714 0.4065683 0.4065696 0.4065697
0.980 0.3753111 0.3753111
0.982 0.3745613 0.3745613
0.990 0.3715767 0.3715936 0.3716216
0.992 0.3709686 0.3709854 0.3711671
0.995 0.3697234 0.3737971 0.3738139 0.3764278
0.996 0.3775868 0.3816230 0.3816397 0.3875963
0.998 0.4758141 0.4794410 0.4794560 0.5036843
0.999 0.6984436 0.7011626 0.7011738 0.7357640
1.000 1.3678790 1.3678790 1.3678790 1.3678790
e=10"*

0.0000 1.0000000 1.0000000 1.0000000 1.0000000
0.1000 0.9048444 0.9048371 0.9048366 0.9048374
0.2000 0.8187437 0.8187308 0.8187295 0.8187308
0.3000 0.7408355 0.7408180 0.7408167 0.7408182
0.4000 0.6703411 0.6703197 0.6703184 0.6703200
0.5000 0.6065547 0.6065307 0.6065289 0.6065307
0.6000 0.5488379 0.5488117 0.5488096 0.5488116
0.7000 0.4966132 0.4965853 0.4965832 0.4965853
0.8000 0.4493578 0.4493291 0.4493269 0.4493290
0.9000 0.4065992 0.4065699 0.4065677 0.4065697
0.9980 0.3686159 0.3686159
0.9982 0.3685422 0.3685422
0.9990 0.3682475 0.3682643 0.3682929
0.9992 0.3683092 0.3683260 0.3685090
0.9995 0.3680634 0.3721593 0.3721761 0.3747965
0.9996 0.3762879 0.3803496 0.3803662 0.3863337
0.9998 0.4753670 0.4790219 0.4790369 0.5032970
0.9999 0.6984565 0.7011976 0.7012087 0.7356979
1.0000 1.3678790 1.3678790 1.3678790 1.3678790

is constructed and solved as a two-point boundary value problem. The outer
region problem is also solved as a two-point boundary value problem. The
cubic spline approximation is used to solve these boundary value problems.
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Table 10

Numerical results of Example 15.3

x th=>5 t, =10 t, =20 Exact solution
e=10""

0.0000 0.0000000 0.0000000 0.0000000 0.0000000
0.2000 0.0000000 0.0000000 0.0000000 0.0000000
0.4000 0.0000000 0.0000000 0.0000000 0.0000000
0.6000 0.0000000 0.0000000 0.0000000 0.0000000
0.8000 0.0000000 0.0000000 0.0000000 0.0000000
0.9900 0.0000000 0.0000000
0.9920 0.0000000 0.0000001
0.9950 0.0000000 0.0000169 0.0000454
0.9960 0.0001355 0.0001524 0.0003355
0.9975 0.0000000 0.0040984 0.0041152 0.0067380
0.9980 0.0082645 0.0123290 0.0123457 0.0183166
0.9985 0.0330579 0.0370207 0.0370370 0.0497860
0.9990 0.1074380 0.1110961 0.1111111 0.1353388
0.9995 0.3305785 0.3333220 0.3333333 0.3678623
1.0000 1.0000000 1.0000000 1.0000000 1.0000000
e=10"*

0.00000 0.0000000 0.0000000 0.0000000 0.0000000
0.20000 0.0000000 0.0000000 0.0000000 0.0000000
0.40000 0.0000000 0.0000000 0.0000000 0.0000000
0.60000 0.0000000 0.0000000 0.0000000 0.0000000
0.80000 0.0000000 0.0000000 0.0000000 0.0000000
0.99900 0.0000000 0.0000000
0.99920 0.0000000 0.0000001
0.99950 0.0000000 0.0000169 0.0000454
0.99960 0.0001355 0.0001524 0.0003354
0.99975 0.0000000 0.0040984 0.0041152 0.0067404
0.99980 0.0082645 0.0123290 0.0123457 0.0183253
0.99985 0.0330579 0.0370207 0.0370370 0.0497623
0.99990 0.1074380 0.1110961 0.1111111 0.1352904
0.99995 0.3305785 0.3333220 0.3333333 0.3678184
1.00000 1.0000000 1.0000000 1.0000000 1.0000000

Infact any standard analytical or numerical method can be used. We have
implemented the present method on four linear examples, three non-linear
example with left-end boundary layer and three examples with right-end
boundary layer by taking different values of &. The proposed method is it-
erative on the terminal point. The process is to be repeated for various
choices of x,, until the solution profiles do not differ materially from iteration
to iteration. Numerical results are presented in tables. It can be observed
from the tables that the present method approximates the exact solution very

well.
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