
Applied Mathematics and Computation 155 (2004) 249–258

www.elsevier.com/locate/amc
Higher order finite difference method for
a class of singular boundary value problems

A.S.V. Ravi Kanth, Y.N. Reddy *

Department of Mathematics, National Institute of Technology, Warangal 506 004,

Andhra Pradesh, India
Abstract

In this paper, a fourth order finite difference method for a class of singular boundary

value problems is presented. The original differential equation is modified at the singular

point. The fourth order finite difference method is then employed to solve the boundary

value problem. Some model problems are solved, and the numerical results are com-

pared with exact solution.
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1. Introduction

In applied mathematics many problems lead to singular boundary value

problems of the form
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Ly � y 00ðxÞ þ k
x
y 0ðxÞ þ qðxÞyðxÞ ¼ rðxÞ; 0 < x < 1;

y0ð0Þ ¼ 0 and yð1Þ ¼ b;
which occur very frequently in the theory of thermal explosions and in the

study of Electro-hydrodynamics. Such problems also arise in the study of
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generalized axially symmetric potentials after separation of variables has been

employed. There is considerable interest on numerical methods on singular
boundary value problems. Jamet [5] considered the usual three point finite

difference scheme for singular boundary value problems and showed in the

maximum norm that his scheme is Oðh1�aÞ convergent. The usual classical
three-point finite difference discretization for singular boundary value prob-

lems has been studied by Russell and Shampine [7]. Iyengar and Jain [4] have

discussed the spline function and the three point finite difference methods for

singular boundary value problems. Eriksson and Thomee [3] have studied the

Garlekin type piece wise polynomial procedure for these type problems and it
provide fourth order methods for the singular boundary value problems.

Chawla and Katti [2] have described finite difference methods for singular

boundary value problems. Attempts by many researchers for the removal of

singularity are based on using the series expansion procedures in the neigh-

bourhood (0; d) of singularity and then solve the regular boundary value
problem in the interval (d; 1) using any numerical method.
In this paper, we discuss a direct method for solving singular boundary

value problem. The finite difference methods are always a convenient choice for
solving boundary value problems, because of their simplicity. The original

differential equation is modified at the singular point. The fourth order finite

difference method is then employed to solve the boundary value problem. By

stabilizing the classical central difference (CD) method, we develop a fourth

order finite difference method. To obtain this method, we re-approximate the

CD approximation by rewriting its error terms as a combination of first and

second derivative terms and approximating them. Such a re-approximation

process has a stabilizing effect, for details refer [6]. The matrix problem asso-
ciated with this method is a tridiagonal algebraic system, which can be solved

by �Thomas Algorithm�. Some model problems are solved, and the numerical
results are compared with exact solution.
2. Description of the method

We consider a singular two-point boundary value problem given by
Ly � y 00ðxÞ þ k
x
y 0ðxÞ þ qðxÞyðxÞ ¼ rðxÞ; ð1Þ

y0ð0Þ ¼ 0; ð2Þ
yð1Þ ¼ b: ð3Þ
Jamet [5] has shown that for Eq. (1) the derivative boundary condition is

imposed due to nature of physical situation of the problem. Due to the sin-

gularity at x ¼ 0, we modify the problem near the singular point.
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To set up difference equation of (1) divide [0, 1] into n equal parts, each of
the length h, we have xi ¼ ih, i ¼ 0; 1; . . . ; n. For simplicity, let qðxiÞ ¼ qi;
rðxiÞ ¼ ri; yðxiÞ ¼ yi; y0ðxiÞ ¼ y0i and y00ðxiÞ ¼ y00i .
Since x ¼ 0 is singular point of Eq. (1), we first modify Eq. (1) at x ¼ x0 ¼ 0

as follows:
y00ð0Þ þ Lt
x!0

k
x
y0ðxÞ þ qð0Þyð0Þ ¼ rð0Þ:
Using L. Hospital rule, we have
Lt
x!0

k
x
y0ðxÞ ¼ ky 00ð0Þ;
then we obtain
ð1þ kÞy 00ðxÞ þ qðxÞyðxÞ ¼ rðxÞ at x ¼ 0: ð1	Þ
Now, we describe a fourth order finite difference method, which leads to a

tridiagonal system, which can be solved by Thomas Algorithm. By Taylor

series expansion we obtain the CD formulas for y0i , y
00
i assuming that y has

continuous fourth order derivatives in the interval [0, 1]:
y00i ffi yiþ1 � 2yi þ yi�1
h2

� h2

12
yð4ÞðnÞ ð4Þ
and
y0i ffi
yiþ1 � yi�1
2h

� h2

6
y000ðgÞ; ð5Þ
where n, g 2 ½xi�1; xiþ1
. Substituting (4) and (5) in (1) at x ¼ xi, we get the CD
operator Lh, defined by
Lhyi � aiyiþ1 � biyi þ ciyi�1 ¼ di þ si½y
; 16 i6 n� 1; ð6Þ
where
ai ¼
1

h2
þ k
2hxi

; bi ¼
2

h2
� qi; ci ¼

1

h2
� k
2hxi

; di ¼ ri ð7Þ
and
si½y
 ¼
h2

12
yð4ÞðnÞ þ h2k

6xi
y 000ðgÞ;
where n, g 2 ½xi�1; xiþ1
, here si½y
 are local truncation errors of the CD ap-

proximation. To obtain numerical solution of (1) by the CD operator Lh, we

solve the system of equations formed by the three-term recurrence relation:
Lhyi � aiyiþ1 � biyi þ ciyi�1 ¼ di; 16 i6 n� 1: ð8Þ
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By rewriting the CD formulas for y0i , y
00
i in new form as given below:
y00i ffi yiþ1 � 2yi þ yi�1
h2

� h2

12
yð4Þi þ R1; ð9Þ

y0i ffi
yiþ1 � yi�1
2h

� h2

6
y000i þ R2; ð10Þ
where
R1 ¼ � 2h
4yð6ÞðnÞ
6!

and R2 ¼ � h4yð5ÞðgÞ
5!

;

for n, g 2 ½xi�1; xiþ1
. Substituting these y 0i , y00i from Eqs. (9) and (10) in (1) at
x ¼ xi, we get the CD approximation in a form that includes all the Oðh2Þ error
terms:
Lhyi �
h2

12
2
k
xi
y000i

�
þ yð4Þi

�
þ eR ¼ ri; ð11Þ
Lh is the CD operator given as in (5) and eR ¼ R1 þ ðk=xiÞR2.
By writing qðxÞ ¼ q, rðxÞ ¼ r, in (1) we obtain
y00 ¼ r � qy � k
x
y0:
Differentiating above equation with respect to x, we obtain
y000 ¼ r0 � k
x
y 00

�
þ q
�

� k
x2

�
y0 þ q0y

�
: ð12Þ
Now differentiating (12) with respect to x, we get
yð4Þ ¼ r00 � k
x
y000

�
þ q
�

� 2 k
x2

�
y00 þ 2

k
x3

�
þ 2q0

�
y 0 þ q00y

�
; ð13Þ
then
2
k
x
y 000 þ yð4Þ ¼ 2

k
x2

�
� k2

x2
� q

�
y 00 þ

�
� k

x
q

�
� k
x2

�
� 2 k

x3
� 2q0

�
y 0

� q00
�

þ k
x
q0
�
y þ k

x
r0 þ r00: ð14Þ
Substituting (14) in (11), we get the equation
Lhyi �
h2

12
2
k
x2i

��
� k2

x2i
� qi

�
y00i þ

�
� k
xi

qi

�
� k
x2i

�
� 2 k

x3i
� 2q0i

�
y0i

� q00i

�
þ k
xi
q0i

�
yi

�
þ eR ¼ ri þ

h2

12

k
xi
r0i

�
þ r00i

�
: ð15Þ
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We approximate the converted error terms in Eq. (15) by using for y00i and y 0i
from Eqs. (4) and (5). Then adding these new approximations to Lhyi defined by
(6) and (7), we obtain the fourth order operator
L	
hyi � a	i yiþ1 � b	i yi þ c	i yi�1 ¼ d	

i þ s	i ½y
; 16 i6 n� 1; ð16Þ
where
a	i ¼ ai �
1

12
2
k
xi

�
� k2

x2i
� qi

�
þ h
24

k
xi

qi

��
� k
x2i

�
þ 2 k

x3i
þ 2q0

�
;

b	i ¼ bi �
1

6
2
k
xi

�
� k2

x2i
� qi

�
� h2

12
q00i

�
þ k
xi
q0i

�
;

c	i ¼ ci �
1

12
2
k
xi

�
� k2

x2i
� qi

�
� h
24

k
xi

qi

��
� k
x2i

�
þ 2 k

x3i
þ 2q0

�
;

d	
i ¼ di þ

h2

12

k
xi
r0i

�
þ r00i

�
:

Here ai, bi, ci, di are given in (7) and s	i ½y
 are the local truncation errors of the
Eq. (16), given by
s	i ½y
 ¼ � 2
k
x2i

�
� k2

x2i
� qi

�
h4

144
yð4Þ þ k

xi
qi

��
� k
x2i

�
þ 2 k

x3i
þ 2q0i

�
h4

72
y000i � eR;
where eR ¼ R1 þ ðk=xiÞR2 ¼ Oðh4Þ. We solve the system of equations formed by
the three-term recurrence relationship:
L	
hyi � a	i yiþ1 � b	i yi þ c	i yi�1 ¼ d	

i 16 i6 n� 1: ð17Þ
3. Modification at singularity

The difference scheme (17) cannot be used at i ¼ 0, as it is not defined
at x ¼ x0. Hence we have modified Eq. (1) at singular point x ¼ x0 ¼ 0 as in
Eq. (1	).
ð1þ kÞy 00ðxÞ þ qðxÞyðxÞ ¼ rðxÞ; x ¼ x0: ð18Þ
Now we replace y00ðxÞ with CD formulae (9) at x ¼ x0 ðx ¼ 0Þ in Eq. (18) and
obtain
ð1þ kÞ y1 � 2y0 þ y�1
h2

�
� h2

12
yð4Þ0 þ R1

�
þ q0y0 ¼ r0: ð19Þ
Differentiating Eq. (18) twice with respect to x, we obtain
ð1þ kÞyð4Þ ¼ r00 � 2q0y0 � qy00 � q00y: ð20Þ
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Substituting Eq. (20) in Eq. (19) and replacing y0 and y00 with Eqs. (9) and (10)
at x ¼ 0, we obtain
1þ k
h2

�
þ h
12

q00 þ
q0
12

�
y1 �

2ð1þ kÞ
h2

�
� h2

12
q000 �

5

6
q0

�
y0

þ 1þ k
h2

�
� h
12

q00 þ
q0
12

�
y�1 ¼ r0 þ

h2

12
r000 þ eR; ð21Þ
where
eR ¼ � h2

12
q0R1 �

h2

6
q00R2 � ð1þ kÞR1 þ

h4

144
q0yð4ÞðnÞ þ

h4

72
2q00y

000ðgÞ
which can be neglected.

To eliminate y�1 in Eq. (21) we use the boundary condition (2) y 0ð0Þ ¼ 0 and
applying finite difference approximation,
y1 � y�1
2h

¼ 0:
Hence from Eq. (21)
y0 ¼
2ðk þ 1Þ

h2
þ q0
6

2ðk þ 1Þ
h2

� 5q0
6

� h2

12
q000

y1 �
r0 þ

h2

12
r000

2ðk þ 1Þ
h2

� 5q0
6

� h2

12
q000

: ð22Þ
4. Solution

Eqs. (17) and (22) form �n� equations with (nþ 1) unknowns y0; y1; . . . ; yn.
Using the condition given in Eq. (3) becomes (nþ 1) equations with (nþ 1)
unknowns, which will be sufficient to solve for these unknowns. The matrix

problem associated here is a tridiagonal algebraic system whose solution can

easily be determined by an efficient algorithm called Thomas Algorithm. The

idea of this algorithm is very simple. We shall briefly describe it in the fol-
lowing. In this algorithm we start with a difference relation of the form
yi ¼ Wiyiþ1 þ Ti; ð23Þ

where Wi and Ti correspond to W ðxiÞ and T ðxiÞ and are to be determined from
(23) we have
yi�1 ¼ Wi�1yi þ Ti�1: ð24Þ

Substituting (24) in (17),
a	i yiþ1 � b	i yi þ c	i ðWi�1yi þ Ti�1Þ ¼ d	
i ;

yi ¼
a	i

ðc	i Wi�1 � b	i Þ
yiþ1 þ

c	i Ti�1 � d	
i

ðc	i Wi�1 � b	i Þ
: ð25Þ
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By comparing Eq. (25) with (23), we obtain the recurrence relations
Wi ¼
a	i

ðc	i Wi�1 � b	i Þ
and Ti ¼

c	i Ti�1 � d	
i

ðc	i Wi�1 � b	i Þ
: ð26Þ
To solve these recurrence relations for i ¼ 1; 2; . . . ; n� 1, we need to know the
initial conditions for W0 and T0. Eq. (22) is of the form
y0 ¼ W0y1 þ T0 ð27Þ

then
W0 ¼
2ðkþ1Þ

h2 þ q0
6

2ðkþ1Þ
h2 � 5q0

6
� h2
12
q000
and
T0 ¼ �
r0 þ h2

12
r000

2ðkþ1Þ
h2 � 5q0

6
� h2
12
q000

:

Using these initial values, we compute Wi and Ti for i ¼ 1; 2; . . . ; n� 1 from (26)
in the forward process and then obtain yi in the backward process from Eq.
(23) using Eq. (3).
5. Numerical experiments

To demonstrate the applicability of fourth order finite difference method, we

have solved several singular boundary value problems. These problems have

been chosen because they have been widely discussed in the literature and

because approximate solutions are available for comparison.

Example 1. Consider the linear two-point boundary value problem [7]:
y00ðxÞ þ 2
x
y 0ðxÞ � 4yðxÞ ¼ �2
with boundary conditions
y0ð0Þ ¼ 0; yð1Þ ¼ 5:5:

The problem has a unique solution
yðxÞ ¼ 0:5þ 5 sinh 2x
x sinh 2

:

The numerical results are presented in Table 1.

Example 2. Consider the singular boundary value problem [3]:
�y 00ðxÞ � 2
x
y0ðxÞ þ ð1� x2ÞyðxÞ ¼ x4 � 2x2 þ 7



Table 1

Numerical results for Example 1 with h ¼ 1=20

x yðxÞ HFDM Exact solution

0.0 3.257208 3.257205

0.1 3.275625 3.275624

0.2 3.331323 3.331321

0.3 3.425642 3.425641

0.4 3.560864 3.560863

0.5 3.740272 3.740272

0.6 3.968247 3.968246

0.7 4.250394 4.250393

0.8 4.593706 4.593705

0.9 5.006766 5.006765

1.0 5.500000 5.500000

Table 2

Numerical results for Example 2 with h ¼ 1=20

x yðxÞ HFDM Exact solution

0.0 0.999999 1.000000

0.1 0.989999 0.990000

0.2 0.959999 0.960000

0.3 0.909999 0.910000

0.4 0.839999 0.840000

0.5 0.749999 0.750000

0.6 0.639999 0.640000

0.7 0.510000 0.510000

0.8 0.360000 0.360000

0.9 0.190000 0.190000

1.0 0.000000 0.000000
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with boundary conditions
y0ð0Þ ¼ 0; yð1Þ ¼ 0:
The exact solution is yðxÞ ¼ 1� x2. The numerical results are presented in
Table 2.
Example 3. Consider the Bessel�s equation of order zero [4]:
y00ðxÞ þ 1
x
y 0ðxÞ þ yðxÞ ¼ 0
with boundary conditions
y0ð0Þ ¼ 0; yð1Þ ¼ 1:
The exact solution is yðxÞ ¼ J0ðxÞ
J0ð1Þ
. The numerical results are presented in

Table 3.



Table 3

Numerical results for Example 3 with h ¼ 1=20

x yðxÞ HFDM Exact solution

0.0 1.306843 1.306852

0.1 1.303578 1.303587

0.2 1.293808 1.293816

0.3 1.277604 1.277613

0.4 1.255090 1.255098

0.5 1.226434 1.226441

0.6 1.191849 1.191855

0.7 1.151594 1.151599

0.8 1.105969 1.105972

0.9 1.055313 1.055314

1.0 1.000000 1.000000
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Example 4. Finally, we consider the singular boundary value problem [1]:
Table

Numer

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
y00ðxÞ þ 1
x
y 0ðxÞ ¼ 8

8� x2

� �2
with the boundary conditions
y0ð0Þ ¼ 0; yð1Þ ¼ 0:
The exact solution is yðxÞ ¼ 2 log 7
8�x2. The numerical results are presented in

Table 4.
4

ical results for Example 4 with h ¼ 1=20

yðxÞ HFDM Exact solution

)0.267067 )0.267063
)0.264565 )0.264561
)0.257042 )0.257038
)0.244439 )0.244435
)0.226661 )0.226657
)0.203569 )0.203565
)0.174978 )0.174975
)0.140653 )0.140651
)0.100301 )0.100300
)0.053563 )0.053562
0.000000 0.000000
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6. Discussion and conclusion

We have described and demonstrated the applicability of the fourth order

finite difference method by solving singular boundary value problems. First of

all it is a direct method. Further it is simple, accurate, and easy to implement

on computer. We have implemented this method on four examples––a ho-

mogeneous singular boundary value problem, and three non-homogeneous

singular boundary value problems with mesh size h ¼ 1=20. The numerical
results for the examples are presented in Tables 1–4. It can be observed from

these tables that the present solutions compare well with the exact solutions.
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