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Abstract

In this paper, a fourth order finite difference method for a class of singular boundary
value problems is presented. The original differential equation is modified at the singular
point. The fourth order finite difference method is then employed to solve the boundary
value problem. Some model problems are solved, and the numerical results are com-
pared with exact solution.
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1. Introduction

In applied mathematics many problems lead to singular boundary value
problems of the form

Ly =)/ () + /() + gly) = r(x), 0<x<1,

¥(0)=0 and y(1) =,

which occur very frequently in the theory of thermal explosions and in the
study of Electro-hydrodynamics. Such problems also arise in the study of
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generalized axially symmetric potentials after separation of variables has been
employed. There is considerable interest on numerical methods on singular
boundary value problems. Jamet [5] considered the usual three point finite
difference scheme for singular boundary value problems and showed in the
maximum norm that his scheme is O(h!~*) convergent. The usual classical
three-point finite difference discretization for singular boundary value prob-
lems has been studied by Russell and Shampine [7]. Iyengar and Jain [4] have
discussed the spline function and the three point finite difference methods for
singular boundary value problems. Eriksson and Thomee [3] have studied the
Garlekin type piece wise polynomial procedure for these type problems and it
provide fourth order methods for the singular boundary value problems.
Chawla and Katti [2] have described finite difference methods for singular
boundary value problems. Attempts by many researchers for the removal of
singularity are based on using the series expansion procedures in the neigh-
bourhood (0,9) of singularity and then solve the regular boundary value
problem in the interval (J, 1) using any numerical method.

In this paper, we discuss a direct method for solving singular boundary
value problem. The finite difference methods are always a convenient choice for
solving boundary value problems, because of their simplicity. The original
differential equation is modified at the singular point. The fourth order finite
difference method is then employed to solve the boundary value problem. By
stabilizing the classical central difference (CD) method, we develop a fourth
order finite difference method. To obtain this method, we re-approximate the
CD approximation by rewriting its error terms as a combination of first and
second derivative terms and approximating them. Such a re-approximation
process has a stabilizing effect, for details refer [6]. The matrix problem asso-
ciated with this method is a tridiagonal algebraic system, which can be solved
by ‘Thomas Algorithm’. Some model problems are solved, and the numerical
results are compared with exact solution.

2. Description of the method

We consider a singular two-point boundary value problem given by

Ly =3/ + /() + glv() = (0, (1
YO =0, @)
y(1) = p. ()

Jamet [5] has shown that for Eq. (1) the derivative boundary condition is
imposed due to nature of physical situation of the problem. Due to the sin-
gularity at x = 0, we modify the problem near the singular point.
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To set up difference equation of (1) divide [0, 1] into »n equal parts, each of
the length A, we have x; =ih, i=0,1,...,n. For simplicity, let g(x;) = ¢;;
r(x;) = ri y(x:) =i ¥ (x:) =y and y'(x;) =)’

Since x = 0 is singular point of Eq. (1), we first modify Eq. (1) atx =x, =0
as follows:

k
¥(0) + Lt =y (x) + g(0)(0) = r(0).
Using L. Hospital rule, we have
k /"
Lt =y (x) = b/(0),

then we obtain
(14 k)Y (6) + g(x)y(x) = r(x) atx = 0. (1)

Now, we describe a fourth order finite difference method, which leads to a
tridiagonal system, which can be solved by Thomas Algorithm. By Taylor
series expansion we obtain the CD formulas for y/, y’ assuming that y has
continuous fourth order derivatives in the interval [0, 1]:

~ Yi+1 — 2)/; +yz hZ
po 2 Z A Ty @)
and
Yit1 = Vi- "
et ol 5 - - " (n), (5)

where &, n € [x;_1,x;11]. Substituting (4) and (5) in (1) at x = x;, we get the CD
operator L,, defined by

Ly =aym — by ey =di+uly], 1<i<n—1, (6)
where
1 k 2 1 k
i =t b =— —qi, = T 5 P =T 7
= R YT R T o, " ™
and
R WK
) wR

where &, 7 € [x;_1,x;11], here t;[y] are local truncation errors of the CD ap-
proximation. To obtain numerical solution of (1) by the CD operator L,, we
solve the system of equations formed by the three-term recurrence relation:

Ly =ay — by +cy1=d, 1<i<n—1 (8)
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By rewriting the CD formulas for y/, y/ in new form as given below:

y 1 — 20+ Y h?
fe T - Y R, ©)
/ T - Ji— h2 /11
y ISy Ry, (10)
where
2h4 (6) h4 (5)
R — - y6‘ ©) and R = - yS'(n)’

for &, n € [x;—1,x:+1]. Substituting these y/, 3/ from Eqgs. (9) and (10) in (1) at
x = x;, we get the CD approximation in a form that includes all the O(/4?) error
terms:

L= (2K ) 4 R = 11
i\ 2yt ) FR = (11)

Ly is the CD operator given as in (5) and R = R, + (k/x;)R>.
By writing ¢(x) = ¢, r(x) = r, in (1) we obtain

k
no__ _ _ /
y =r—qy xy y
Differentiating above equation with respect to x, we obtain
n / k " k / /
y r[—y +<q—2>y +qy]~ (12)
X x
Now differentiating (12) with respect to x, we get
k k k
W=r— {—y”’ + (q - 2—2>y” + (2—3 + 2q’)y’ + q”y], (13)
X X X
then
k koK k k koo,
2=y 4y = {2—2——2—q]y" + [—— ( ——> —25- Zq}y
x X2 x x
_ |:q//+]_€ql:|y+l_€r/+rl/. (14)
X X

Substituting (14) in (11), we get the equation

Rk i ) k k k
R VAT S N (L) L B L AT
b 12[(2x? x; q’)y’+( xz-(q’ x?) x; q’)y‘

k ~ W (k
_ (q;/-f—;(];)%] + R :ri+E(;rz{+rl/'/)' (15)
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We approximate the converted error terms in Eq. (15) by using for y’ and y/
from Egs. (4) and (5). Then adding these new approximations to L;); defined by
(6) and (7), we obtain the fourth order operator

Liyi=dy — by +cyii=d +1y, 1<i<n-1, (16)
where

i, LKk F L N W
D) x; X2 e +24 X; % x? + x?+ 7|

1.k & e k
b?:bi_‘[z———z—%] ——{qﬁ”r;qﬁ-],

i

2
. 1 kK h |k k k ,
d=aiz o) -m s (o) + 2]

1

Here a;, b;, ¢;, d; are given in (7) and t;[y] are the local truncation errors of the
Eq. (16), given by
kK ht k k k h* ~
M =—R=—Z—g| — Y+ | =g — = 2—+4+2¢'| =y"—R
T; b/] |: ) xz q:| 144y + X q x.2 + x? + q, 72y1 ’

Xi i i

where R = R, + (k/x;)R, = O(h*). We solve the system of equations formed by
the three-term recurrence relationship:

Ly =dy —biy+cyi=d 1<i<n-—-1 (17)

3. Modification at singularity

The difference scheme (17) cannot be used at i =0, as it is not defined
at x = xo. Hence we have modified Eq. (1) at singular point x = xy = 0 as in

Eq. (1%).
(1+k£)y"(x) + q()y(x) = r(x), x=x. (18)
Now we replace y”(x) with CD formulae (9) at x = xy (x =0) in Eq. (18) and

obtain

29 +y, W
(1+k) (W - EJ/(()4> +R1) + qo)Yo = ro. (19)

Differentiating Eq. (18) twice with respect to x, we obtain

(L+ k™ =+ =24y —qp" — q'y. (20)
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Substituting Eq. (20) in Eq. (19) and replacing y' and y”" with Eqgs. (9) and (10)
at x = 0, we obtain

1+k+h L9 20 +k) w5
TR TR 1290 g0 )
L+k  h h?
( w12 0+12> —r0+12rg+R (21)

where
~ j 2 4

h h I/
_ _ _ A (4) r
R 3 2okt = = doRo (1 + k)R + a2 9% (&) + 7 = 240" ()

which can be neglected.
To eliminate y_; in Eq. (21) we use the boundary condition (2) y'(0) = 0 and
applying finite difference approximation,

=)
o
Hence from Eq. (21)
2
2(k+1) K ot hf
S L S P @)
2(k+ 1) 56[0 h " 2(k+ 1) 56]0 n "
w6 127 o6 127

4. Solution

Egs. (17) and (22) form ‘n’ equations with (n 4+ 1) unknowns yg, yi,. .., V-
Using the condition given in Eq. (3) becomes (n + 1) equations with (n + 1)
unknowns, which will be sufficient to solve for these unknowns. The matrix
problem associated here is a tridiagonal algebraic system whose solution can
easily be determined by an efficient algorithm called Thomas Algorithm. The
idea of this algorithm is very simple. We shall briefly describe it in the fol-
lowing. In this algorithm we start with a difference relation of the form

Vi = VViyi+1 + T (23)

where W, and T; correspond to W (x;) and T(x;) and are to be determined from
(23) we have

Yier = Wiy + Ty (24)
Substituting (24) in (17),
a;yir1 — by +c; Wiy + Tioy) = d,
ar T —d
A B el 2 ke W 25
W e e ) )

1
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By comparing Eq. (25) with (23), we obtain the recurrence relations

a: Ty —df

Wi=———— and [j=—+—71-. 26
= (e = b) 2
To solve these recurrence relations fori = 1,2,...,n — 1, we need to know the
initial conditions for W, and T;. Eq. (22) is of the form
Yo = Won + Ty (27)
then
. 2(1:{1) +@
072(k+1)_5ﬂ_£ 1
7 e 129
and
r___ nthn
0 T2(ktD) S0 i
7 e 129
Using these initial values, we compute W; and 7; fori = 1,2,...,n — 1 from (26)

in the forward process and then obtain y; in the backward process from Eq.
(23) using Eq. (3).

5. Numerical experiments

To demonstrate the applicability of fourth order finite difference method, we
have solved several singular boundary value problems. These problems have
been chosen because they have been widely discussed in the literature and
because approximate solutions are available for comparison.

Example 1. Consider the linear two-point boundary value problem [7]:

" 2 /
V() + 20 () — dy(x) = =2
with boundary conditions
V(0)=0, y(1)=55.
The problem has a unique solution

) = 0‘5+5s1nh2x

xsinh2
The numerical results are presented in Table 1.

Example 2. Consider the singular boundary value problem [3]:

) = 2V + (1 yle) = o =28 4T
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Table 1

Numerical results for Example 1 with 2 = 1/20
X y(x) HFDM Exact solution
0.0 3.257208 3.257205
0.1 3.275625 3.275624
0.2 3.331323 3.331321
0.3 3.425642 3.425641
0.4 3.560864 3.560863
0.5 3.740272 3.740272
0.6 3.968247 3.968246
0.7 4.250394 4.250393
0.8 4.593706 4.593705
0.9 5.006766 5.006765
1.0 5.500000 5.500000

Table 2

Numerical results for Example 2 with 4 = 1/20
x y(x) HFDM Exact solution
0.0 0.999999 1.000000
0.1 0.989999 0.990000
0.2 0.959999 0.960000
0.3 0.909999 0.910000
0.4 0.839999 0.840000
0.5 0.749999 0.750000
0.6 0.639999 0.640000
0.7 0.510000 0.510000
0.8 0.360000 0.360000
0.9 0.190000 0.190000
1.0 0.000000 0.000000

with boundary conditions
¥(0)=0, y(1)=0.

The exact solution is y(x) = I —x*>. The numerical results are presented in
Table 2.

Example 3. Consider the Bessel’s equation of order zero [4]:

1 1 !
Y(x) + V() + () = 0
with boundary conditions

V(0)=0, »(1)=1

The exact solution is y(x) =
Table 3.

Jo(x
Jo(1

;. The numerical results are presented in
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Table 3

Numerical results for Example 3 with 2 = 1/20
X y(x) HFDM Exact solution
0.0 1.306843 1.306852
0.1 1.303578 1.303587
0.2 1.293808 1.293816
0.3 1.277604 1.277613
0.4 1.255090 1.255098
0.5 1.226434 1.226441
0.6 1.191849 1.191855
0.7 1.151594 1.151599
0.8 1.105969 1.105972
0.9 1.055313 1.055314
1.0 1.000000 1.000000

Example 4. Finally, we consider the singular boundary value problem [1]:

v+ o= (2 )

— x2

with the boundary conditions

7

The exact solution is y(x) = 2log The numerical results are presented in

8—x2"

Table 4.

Table 4

Numerical results for Example 4 with 2 = 1/20
x y(x) HFDM Exact solution
0.0 -0.267067 -0.267063
0.1 —0.264565 —0.264561
0.2 —0.257042 —-0.257038
0.3 —0.244439 —0.244435
0.4 -0.226661 -0.226657
0.5 —-0.203569 —-0.203565
0.6 —-0.174978 —-0.174975
0.7 —0.140653 —0.140651
0.8 —0.100301 —0.100300
0.9 —0.053563 —-0.053562

1.0 0.000000 0.000000
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6. Discussion and conclusion

We have described and demonstrated the applicability of the fourth order
finite difference method by solving singular boundary value problems. First of
all it is a direct method. Further it is simple, accurate, and easy to implement
on computer. We have implemented this method on four examples—a ho-
mogeneous singular boundary value problem, and three non-homogeneous
singular boundary value problems with mesh size # = 1/20. The numerical
results for the examples are presented in Tables 1-4. It can be observed from
these tables that the present solutions compare well with the exact solutions.
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